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Abstract: Accurately determining the pore structure and heterogeneity characteristics of marine-
continental transitional shale in the Taiyuan Formation is crucial for evaluating the shale gas resources
in the northern Ordos Basin. However, the studies on pore characteristics and heterogeneity of
marine-continental transitional shales and isolated kerogen are limited. This study collected Taiyuan
Formation shale in the northern Ordos Basin, and corresponding kerogen isolated from shale and
used N2 and CO2 adsorption experiment and Frenkel–Halsey–Hill and Volume-Specific Surface Area
model to investigate the pore structure and heterogeneity of both. The results show that the isolated
kerogen is dominated by micropores, and the micropore’s specific surface area and volume are 4.7
and 3.5 times the corresponding shale, respectively. In addition, the microporous heterogeneity of
the isolated kerogen is stronger than that of shale, while the mesoporous heterogeneity is exactly
the opposite. Meanwhile, the micropores fractal dimension Dm is positively correlated with organic
matter (OM) content, while mesopores fractal dimension D1 and D2 are negatively linearly correlated
with TOC content and have no significant relationship with clay mineral and quartz content (but show
a significant positive correlation with illite and illite/smectite mixed layer). Isolated kerogen plays an
important role in the pore (especially micropores) heterogeneity of shale, while other minerals (such
as clay minerals) have a controlling effect on the mesopores heterogeneity of shale. Compared with
marine shale, the marine-continental transitional shale of the Taiyuan Formation has a lower fractal
dimension and better connectivity, which is conducive to shale gas seepage and migration. The final
result can provide a significant basis for the reserve evaluation and the optimization of desert areas
in the marine-continental transitional shale gas in the northern Ordos Basin.

Keywords: Ordos Basin; marine-continental transitional shale; isolated kerogen; fractal dimension;
shale gas reserves

1. Introduction

In 2023, the shale gas production of Longmaxi marine shales in the Sichuan Basin
reached 250 × 108 m3 and became a crucial part of the natural gas supply [1,2]. Hence,
oil and gas experts in China have mainly focused on Longmaxi marine shales in the
Sichuan Basin, and pore structure characteristics have been extensively studied [3–5]. In
fact, marine-continental transitional shales have also been proven to have good shale gas
resource potential [6–8]. However, compared to the Longmaxi marine shale, the research on
pore structure and heterogeneity of marine-continental transitional shale is still relatively
weak due to its variable sedimentary environment and complex material composition [9,10].
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Mandelbrot et al. originally proposed fractal theory to describe the irregularity of
complex structures and applied it to geology research [11,12]. Subsequently, Katz and
Thompson applied fractal theory to the study of shale pores heterogeneity and proved
that shale pores have obvious fractal characteristics, and the fractal dimension can well
represent the shape complexity and spatial distribution heterogeneity of pores [13]. At
present, scholars usually use image analysis (for example, field emission scanning electron
microscopy, nuclear magnetic resonance technology) and fluid injection (such as mercury
injection method gas adsorption experiment) to characterize the pore structure of shale
and use fractal theory to quantitatively describe the complexity and heterogeneity of pore
structure [14–17]. Li et al. used NMR and FE-SEM to investigate the pore characteristics
and fractal dimension of marine shales and discovered that shales with larger surface fractal
dimensions have higher methane adsorption capacity, while volume fractal dimension
has no significant effect on methane adsorption capacity [18]. Sun et al. studied shale
fractal characteristics by NMR and considered that recrystallization during diagenesis
decreases the complexity of seepage flow pores [19]. Li et al. used the Frenkel–Halsey–
Hill (FHH) model based on the N2 adsorption experiment and observed shale pore has
obvious fractal characteristics and believed that shale pore structure heterogeneity is more
complex than shale surface heterogeneity [20]. Tian et al. combined the previous methods
to explore the fractal dimension of shale with different maturity and discovered that with
the improvement of maturity, the surface fractal dimension of shale changes to the mass
fractal dimension [21].

Previous studies have suggested that kerogen has an undeniable impact on the com-
plexity and heterogeneity of shale reservoirs, including content, type, and maturity [15,20–22].
Peng et al. calculated the Longmaxi shale fractal dimension by the FHH fractal model
and discovered that it has a significantly positive linear relation with TOC content [23].
However, some other scholars believe that the content of OM has little effect on the hetero-
geneity of pores [24]. Currently, the influence of OM on shale pore heterogeneity is still
controversial. In addition, Chang et al. calculated and compared the fractal dimension
of continental and marine shales by using N2 adsorption and FHH models, respectively,
and proposed that OM has a more obvious influence on the pore structure and fractal
dimension of marine shales [22]. However, compared with marine and continental shales,
marine-continental transitional shales have more abundant OM sources and more variable
sedimentary environments, which have more complex pore structures and stronger het-
erogeneity [25,26]. Therefore, the heterogeneity of marine-continental transitional shale
kerogen and its contribution to shale heterogeneity need to be further studied.

In this paper, a low-pressure CO2/N2 adsorption experiment was applied to charac-
terize the shale and corresponding isolated kerogen pore structure, and Volume-Specific
Surface Area (V-S) and FHH models were utilized to calculate the pore fractal dimen-
sion. Meanwhile, the control of kerogen on the pore structure and heterogeneity of shale
was explored. This is crucial for the exploration and extraction of northern Ordos Basin
shale gas.

2. Materials and Methods
2.1. Geological Setting and Sample Preparation

Ordos Basin, a major oil and gas basin of China, is a large inland basin developed on
the basis of the North China Platform [27,28]. The regional tectonics of the Ordos Basin
are divided into six secondary tectonic units: Tianhuan depression, Yimeng uplift, Western
thrust belt, Jinxi flexural fold belt, Yishan slope, and Weibei uplift (Figure 1a) [29–31]. The
Taiyuan Formation of the Carboniferous system is almost distributed at the whole basin and
is a marine-continental transitional facies deposit. The lithology comprises grayish-white
sandstone, siltstone, coal, grayish-black mudstone, and carbonaceous mudstone, and the
organic-rich shale is also well-developed (Figure 1b) [32–34].
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Figure 1. (a) Tectonic map of Ordos Basin and study area (modified by Cao et al., 2024) [28].
(b) Sedimentary sequence at the sampling site. (c) Geological map of northern Ordos Basin (modified
from Yang et al., 2018) [32].

The research area is located in the northern Ordos Basin, where the earth’s surface is
largely covered by the Quaternary and Cretaceous systems, with the Taiyuan Formation
only emerging in the Junge Banner and Wuhai areas on the edge of the basin (Figure 1c).
We took seven samples from the Taiyuan Formation shales of Junge Banner, which is a
series of delta-dominated marine-continental transitional deposits.

2.2. Experimental Methods
2.2.1. Organic Geochemical and Mineralogical Analyses

The shale sample is crushed to 80–200 mesh before TOC content determination, with
sufficient 10% hydrochloric acid solution to completely remove carbonate from the sample.
All steps refer to “Determination for total organic carbon in sedimentary rock” (GB/T
19145-2022) [35].

The mineralogical composition of the shales was determined through the XRD anal-
yses. Before the determination, shale samples are crushed to 40 mesh, grinding without
granular feeling, and scanning speed: 2θ is 2◦/min; 2θ scanning range: 5◦~45◦; sampling
step width: 2θ is 0.02◦; test procedure refers to SY/T 5163-2018 [36].
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The method and process of extracting kerogen from shale samples are referred to the
national standard of the People’s Republic of China (GB/T 19144-2010) [37], and kerogen
sample numbers were YG-1K, YG-2K, YG-3K, YG-4K, YG-5K, YG-6K, YG-7K.

2.2.2. Gas Adsorption Experiment

N2 and CO2 adsorption tests were conducted on shale samples and kerogen samples.
The shales were ground to 60 mesh and placed in a vacuum for 20 h before the experiment.
The experimental temperature is −196 ◦C (77 K), and the N2 adsorption equilibrium
pressure (P/P0) is between 0.001 to 0.995. The CO2 adsorption experiment temperature
is 0 ◦C (273.5 K), and the (P/P0) is 0.0001–0.032. The pore characteristics were measured
by adopting the Barrett–Johner–Halenda (BJH) model and Brunauer–Emmett–Teller (BET)
model. Pore SSA and pore volume of micropores (0–2 nm) were measured through a
density functional theory (DFT) model [38,39].

2.2.3. Fractal Calculation

The fractal theory of quantitative evaluation is described by the fractal dimension
D. Depending on gas adsorption-desorption theory, the FHH model has been extensively
applied to calculate the porous media fractal feature [40–42]. The fractal dimension is
calculated by the Equation (1):

LnV = ALn(Ln(P0/P)) + constant (1)

D = A + 3 (2)

where: V is the cumulative volume at the balance pressure P. A is the slope of the curve
for Ln(Ln(P0/P)), and LnV. P0 is saturation pressure; The fractal dimension is obtained by
Equation (2). Based on the gas adsorption and FHH model, two asymptotes were able to
draw at P/P0 in the 0–0.45 and 0.45–1.0 range. The fractal dimension D1 corresponds to the
P/P0 range of 0–0.45; it is monolayer absorption and is primarily controlled by the Van der
Waals force. The fractal dimension D2 is obtained from N2 adsorption data in P/P0 between
0.45 and 1, which is multilayer adsorption and affected by capillary coagulation [43,44].

The Volume-Specific Surface Area (V-S) model was proposed by Mandelbrot et al.
and calculated the corresponding pore fractal dimension by using the correlation between
pore volume and the SSA of solid porous media [12]. At present, it has been shown that it
is highly applicable to the research of shale micropore structure characteristics [45]. The
calculation process is as follows:

LnV =
3

Dm
LnS+constant (3)

where: V is cumulative pore volume, cm3/g; Dm is micropores fractal dimension; S is
cumulative SSA, m2/g.

3. Results
3.1. Mineral Composition and Organic Geochemical Characteristics

Table 1 shows the organic geochemistry and mineral component of the Taiyuan For-
mation shale in the northern Ordos Basin. The shale samples have low quartz content and
high clay content, and TOC content ranges from 1.06–7.5%, with an average of 2.89%. OM
content exceeds the requirement of the target section of the marine-continental transitional
shale gas field. The main mineral component is clay minerals, mainly kaolinite.
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Table 1. Organic geochemical and mineralogical parameters of samples.

Sample TOC
(%)

Quartz
(%)

Potash Feldspar
(%)

Clay Minerals
(%)

Illite
(%)

Kaolinite
(%)

Chlorite
(%)

I/S Mixed Layer
(%)

YG-1 1.40 20.7 0.0 79.3 7 81 6 6
YG-2 1.30 37.8 0.9 61.3 9 75 7 9
YG-3 1.28 15.8 0.0 84.2 5 82 6 7
YG-4 1.06 19.2 0.0 80.8 6 79 8 7
YG-5 1.38 20.5 0.0 79.5 9 80 6 5
YG-6 6.34 4.7 0.0 95.3 4 86 8 2
YG-7 7.50 34.1 0.0 65.9 5 84 9 2

3.2. Gas Adsorption Characteristics

Table 2 illustrates the pore characteristics of Taiyuan shale and kerogen in the north-
ern Ordos Basin. The micropore, mesopores, and macropores SSA of shale range from
8.15–21.01 m2/g (average value is 12.68 m2/g), 14.46–17.90 m2/g (mean is 16.26 m2/g) and
0.1502–0.3255 m2/g (average value is 0.2101 m2/g), respectively. The micropore, mesopores,
and macropores volume of shale range from 0.003225–0.006998 cm3/g (average
0.004774 cm3/g), 0.02794–0.04054 cm3/g (average 0.03404 cm3/g) and 0.002979–0.006462 cm3/g
(average 0.004158 cm3/g), respectively.

Table 2. Pore structure parameters of samples.

Sample
Micropore (<2 nm)

Specific Surface
Area (m2/g)

Micropore
(<2 nm)
Volume
(cm3/g)

Mesoporous
(2–50 nm) Specific

Surface Area
(m2/g)

Mesoporous
(2–50 nm)
Volume
(cm3/g)

Macropore
(>50 nm) Specific

Surface Area
(m2/g)

Macropore
(>50 nm)

Volume (cm3/g)

YG-1 11.16 0.004609 17.90 0.03860 0.2283 0.004421
YG-2 10.60 0.004327 14.46 0.03050 0.1685 0.003384
YG-3 8.150 0.003225 15.60 0.02794 0.1502 0.002979
YG-4 9.015 0.003696 16.15 0.02876 0.1565 0.003073
YG-5 9.977 0.004436 17.69 0.03233 0.1631 0.003229
YG-6 21.01 0.006998 15.66 0.04054 0.2788 0.005559
YG-7 18.87 0.006127 16.36 0.03963 0.3255 0.006462

YG-1K 74.85 0.02107 4.234 0.01435 0.2371 0.005425
YG-2K 51.51 0.01463 3.676 0.00859 0.1364 0.002700
YG-3K 36.95 0.01065 2.653 0.00734 0.1398 0.002800
YG-4K 41.64 0.01282 2.320 0.00696 0.1624 0.003293
YG-5K 56.53 0.01626 3.562 0.00993 0.2017 0.003857
YG-6K 55.06 0.01607 3.076 0.00886 0.1575 0.003032
YG-7K 74.43 0.02140 1.595 0.00494 0.1007 0.002103

The micropore, mesopores, and macropores SSA of shale kerogen range from
36.95–74.85 m2/g (average value is 55.85 m2/g), 1.595–4.234 m2/g (average value is
3.017 m2/g) and 0.1007–0.2371 m2/g m2/g (average value is 0.1622 m2/g), respectively. The
micropore, mesopores, and macropores volume of shale kerogen range from
0.01065–0.02140 cm3/g (average 0.01613 cm3/g), 0.00494–0.01435 cm3/g (average value is
0.008708 cm3/g) and 0.002103–0.005425 cm3/g (average 0.003316 cm3/g), respectively.

3.3. Results of Fractal Dimension Calculation
3.3.1. Mesoporous Fractal Parameter of Shale and Kerogen

Figures 2 and 3 show mesoporous fractal dimension analysis of shale and kerogen.
Table 3 shows the fractal dimension result of Taiyuan Formation shale and kerogen in the
northern Ordos Basin. The shale fractal dimension D1 and D2, respectively, ranges from
2.317–2.433 and 2.585–2.701. The shale fractal dimension D1 and D2, respectively, ranges



Processes 2024, 12, 2395 6 of 16

from 2.317–2.433 and 2.585–2.701. The kerogen fractal dimension D1 is between 2.19–2.38,
and D2 is between 2.51–2.58.
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Table 3. Mesoporous fractal dimension of Taiyuan Formation shale and kerogen in northern Or-
dos Basin.

Sample
P/P0 = 0~0.45 P/P0 = 0.45~1

D1 R2 D2 R2

YG-1 2.36 0.921 2.63 0.964
YG-2 2.40 0.918 2.65 0.964
YG-3 2.34 0.954 2.67 0.957
YG-4 2.42 0.949 2.69 0.96
YG-5 2.40 0.932 2.69 0.947
YG-6 2.38 0.926 2.58 0.962
YG-7 2.30 0.934 2.58 0.971

YG-1K 2.36 0.944 2.51 0.994
YG-2K 2.35 0.965 2.58 0.999
YG-3K 2.36 0.949 2.55 0.999
YG-4K 2.30 0.94 2.51 0.995
YG-5K 2.38 0.949 2.54 0.998
YG-6K 2.29 0.932 2.52 0.994
YG-7K 2.19 0.908 2.52 0.992
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3.3.2. Micropore Fractal Parameter of Shale and Kerogen

Figures 4 and 5 show the micropore fractal dimension analysis of shale and kerogen
mesopore. Table 4 indicates the shale and kerogen fractal dimension result of the Taiyuan
Formation. The micropore fractal dimension Dm of shale and kerogen ranges from 2.58–2.71
and 2.67–2.79, with an average of 2.64 and 2.74, respectively.

Table 4. Micropore fractal dimension of Taiyuan Formation shale and kerogen in northern Or-
dos Basin.

Sample Dm R2 Sample Dm R2

YG-1 2.66 0.999 YG-1K 2.67 0.999
YG-2 2.63 0.999 YG-2K 2.69 0.999
YG-3 2.58 0.999 YG-3K 2.79 0.999
YG-4 2.60 0.999 YG-4K 2.74 0.997
YG-5 2.71 0.999 YG-5K 2.75 0.999
YG-6 2.68 0.999 YG-6K 2.74 0.999
YG-7 2.64 0.999 YG-7K 2.79 0.999



Processes 2024, 12, 2395 8 of 16Processes 2024, 12, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 4. Fractal dimension fiMing of shale micropores. 

 

Figure 5. Fractal dimension fiMing of kerogen micropores. 

  

Figure 4. Fractal dimension fitting of shale micropores.

Processes 2024, 12, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 4. Fractal dimension fiMing of shale micropores. 

 

Figure 5. Fractal dimension fiMing of kerogen micropores. 

  

Figure 5. Fractal dimension fitting of kerogen micropores.



Processes 2024, 12, 2395 9 of 16

4. Discussion
4.1. The Pore Structure and Heterogeneity of Kerogen

Table 2 shows the average pore SSA and pore volume of isolated kerogen samples are
59.03 m2/g and 28.15 × 10−3 cm3/g, which are 2 and 0.7 times that of the corresponding
shale samples. The micropores SSA and volume of isolated kerogen are 3.7 and 2.5 times
higher than that of the corresponding shale, indicating that isolated kerogen has more
micropores and significantly contributes to the micropore parameters of the shale. Li et al.
also investigated matrix-related pores from differential sedimentary shale and discovered
that the pore SSA and volume of isolated kerogen in marine-continental transitional shales
were 1 and 0.6 times higher than those of the corresponding shale samples, while the pore
SSA and volume of isolated kerogen in marine shale are 8.5 and 3 times higher than the
corresponding shale samples [46]. In fact, this difference is attributed to differences in
shale kerogen types; marine-continental transitional shale kerogen generally has stronger
thermodynamic stability and lower pore contribution ability compared to marine shale,
but it still provides a large number of micropores for shale [46–48].

Previous studies have extensively explored the fractal dimension of shale by N2
adsorption experiment and FHH model and used D1 and D2 to characterize the complex
features of shale surface and structure, respectively [20,49,50]. In addition, due to the N2
adsorption not characterizing micropores well, some scholars used the CO2 adsorption
experiment and V-S model to calculate the micropore’s fractal dimension Dm [51–53]. In
Figure 6a, we observed that kerogen samples exhibit certain fractal characteristics and
heterogeneity, and the heterogeneity of kerogen micropores is much larger than that of
kerogen mesopores. Peng et al. have also discovered this phenomenon and pointed out
that the complexity of organic pores is influenced by the pore size, and the heterogeneity of
organic pores weakens as the pore size increases [23]. Thus, we believe that it is perhaps due
to the kerogen developing more micropores and having more complex pore structures in the
process of thermal evolution [42,54–56]. In addition, the results of this study have certain
similarities with the fractal dimension of shale kerogen in a previous study (Figure 6b) [57];
D1 of the kerogen samples is smaller than D2 and has a positive correlation, indicating
that structural heterogeneity of kerogen exceeds that of the surface and increases with the
enhancement of shale surface heterogeneity.
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4.2. Control of Shale Pore Heterogeneity by Kerogen

In Figure 7a, the fractal dimension of Taiyuan shale in the northern Ordos Basin is
between 2–3, with obvious fractal characteristics, heterogeneity, and roughness. Shale
fractal dimension D1 is smaller than D2, showing that the shale interior structure hetero-
geneity exceeds the shale surface, while Dm and D2 of shale are close, indicating that
the shale micropore and mesoporous heterogeneity are similar. Furthermore, compared
with previous studies, the calculated results of this study are basically consistent with the
fractal dimensions of marine-continental transitional shale and are smaller than the fractal
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dimensions of Marine shale (Figure 7b) [20,46,58–60], suggesting the marine-continental
transitional shale has relatively lower heterogeneity and stronger permeability and fluidity.
Previous studies believe marine-continental transitional shales tend to have relatively lower
OM content and maturity and relatively poorly developed organic pores, which results in a
decrease in fractal dimension [22,46].
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Figure 7. The fractal dimension of Marine-continental transitional shale (a) and its comparison with
that of Marine shale (b) [20,46,58–60].

In this study, the isolated kerogen micropores fractal dimension Dm is greater than
shale samples, while the mesoporous fractal dimensions D1 and D2 are the opposite
(Figure 8). In addition, whether it is shale or isolated kerogen, the microporous fractal
dimension Dm is greater than the mesoporous fractal dimension D1 and D2 (Figure 8). Thus,
we speculate that kerogen can develop more organic pores and microfracture in the thermal
evolution process, which are mainly micropores and have complex pore structures and
have important contributions to the fractal dimension of shale (Figures 9 and 10) [45,55].
To further elucidate the influence of isolated kerogen on shale heterogeneity, we have
drawn the correlation heat map between material composition and pore fractal dimension
(Figure 11). TOC content is positively correlated with micropore fractal dimension Dm but
negatively correlated with mesoporous fractal dimension D1 and D2. In fact, different corre-
lations are determined by the degree of pore development and pore size [18,61,62]. Kerogen
develops a large number of micropores, resulting in a gradual increase in the number and
heterogeneity of micropores as TOC content increases. Meanwhile, the mesoporous mate-
rial provided by kerogen is limited, while clay minerals (especially illite and illite/smectite
mixed layers) provide more mesopores, resulting in a larger fractal dimension and stronger
heterogeneity of shale mesopores (Figure 11).
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4.3. Concluding Remarks

The research of shale pores fractal characteristics not only reflects the complexity and
diversity of its reservoir space but also has certain geological significance for shale gas
evaluation. Previous studies have indicated that the higher fractal dimension shows a more
complicated pore structure, which is more conducive to methane adsorption. However,
this will also lead to poor permeability of shale reservoirs, resulting in the difficulty
of shale gas diffusion and resolution [63,64]. Compared with commercially developed
marine shale gas fields, marine-continental transitional shales also have well-developed
micropores and mesopores, which can provide abundant shale gas adsorption sites and
storage space, which is conducive to the occurrence of adsorbed and free gas. However,
the pore heterogeneity of marine-continental transitional shales is lower, suggesting that
pores of marine-continental transitional shale have stronger permeability and fluidity,
which may lead to shale gas escapes [45,65,66]. Therefore, in the process of exploration in
marine-continental transitional shale, high-pressure and closed conditions are significant
targets for shale gas fields. Meanwhile, with the continuous maturity of CO2-enhanced
shale gas recovery technology, the advantage of strong permeability of marine-continental
transitional shale pores is gradually emerging. Injected CO2 can more easily enter shale
pores, displacing methane and increasing shale gas production [67–69].

5. Conclusions

In this paper, a series of experiments and calculations were carried out, and the pore
structure characteristics and fractal features and their influencing factors were investigated.
The main conclusions are the following:

(1) The Taiyuan Formation shale in the northern Ordos Basin has low quartz content and
high clay content. The shale pores are mainly mesoporous and micropores, and the
isolated OM contributes to more micropores.

(2) Based on the FHH and V-S model, the average pore fractal dimensions D1, D2, and
Dm of isolated kerogen are 2.32, 2.53, and 2.74, respectively. The D1, D2, and Dm of
shale pores are 2.37, 2.64, and 2.64, respectively. The microporous fractal dimension
Dm of isolated kerogen is larger than that of shale, while the mesoporous fractal
dimension D1 and D2 is exactly the opposite.

(3) The Dm is positively correlated with TOC content, while D1 and D2 are exactly the
opposite. Dm, D1, and D2 have no significant relationship with clay mineral and
quartz content (but D1 and D2 show a significant positive correlation with illite
and illite/smectite mixed layer). Kerogen has a significant contribution to the het-
erogeneity of micropores, while other minerals have a greater contribution to the
mesoporous heterogeneity.
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D1 mesoporous surface fractal dimension
D2 mesoporous structure fractal dimensions
Dm micropores fractal dimensions
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