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Extractive metallurgy, combined with mineral processing, is at the heart of modern
industry, facilitating the transformation of raw mineral resources into valuable metals es-
sential for infrastructure, technology, and energy systems. As global priorities shift toward
decarbonization and the rapid expansion of renewable energy technologies, the field of
extractive metallurgy has gained renewed prominence. This resurgence is driven by the
urgent need for critical metals, such as lithium, cobalt, nickel, rare earth elements, and other
metals [1–4], which are indispensable in the manufacturing of batteries, wind turbines, and
electric vehicles [5,6]. This is in addition to a massive transition in the steel industry [7],
modernizing and/or moving away from traditional blast furnace operations [8,9] and,
eventually, toward hydrogen-driven reduction and DRI [10–13]. A key element in address-
ing the new engineering challenges posed by this demand is the integration of advanced
computational approaches into extractive metallurgy, opening exciting new avenues for
research and development.

Computational fluid dynamics (CFD) is one such powerful tool that can revolutionize
how metallurgical processes are designed and optimized [13–16] at the level of individual
unit operations, i.e., the individual furnaces. Traditionally, extractive metallurgy has relied
on empirical data and physical experimentation to model fluid flow, heat transfer, and mass
transport within reactors, furnaces, and smelters. Plant- and pilot-level studies are now
extrapolated as the basis for CFD simulations. These simulations provide detailed insight
into these phenomena by numerically solving the governing equations of fluid mechanics,
thermodynamics, and chemical kinetics. In the context of metallurgical processes, the
representation of multiphase simulations, which often intercouple physical phenomena
remains a critical issue in the design of reactors [17], often considered multiphysics simula-
tions [18,19]; for example, magnetohydrodynamics is the foundation for magnetic stirring,
which controls impurities within molten charges [19]. Other critical issues include adapting
dynamic meshing techniques to represent free surfaces of slags [20], which realistically have
varying viscosity levels as well as inhomogeneous compositions and nonideal solution
chemistry. By simulating complex metallurgical environments, researchers can predict how
molten, gaseous, and solid charges will behave under varying conditions, allowing for
more efficient process design, optimization of energy consumption, and minimization of
emissions. For example, in steelmaking, CFD models can help to optimize the gas flow
and slag behavior inside a metallurgical furnace, reducing gas emissions (e.g., carbon and
sulphur dioxide) while improving metal yield. For researchers in chemical and metallur-
gical engineering, the ability to fine-tune processes through CFD simulations is not only
intellectually rewarding, but also of immense societal value, contributing directly to global
decarbonization efforts.

Beyond CFD, computational optimization techniques offer another exciting dimension
for the advancement of extractive metallurgy. The complexity of metallurgical processes,
which involve multiple variables such as temperature, pressure, reaction kinetics, and
resource inputs, are at the level of individual unit operations, and thus beckon techniques
that globally optimize the coordination of several operations, i.e., to integrate the unit
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operations [21]. Specially designed algorithms that combine mathematical programming
and metaheuristics can explore vast parameter spaces and identify optimal operating
conditions that balance efficiency, environmental impact, and cost [22,23]. Computational
approaches have contributed significantly to geometallurgy [24,25], which is the linkage
of geological compositions and attributes to metallurgical outcomes. Geometallurgically
oriented computations are important in the representation of metallurgical processes within
strategic mine planning [26–28], and also are vital at the operational timescale. Real-time
adjustment of processes in response to fluctuating conditions maximizes the recovery
of valuable metals while minimizing waste [29,30]. For instance, the optimization of
hydrometallurgical processes for the extraction of metals from low-grade ores or electronic
waste can dramatically enhance the sustainability and economic feasibility of recycling
technologies, which are critical for the circular economy.

In addition, logistical simulations are becoming increasingly relevant as extractive
metallurgical operations grow in complexity. Modern metallurgical facilities must oper-
ate within an interconnected supply chain [30], where the availability of raw materials,
transportation costs, and market fluctuations can have a significant impact on production
efficiency. Simulation models, such as discrete event simulations or agent-based mod-
els [29–32], enable metallurgical engineers to assess the performance of supply chains,
evaluate the impact of operational disruptions, and devise strategies for enhancing the
resilience of their operations. These tools may become valuable in the context of energy
transition metals [5,6,32], where supply disruptions could have consequences on renewable
energy deployment.

For process engineering researchers with chemical and metallurgical backgrounds, the
integration of these computational approaches into extractive metallurgy represents a new
frontier for innovation. Not only do computational methods enable more sustainable and
efficient production processes, they also offer opportunities to explore complex systems
in unprecedented detail, from geological and mineralogical attributes to global supply
networks. The combination of traditional metallurgical knowledge with cutting-edge
computational techniques is poised to transform the field, and researchers with expertise in
computational modeling and optimization are well-positioned to lead this transformation.
As the world faces increasing demand for critical metals and stringent requirements for
environmental stewardship, the contributions of researchers in extractive metallurgy will
be crucial to ensuring a sustainable future.
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