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Abstract: The high-quality development of the manufacturing industry necessitates accelerating
its transformation towards high-end, intelligent, and green development. Considering logistics
resource constraints, the impact of dynamic disturbance events on production, and the need for
energy-efficient production, the integrated scheduling of production equipment and automated
guided vehicles (AGVs) in a flexible job shop environment is investigated in this study. Firstly, a
static model for the integrated scheduling of production equipment and AGVs (ISPEA) is devel-
oped based on mixed-integer programming, which aims to optimize the maximum completion time
and total production energy consumption (EC). In recent years, reinforcement learning, including
deep reinforcement learning (DRL), has demonstrated significant advantages in handling workshop
scheduling issues with sequential decision-making characteristics, which can fully utilize the vast
quantity of historical data accumulated in the workshop and adjust production plans in a timely
manner based on changes in production conditions and demand. Accordingly, a DRL-based ap-
proach is introduced to address the common production disturbances in emergency order insertions.
Combined with the characteristics of the ISPEA problem and an event-driven strategy for handling
dynamic events, four types of agents, namely workpiece selection, machine selection, AGV selection,
and target selection agents, are set up, which refine workshop production status characteristics as
observation inputs and generate rules for selecting workpieces, machines, AGVs, and targets. These
agents are trained offline using the QMIX multi-agent reinforcement learning framework, and the
trained agents are utilized to solve the dynamic ISPEA problem. Finally, the effectiveness of the
proposed model and method is validated through a comparison of the solution performance with
other typical optimization algorithms for various cases.

Keywords: flexible job shop; integrated scheduling of production equipment and AGVs; emergency
order insertion; deep reinforcement learning; QMIX

1. Introduction

With the implementation of various intelligent manufacturing strategies around the
world, such as Industry 4.0, Made in China 2025, and New Robot Strategy, the manufactur-
ing workshop is rapidly transitioning towards intelligent operation and maintenance. The
flexible job shop is a highly adaptable and efficient organizational method for production
systems, commonly employed in sophisticated manufacturing sectors such as the semicon-
ductor, biopharmaceutical, and aerospace industries. A previous study has demonstrated
that production scheduling is an effective measure for achieving energy-efficient produc-
tion on the shop floor at the manufacturing system level [1–5]. Nevertheless, most work on
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production scheduling problems concentrated on static scheduling, which usually assumes
that the information related to humans, workpieces, and equipment is predetermined and
known. In actual production, there are frequently an immense amount of dynamic uncer-
tainties, such as machine failures, emergency order insertion, and process completion time
fluctuations, making it difficult to strictly execute scheduling plans formulated by static
scheduling [6]. In contrast, dynamic scheduling not only addresses unforeseen situations
in the manufacturing process, but it also entails the ability to respond quickly and adjust
production plans to minimize the impact of these uncertain factors on production efficiency
and cost. Therefore, it is of more practical significance to study dynamic scheduling.

In addition, a workshop manufacturing system consists of plenty of energy-consuming
manufacturing resources. Automated guided vehicles (AGVs) have been widely applied for
material handling in flexible job shops due to their benefits of flexibility, high precision, and
high dependability [7]. In the current research on flexible job shop scheduling problems
(FJSPs), it is commonly assumed that there are unlimited material transport resources.
However, on the real shop floor, the unavailability of material handling resources and the
early or delayed completion of material handling tasks can disrupt the operation plan of
processing equipment [8], thereby affecting the feasibility of scheduling plans. Moreover,
the current research on energy-efficient production scheduling usually focuses solely on the
energy consumption (EC) of processing equipment and neglects the EC of material handling
equipment like AGVs, robots, and conveyors. Hence, if the impact of material handling
can be considered in production scheduling, i.e., through the integrated scheduling of
production equipment and AGVs (ISPEA), this will be beneficial to enhancing the efficiency
of processing and material handling resources simultaneously, as well as enhancing the
potential of energy-efficient production in a workshop. With the rapid development of
information technology, the application of the Internet of Things (IoT), manufacturing
execution systems (MESs), and advanced planning and scheduling (APS) systems provides
real-time data support for on-site workshop management and promotes the flow and
sharing of information, which makes ISPEA feasible. Thus, considering the influence of
the material handling processes executed by AGVs, this study aims to investigate the
ISPEA problem, and design an effective solution method to obtain the optimal integrated
scheduling scheme.

Currently, existing ISPEA studies usually ignore the disturbances to the formulation
of scheduling plans caused by dynamic events and lack consideration of EC or EC-related
optimization objectives. Furthermore, the ISPEA problem in a flexible job shop involves
not only machine allocation and the sorting of job processing, but also involves transport
processes that link different job operations. Therefore, it is more complex than the tradi-
tional production equipment-based FJSP and poses a challenge to the “model + algorithm”
idea commonly utilized in the current research on workshop production scheduling. Mean-
while, the rapid advancement of the Internet of Things, big data, artificial intelligence
(AI), and other emerging digital technologies has facilitated the collection and analysis
of diverse data and information in manufacturing workshops. Reinforcement learning,
including deep reinforcement learning (DRL), is adept at utilizing the extensive historical
data collected and accumulated in the workshop to address sequential decision-making
problems, which provides new ideas for addressing issues related to workshop production
scheduling. As an algorithm capable of self-learning and optimizing decisions, RL can
dynamically adjust production plans based on real-time production conditions and demand
changes, and some further exploration has validated its advantages in solving dynamic
scheduling problems [9].

Despite the many types of dynamic events, emergency order insertions are the focus of
this study, and an event-driven strategy that allows for real-time monitoring and processing
is proposed to handle them effectively. Therefore, the ISPEA problem studied in this paper
can also be interpreted as an extension of the FJSP that comprehensively considers the
impact of logistics and dynamic events, as well as the energy-efficient production needs.
Accordingly, the DRL can be introduced to solve this better.
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The rest of the paper is organized in the following manner: Section 2 provides an
overview of the existing research related to ISPEA in flexible job shops. Section 3 presents
the ISPEA problem model. Section 4 describes the process and specific steps of the multi-
agent reinforcement learning (MARL) method, QMIX, employed to solve the ISPEA prob-
lem. The experimental findings are shown in Section 5. Section 6 summarizes the study
and outlines future research directions.

2. Literature Review

In this section, current work related to dynamic ISPEA in a flexible job shop is reviewed
from three aspects, i.e., energy-efficient scheduling, dynamic scheduling, and integrated
scheduling, considering the impact of logistics factors, and the research gap motivated this
study is analyzed.

2.1. Energy-Efficient Scheduling

In recent years, the energy-efficient scheduling problem for flexible job shops has
increasingly become a research hotspot in the manufacturing field [10,11]. From the
perspective of solution methods, there are four main types: heuristic algorithms, meta-
heuristic algorithms, hyper-heuristic algorithms, and artificial intelligence methods.

Heuristic algorithms refer to strategies constructed based on intuition or experience to
generate acceptable and feasible solutions for specific problems, generally called scheduling
rules. It is widely accepted that no single scheduling rule can handle all scenarios and objec-
tives, and composite scheduling rules usually perform better than simple rules across most
objectives. Meta-heuristic algorithms are computational-intelligence-based methods for
solving complex optimization problems, including evolutionary computation and swarm
intelligence. Luo et al. [12] proposed a multi-objective grey wolf optimization (MOGWO)
algorithm to solve an FJSP with EC and makespan as optimization objectives, and an
experimental study based on 35 benchmark cases showed that the proposed MOGWO
algorithm outperforms the representative multi-objective evolutionary algorithms such
as the non-dominated sorting genetic algorithm-II (NSGA-II) and strength Pareto evo-
lutionary algorithm-II (SPEA-II). Zhang et al. [13] employed a machine turning-off/on
energy-saving strategy, and proposed an NSGA-II-based method for an FJSP with produc-
tion EC and makespan as the optimization objectives. The experimental research not only
verified the effectiveness of the energy-saving strategy, but also the effectiveness of the
proposed solution method, through comparison with the ant colony optimization (ACO)
algorithm, modified genetic algorithm (MGA), and genetic algorithm-particle swarm op-
timization (GA-PSO) algorithm. Wu et al. [14] developed a multi-objective FJSP model
with generalized EC and makespan as the optimization objectives, and proposed a multi-
objective simulated annealing algorithm to solve it. The numerical experiments verified
that the proposed algorithm can effectively and efficiently solve the established model. Liu
et al. [15] introduced a modified biology migration algorithm (MBMA) to minimize work-
shop EC; this algorithm can directly search the discrete scheduling space and balance its
exploration capabilities by incorporating discrete migration operators based on crossover
operations and a dynamic adjustment strategy for transition probabilities. Hyper-heuristic
algorithms can automatically design scheduling rules using strategies such as genetic
programming and gene expression programming, which have been utilized for solving
energy-efficient FJSPs. Zhang et al. [16] employed gene expression programming to mine
effective energy-saving rules, and proposed a mixed-integer linear programming model,
incorporating the shutdown/restart energy-saving strategy, to minimize total energy con-
sumption. Correspondingly, the search space for problem solutions was expanded, and the
quality of the solutions was improved through multi-gene representation and self-learning
mechanisms. Artificial intelligence methods, such as machine learning, game theory, multi-
agent systems, and digital twins, have been gradually applied in production scheduling.
Rakovitis et al. [17] established a new energy-efficient FJSP model and proposed a group-
based decomposition method for solving large-scale problems. Furthermore, experiments
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demonstrated that the proposed approach can find feasible solutions with a lower EC for
large-scale instances in a shorter computation time (within 10 min), and the EC can be
reduced by up to 43.1% compared with the existing gene-expression programming-based
algorithm. Zhang et al. [18] proposed a bi-level scheduling method based on dynamic game
theory to address an FJSP for optimizing makespan, total EC, and machine load simultane-
ously, and the experiment revealed that when compared with the GA+ periodic scheduling
method, the proposed method can minimize such three optimization objectives by 4.5%,
9.3%, and 8.75%, respectively. Zhou et al. [19] introduced an AI scheduler that improves
learning efficiency by designing composite reward functions and solves the multi-objective
performance enhancement issue in production scheduling, and the experimental results
reveal the proposed strategy delivers excellent performances in terms of both decision
accuracy and schedule repair.

Overall, the aforementioned studies have indicated that production scheduling is an
effective measure for achieving energy-efficient production in flexible job shops from a
manufacturing system perspective. Meta-heuristic algorithms are currently the mainstream
methods for solving energy-efficient FJSPs, but they often fail to effectively utilize the
rich production data generated during the operation of intelligent workshops and rarely
consider the impact of dynamic events.

2.2. Dynamic Scheduling

Dynamic scheduling work can be categorized according to the types of dynamic
disturbances in the workshop production process: job-related dynamic events, machine-
related dynamic events, and other dynamic events [20]. Job-related dynamic events include
random job arrivals, uncertain processing times, and urgent job insertions. Machine-related
dynamic events usually encompass machine failures and machine overloads. RL and
DRL have significant advantages in handling complex decision-making and optimization
problems, providing new approaches and methods for addressing dynamic scheduling
problems. Based on the types of dynamic events that are addressed, the research on
adopting RL and DRL to handle dynamic scheduling problems in flexible job shops is
summarized as follows.

Regarding the handling of job-related dynamic events, Bouazza et al. [21] utilized a
Q-learning algorithm combined with scheduling rules to solve dynamic FJSPs with new
job insertions. Liu et al. [22] proposed a double deep Q-network (DDQN) algorithm with a
hierarchical and distributed architecture to address dynamic scheduling problems consid-
ering job arrival times in flexible job shops, and an alternative reward-shaping technique
was introduced to improve learning efficiency and scheduling results. The simulation
results showed that the proposed method outperformed existing scheduling strategies and
maintained its advantages even when the manufacturing system configuration changed.
Zhou et al. [23] presented a DRL-based method to minimize the makespan when new tasks
arrive in a dynamic flexible job shop, and a deep Q-network (DQN) agent was used to select
appropriate services from all candidate services for each arriving task. Further, two case
studies with different task interval probabilities were utilized to illustrate the usefulness
and efficiency of the proposed method.

Regarding the handling of machine-related dynamic events, Zhao et al. [24] proposed
an improved Q-learning algorithm to address machine failure issues. Based on the initial
scheduling plan generated by the genetic algorithm, the proposed algorithm integrated
dynamic event information related to machine failures and selected the operations that
were to be executed and the alternative processing equipment through a Q-learning agent.
The experimental results showed that this approach significantly reduced job delay times
in high-frequency dynamic environments compared with a single scheduling rule. Zhang
et al. [25] utilized the proximal policy optimization (PPO) algorithm to deal with job shop
scheduling problems under sudden machine failure conditions, and different types of
reward functions were designed to guide scheduling agents in learning strategies that met
the multi-objective optimization requirements, e.g., production efficiency and order waiting
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time. Compared with other scheduling rules and DRL algorithms, the PPO algorithm
demonstrated superiority in convergence performance and achieving various scheduling
optimization goals, and can obtain more desirable scheduling outcomes.

Focusing on the ability to handle multiple types of dynamic events simultaneously,
Shahrabi et al. [26] combined the Q-factor algorithm with RL to tackle dynamic job shop
scheduling problems involving random job arrivals and machine failures. Compared
with the generalized variable neighborhood search algorithm and traditional scheduling
rule-based methods, this solution achieved significant performance improvements and
demonstrated stronger adaptability and optimization capabilities. Li et al. [27] aimed
to minimize the makespan by systematically considering four typical dynamic events:
new order arrivals, machine failures, order cancellations, and changes in order processing
times. A rescheduling method based on Monte Carlo tree search (MCTS) was designed
accordingly and compared with completely reactive scheduling methods and the GA-based
rescheduling method through experiments. The experimental results indicated that the pro-
posed method was an efficient and promising dynamic scheduling method, both in terms of
solution quality and computational efficiency. Zhang et al. [28] designed a multi-agent PPO
algorithm. Within this algorithm framework, multiple agents collaborated and competed to
cope with the impact of random job arrivals and machine failures on job shop scheduling,
thereby improving the efficiency and quality of the scheduling decisions. The experimental
results show that the proposed method outperforms genetic programming (GP), DQN, and
dispatching rules in terms of production strategy learning and disturbance handling.

The above research efforts have demonstrated the feasibility of RL and DRL in han-
dling dynamic scheduling problems for flexible job shops. Compared with traditional
research based on meta-heuristic and hyper-heuristic algorithms, these methods have cer-
tain advantages, increasing the response speed to dynamic events, reducing interruptions
caused by dynamic events, and handling multiple types of dynamic events simultaneously.
The inherent dynamic adaptability of RL/DRL methods presents a promising outlook for
solving dynamic scheduling problems.

2.3. Integrated Scheduling

Material handling is crucial for the smooth transition of the workshop production
process, but previous research on workshop production scheduling mainly focused on
processing equipment, and the impact of logistics factors was mostly ignored or simplified.
Therefore, the solutions to integrated scheduling problems are similar to those of processing
equipment-oriented FJSPs. Gnanavel et al. [29] investigated the integrated scheduling
of machines and AGVs in a flexible manufacturing system, developed a meta-heuristic
differential evolutionary (DE) algorithm to address it, and conducted extensive testing to
verify the effectiveness of the algorithm. Zhong et al. [30] decomposed AGV-machine joint
scheduling into two strongly related sub-decisions (job sequencing and AGV selection) and
constructed a combined rule generation framework. Accordingly, various combined rules
could be generated by embedding diverse heuristic rules into the framework. Furthermore,
the effectiveness of the involved Gurobi solver and combinatorial rule generation algorithm
framework was verified using instances with different production characteristics, such as
layout schemes and task scales. Gurobi generally performed better than the combination
rule algorithm when seeking exact solutions for small-scale instances, but the performance
gap narrowed at low AGV speeds. Meanwhile, the combinatorial rule generation algorithm
outperformed Gurobi in terms of computation time when searching for exact solutions
for large-scale instances. Li et al. [31] developed a hybrid deep Q-network (HDQN) to
address dynamic multi-objective FJSPs in the case of insufficient transport resources, and
the experimental results showed that the HDQN was superior and had greater generality
compared with the incomplete HDQN, Q-learning using self-organizing maps, and HDQN
using common rules, and can effectively deal with disturbance events and unseen situations
through learning. Yuan et al. [32] introduced an enhanced DDQN approach to address FJSPs
with AGVs to minimize the maximum completion time, and the calculation experiment
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results based on the self-built case demonstrated the accuracy and effectiveness of the
proposed algorithm. Additionally, Sun et al. [33] proposed a RL scheduling method
based on two-dimensional proximal policy optimization algorithms (2D-PPO) for the joint
scheduling problem of AGVs and machines in job shops. Furthermore, three separate
experiments revealed that the proposed 2D-PPO algorithm exhibited a better convergence
performance and learning effect than the PPO with one-dimensional actions, achieved
better solutions than the multi-agent system (MAS) algorithm for small-scale problems,
and outperformed the single scheduling rule-based method for large-scale problems.

Note that most of the current research on ISPEA belongs to the category of static
scheduling and lacks consideration of EC and EC-related environmental factors. These
related efforts have demonstrated the feasibility and advantages of RL/DRL methods in
solving dynamic ISPEA problems. However, RL/DRL methods also have certain limitations
and potential biases. Their efficiency is determined by elements such as environment mod-
eling accuracy, reward function design, and hyper-parameter selection, and inappropriate
settings may result in unstable learning processes and a decrease in generalization ability.
When used to handle dynamic events, they often require extensive basic training data and
time to adapt to new situations, posing challenges for their use in manufacturing settings
with low levels of informatization and intelligence. Furthermore, the current utilization of
RL/DRL methods to address FJSPs and ISPEA is often based on a single agent, which leads
to substantial issues in problem-solving efficiency, interaction with the environment, and
adaptability as the complexity of the scheduling problems increases. In terms of problem
characteristics, the present use of RL/DRL for production scheduling mainly focuses on
single-objective optimization problems (SOPs). When multiple scheduling objectives need
to be optimized simultaneously, the weighted sum method is commonly employed to
transform a multi-objective optimization problem (MOP) into an SOP, which subsequently
guides the design of the reward functions. Nevertheless, the weight coefficients of these
optimization objectives are usually assigned fixed values, limiting the search range for
the optimal solutions of an MOP. Therefore, when utilizing RL/DRL to deal with ISPEA
problems, it is necessary to comprehensively consider its advantages and limitations to
guarantee its effectiveness and practicality.

To summarize, in addition to processing equipment, transport equipment is also a
significant energy-consuming resource in a workshop. Compared with traditional pro-
cessing equipment-oriented production scheduling, the ISPEA is beneficial to the further
expansion of the energy-saving potential of a manufacturing system. To meet the needs of
practical production and enhance the sustainability of the manufacturing industry, ISPEA
research should not only consider the impact of dynamic events but also pay attention to
energy-efficient production. With the rapid development of AI technology, MARL has sig-
nificant advantages in the completion of complex tasks through collaboration, adversarial
learning, and improving generalization ability. As ISPEA problems are more sophisti-
cated than traditional FJSPs, it is worth exploring the application of MARL to deal with
ISPEA problems.

3. Problem Description and Modeling

The ISPEA problem in a flexible job shop involves n jobs that can be processed on m
machines, and the transfer of job-related workpieces between different machines is executed
by q AGVs with the same transport capacity. Job i (i = 1, 2, . . ., n) consists of li machining
operations and each operation Oij (j = 1, 2, . . ., li) can be processed on several alternative
machine tools, whose quantity is denoted as Nij. The processing time and EC for the same
operation differ with the machine selected. Additionally, the standby power of different
machines can vary. After a certain operation of a job (not the last operation) is completed, if
the machine selected to execute its next operation is different from the one used to complete
the current operation, an AGV will be needed to transport the workpiece associated with
this job between the various machines. Correspondingly, the EC concerned in this study is
not only related to the machines but also to the AGVs. Therefore, the ISPEA is to optimize
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the makespan and total EC simultaneously by selecting suitable machines and AGVs for
jobs and rationally arranging the processing sequence of the operations allocated to each
machine and the transport sequence of the job-related workpieces allocated to each AGV.
Based on the research hypotheses for classical FJSP [34], the assumptions made for the
ISPEA are as follows:

(1) All jobs, machines, and AGVs are available at time zero. All jobs have the same
priority, and the same goes for the AGVs.

(2) The operations of each job must be processed sequentially according to the predeter-
mined process specifications, and there is no processing sequence constraint between
the operations of different jobs.

(3) Machines are independent, and each machine can process only one job at a time. Once
a job begins to be executed on a machine, it cannot be interrupted or canceled, and
machine failure is not considered.

(4) Each operation only needs one machine.
(5) The machine is in standby mode while waiting for jobs and is not allowed to be

powered off.
(6) The capacity of each machine buffer for loading and unloading workpieces is infinite.
(7) Each AGV has sufficient power. During transport, AGVs cannot be interrupted, and

the impact of path conflicts and speed changes are not considered. After a transport
task is completed, the corresponding AGV’s transport capacity is released.

(8) If a workpiece requires transport, the loading and unloading time is included in the
AGV transport time. Similarly, the auxiliary time of an operation performed on a
machine (e.g., clamping and inspection time) is included in its processing time.

(9) All AGVs are single-load ones, and each job-related workpiece can only be assigned
to a single AGV if transport is needed.

Based on the research hypothesis, the symbols and definitions required for describing
the static ISPEA problem, i.e., regardless of the disturbance of dynamic events in production,
are shown in Table 1.

The makespan of all jobs can be expressed as follows:

Cmax = max
i,j

{CM
ij } (1)

The maximum transport completion time can be acquired as follows:

CA
max = max

i,j
{CA

ij } (2)

Accordingly, the total production EC for completing all jobs (Etotal, J) is composed of
the EC of machines and AGVs, which can be further expressed as follows:

Etotal = EI + EM + ES + ET (3)

Owing to the constant machine standby power, it is necessary to obtain TI
k to evaluate

EI. TI
k can be calculated by

TI
k = max

{
CM

ij

}
− min

{
SM

ij

}
− ∑n

i=1 ∑li
j=1 TM

ijk (4)

Similarly, evaluating ES requires obtaining TI
h first, which can be expressed as follows:

TI
h = max

{
CA

ij

}
− min

{
SA

ij

}
− ∑n

i=1 ∑li
j=1 (C

A
ij − SA

ij ), ∀h, i, j : Zijh = 1 (5)

Then, the EC components of Etotal can be specifically represented as follows:

EI = ∑m
k=1

(
PI

kTI
k

)
(6)
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EM = ∑n
i=1 ∑li

j=1 ∑m
k=1

(
XijkPM

k TM
ijk

)
(7)

ES = ∑q
h=1

(
PI

hTI
h

)
(8)

ET = ∑q
h=1 ∑n

i=1 ∑li
j=1

[
ZijhPA

h (CA
ij − SA

ij )
]

(9)

Therefore, the optimization objectives of the static ISPEA problem are presented as{
Minimize[Etotal]
Minimize[Cmax]

(10)

subject to
CM

ij − SM
ij ≥ ∑

{k:Oij∈Nk}

(
TM

ijkXijk

)
, ∀i, j (11)

CM
i′ j′ − CM

ij + H
(

1 − Yiji′ j′k

)
+ H

(
1 − Xijk

)
+ H(1 − Xi′ j′k) ≥ TM

i′ j′k, ∀k, (i, j), (i′, j′) : Oij, Oi′ j′ ∈ Nk (12)

CM
ij − CM

i′ j′ + HYiji′ j′k + H
(

1 − Xijk

)
+ H(1 − Xi′ j′k) ≥ TM

ijk, ∀k, (i, j), (i′, j′) : Oij, Oi′ j′ ∈ Nk (13)

SM
ij − CA

ij ≥ 0, ∀i, j (14)

SA
i(j+1) − CM

ij ≥ 0, ∀i, j = 1, 2, . . . , (li − 1) (15)

CA
ij − SA

ij = TA
kk∗ , ∀i, j = 2, 3, . . . , li, k, k∗ : Xi(j−1)k = 1, Xijk∗ = 1 (16)

SM
ij , SA

ij ≥ 0, ∀i, j (17)

∑
{k:Oij∈Nk}

Xijk = 1, ∀i, j (18)

∑ Zijh = 1, ∀i, j = 2, 3, . . . , li, k, k∗, h : Xi(j−1)k = 1, Xijk∗ = 1, k ̸= k∗ (19)

H is a very large positive number. Constraint (11) states that the processing time of
an operation depends on the selected machine, while constraint (18) ensures that only one
machine can be chosen for each operation. Constraints (12) and (13) guarantee that two op-
erations of different jobs assigned to the same machine cannot be executed simultaneously.
Constraints (14) and (15) indicate the transport constraints and the order of the different
operations for the same job. Constraint (16) notes that the AGV transport process cannot be
interrupted. Constraint (17) states that the starting time of each operation and the transport
process related to each operation should be non-negative. Constraint (19) indicates that
when two adjacent operations of a job are executed on different machines, only one AGV is
required to transport the corresponding workpiece.

The occurrence of dynamic disturbance events in flexible job shop environments
is inevitable. This study focuses on the common production disturbance of emergency
order insertions. Based on the research hypotheses of static ISPEA problems, a research
hypothesis related to such dynamic events is introduced to study dynamic ISPEA: the
process information of emergency orders is known, but the insertion time is random. When
a dynamic event occurs, the ISPEA after the occurrence of the dynamic event can be treated
as a static ISPEA problem. Correspondingly, the job requirements or available production
resources may change, resulting in the original scheduling schemes needing to be adjusted.
Once an urgent job is inserted, the index value of the urgent job will be automatically
assigned as n + 1. Additionally, to facilitate dynamic ISPEA, the insertion time, the delivery
time, and the completion time of the urgent job are denoted as TJ, TD, and TC, respectively.
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Table 1. List of indices, sets, parameters, and variables.

Type Symbol Definition

Index & Set

h Index of AGV; h = 1, 2, . . ., q
i, i’ Index of job; i, i’ = 1, 2, . . ., n
j, j’ Index of operation; j = 1, 2, . . ., li; j’ = 1, 2, . . ., li’
k, k* Index of machine; k, k* = 1, 2, . . ., m
Nk Set of operations that can be processed on machine k

Parameter

li Number of operations of job i
m Number of machines
n Number of jobs

Nij Number of machines that can process Oij
PA

h Average transport power of AGV h
PI

h Standby power of AGV h
PI

k Standby power of machine k
PM

k Average processing power of machine k
q Number of AGVs

TM
ijk Processing time of Oij on machine k

TA
kk∗ Transport time of an AGV travelling from machine k to machine k∗; when k = k∗, TA

kk∗ = 0
CA

ij Completion time of transporting the workpiece related to job i to the machine executing Oij

Variable

CA
max Maximum transport completion time

CM
ij Processing completion time of Oij

Cmax Maximum completion time for all jobs
EI Total standby EC of all machines
EM Total processing EC of all machines
ES Total standby EC of all AGVs
ET Total transport EC of all AGVs
SA

ij Start time of transporting the workpiece related to job i to the machine executing Oij

SM
ij Processing start time of Oij

TI
h Total standby time of AGV h

TI
k Total standby time of machine k

Xijk 1 if Oij selects machine k for processing and 0 otherwise
Yiji′ j′k 1 if Oij and Oi′ j′ are processed on machine k and Oij is executed before Oi′ j′ , and 0 otherwise

Zijh
1 if the execution of Oij requires transporting the corresponding workpiece and AGV h is selected,
and 0 otherwise

4. Problem Solution

Existing study reveals that RL and DRL offer significant benefits in addressing dynamic
decision optimization problems and also provide novel ideas and approaches for addressing
ISPEA problems in flexible job shops. Compared with common single-agent RL, MARL
can achieve better solutions for complex decision-making and optimization problems by
leveraging the different relationships between agents. For instance, multiple cooperative
agents can collaborate to complete more complex tasks, while multiple competitive agents
can learn each other’s strategies through gaming. Hence, the QMIX, a MARL algorithm
that is suitable for handling cooperative relationships, is adopted in this study to address
the dynamic ISPEA problem. Specifically, according to the aforementioned ISPEA problem
description, four types of agents, namely workpiece selection, machine selection, AGV
selection, and target selection agents„ are set up in the QMIX architecture, and the state
space, action space, and rewards of each supporting agent, which transform the dynamic
ISPEA problem into a Markov game, are illustrated in this section. Moreover, a dynamic
event handling strategy is formulated, and the QMIX algorithm is also improved to enhance
the performance of the collaborative optimization between agents.

4.1. Dynamic Event Handling Strategy

Urgent jobs usually require a manufacturing system to be able to respond quickly, so
the event-driven strategy was adopted in this study to handle urgent job insertion events.
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The essence of scheduling problems is allocating limited resources to meet the job require-
ments within a reasonable time to achieve one or more objectives. Accordingly, emergency
order insertions will bring about changes in the production status of the workshop, and
these changes can be captured through the changes in the values of some of the feature
variables utilized to monitor the operational status of manufacturing systems. Therefore,
the strategy for handling urgent job insertions involves the following two parts:

(1) Job pool update

When an urgent job is inserted at a random time, its process information will be
recorded and the job will be added to the existing job pool following its insertion to wait
for the assignment of scheduling objectives and machines.

(2) State Feature Evaluation

To monitor the workshop production status, some feature variables, e.g., average job
completion rate and the average expected processing time of the remaining operations, are
designed, which also serve as a foundation for designing the state space and action space
for various types of agents. After an urgent job is inserted, it will be merged into the initial
job set to form a new job set. Correspondingly, the values of state feature variables will be
updated based on the updated job information. By monitoring the state feature variables,
the agent can perceive the occurrence of dynamic events to some extent and can be trained
to handle them effectively.

4.2. Transformation of the ISPEA Problem

To solve the ISPEA problem using a MADL approach, no matter whether it is static
or dynamic, it needs to be defined as a Markov game in the form of (N, S, A, T, γ, R),
where N is the number of agents, S represents the state space, A represents the action space,
T is the state transfer function, γ represents the discount factor for cumulative rewards,
and R denotes the reward received by various agents after executing actions in state s and
transitioning to state s’. Moreover, the concept of a decision point is proposed in this study.
A decision point can be interpreted as the opportunity presented when idle jobs and idle
machines that are capable of executing idle jobs coexist. To illustrate the key components
of the Markov game, some parameter and variable symbols are also defined, as shown in
Table 2.

Table 2. Parameters and variables used to solve the ISPEA problem.

Symbol Definition

eij Average processing EC of Oij, eij =
1

Nij
∑

{k:Oij∈Nk}

(
TM

ijkPM
k

)
t Decision point moment

Tij Average processing time of Oij, Tij =
1

Nij
∑

{k:Oij∈Nk}
TM

ijk

Ut
h Utilization rate of AGV h at the decision point time t, Ut

h = 1
t ∑n

i=1 ∑
xt

i
j=1

[
(CA

ij − SA
ij )Zijh

]
Ut

k Utilization rate of machine k at the decision point time t, Ut
k = 1

t ∑n
i=1 ∑

xt
i

j=1

(
TM

ijkXijk

)
Vt

h
The machine position when the AGV that is available to transport a workpiece parks at the decision point time t,
and Vt

h ∈ [1, m]
xt

i Number of completed operations of job i at the decision point time t

(1) State space definition

The state space defines the set of all possible states that the agent can encounter
in the environment and determines the information that is available to the agent for
decision-making. In this study, the state representation designed to capture the information
of the manufacturing system is mainly related to the current operational status of the
manufacturing system, job conditions, and resource availability, as illustrated in Table 3.
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Table 3. State space.

Category State Feature Description

System state

s1 = 1
n ∑n

i=1
(

xt
i /li

)
Average job completion rate

s2 =
√

1
n ∑n

i=1
(

xt
i /li − s1

)2 Standard deviation of job completion rate

s3 = 1
n ∑n

i=1 ∑li
j=xt

i+1 Tij
Average expected processing time of the remaining job
operations

s4 =

√
1
n ∑n

i=1

(
∑li

j=xt
i+1 Tij − s3

)2 Standard deviation of the processing time of the
remaining job operations

Job selection
agent

f11 = 1
n ∑n

i=1
(

xt
i /li

)
Average job completion rate

f12 =
√

1
n ∑n

i=1
(

xt
i /li − f11

)2 Standard deviation of job completion rate

f13 = 1
n ∑n

i=1 Ti(xt
i+1) Average processing time of the next job operation

f14 =

√
1
n ∑n

i=1

(
Ti(xt

i+1) − f13

)2 Standard deviation of the processing time of the next
job operation

f15 = 1
n ∑n

i=1 ∑li
j=xt

i+1 Tij
Average expected processing time of the remaining job
operations

f16 =

√
1
n ∑n

i=1

(
∑li

j=xt
i+1 Tij − f15

)2 Standard deviation of the processing time of the
remaining job operations

f17 = 1
n ∑n

i=1 ei(xt
i+1) Average processing EC of the next job operation

f18 =

√
1
n ∑n

i=1

(
ei(xt

i+1) − f17

)2 Standard deviation of the processing EC of the next
job operation

Machine
selection

agent

f21 = 1
Nij

∑
{k:Oij∈Nk}

Ut
k Average utilization rate of available machines

f22 =

√
1

Nij
∑

{k:Oij∈Nk}

(
Ut

k − f21
)2 Standard deviation of the utilization rate of available

machines

f23 =

√
1

Nij
∑

{k:Oij∈Nk}

(
TM

ijkPM
k − eij

)2 Standard deviation of the processing EC of available
machines

f24 =

√
1

Nij
∑

{k:Oij∈Nk}

(
TM

ijk − Tij

)2 Standard deviation of the processing time of available
machines

f25 = f24/Tij Distribution coefficient of the processing time

Target
selection

agent

f31 = Tij Average processing time of available machines
f32 = eij Average processing EC of available machines

f33 =

√
1

Nij
∑

{k:Oij∈Nk}

(
TM

ijkPM
k − eij

)2 Standard deviation of the processing EC of available
machines

f34 =

√
1

Nij
∑

{k:Oij∈Nk}

(
TM

ijk − Tij

)2 Standard deviation of the processing time of available
machines

f35 = f33/eij Distribution coefficient of processing EC
f36 = f34/Tij Distribution coefficient of processing time

AGV
selection

agent

f41 = 1
q ∑

q
h=1 Ut

h Average AGV utilization rate

f42 = 1
q ∑

q
h=1 ∑n

i=1 ∑
xt

i
j=1

[(
CA

ij − SA
ij

)
PA

h Zijh

]
Average AGV transport EC

f43 =
√

1
q ∑

q
h=1

(
Ut

h − f41
)2 Standard deviation of AGV utilization rate

f44 =

√
1
q ∑

q
h=1

[
∑n

i=1 ∑
xt

i
j=1

(
CA

ij − SA
ij

)
PA

h Zijh − f42

]2 Standard deviation of AGV transport EC

f45 = f43/ f41 Distribution coefficient of AGV utilization rate

(2) Action space definition

The action space comprises the possible actions that the agent can take in a given
state, which determine the agent’s ability to optimize the system performance and user
experience. The action spaces of the four types of agents are different from each other,
as displayed in Tables 4–7, and the scheduling process is achieved through collaborative
efforts among these agents. Note that the composite action rules in Table 4 comprise simple
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action rules represented by abbreviations: EDD—earliest due date; FIFO—first in first
out; LIFO—last in first out; LOR—least operation remaining; LSO—longest subsequent
operation; LWKR—least work remaining; MOR—most operation remaining; MWKR—most
work remaining; SSO—shortest subsequent operation.

Table 4. Action space of the job selection agent.

Job Selection Rule Description

EDD + LSO Select the job with the highest urgency; if there are multiple jobs with the highest urgency, choose the one
with the longest average processing time for the next operation.

EDD + SSO Select the job with the highest urgency; if there are multiple jobs with the highest urgency, choose the one
with the shortest average processing time for the next operation.

FIFO + LWKR Select the job with the longest operation completion time; if there are multiple jobs with the longest
completion time, choose the one with the shortest remaining processing time.

FIFO + MWKR Select the job with the longest operation completion time; if there are multiple jobs with the longest
completion time, choose the one with the longest remaining processing time.

LIFO + LWKR Select the job with the shortest operation completion time; if there are multiple jobs with the shortest
completion time, choose the one with the shortest remaining processing time.

LIFO + MWKR Select the job with the shortest operation completion time; if there are multiple jobs with the shortest
completion time, choose the one with the longest remaining processing time.

LOR + LWKR Select the job with the highest processing progress; if there are multiple jobs with the highest processing
progress, choose the one with the shortest remaining processing time.

LOR + MWKR Select the job with the highest processing progress; if there are multiple jobs with the highest processing
progress, choose the one with the longest remaining processing time.

LWKR + LSO Select the job with the shortest remaining operation time; if there are multiple jobs with the shortest
remaining operation time, choose the one with the longest average processing time for the next operation.

LWKR + SSO Select the job with the shortest remaining operation time; if there are multiple jobs with the shortest
remaining operation time, choose the one with the shortest average processing time for the next operation.

MOR + LWKR Select the job with the lowest processing progress; if there are multiple jobs with the lowest processing
progress, choose the one with the shortest remaining processing time.

MOR + MWKR Select the job with the lowest processing progress; if there are multiple jobs with the lowest progress, choose
the one with the longest remaining processing time.

MWKR + LSO Select the job with the longest remaining operation time; if there are multiple jobs with the longest remaining
operation time, choose the one with the longest average processing time for the next operation.

MWKR + SSO Select the job with the longest remaining operation time; if there are multiple jobs with the longest remaining
operation time, choose the one with shortest average processing time for the next operation.

Table 5. Action Space of the machine selection agent.

Machine Selection Rule Description

Mrule1 Select the machine with the longest completion time for the last operation of the job at the decision point.
Mrule2 Select the machine with the shortest completion time for the last operation of the job at the decision point.
Mrule3 Select the machine with the lowest utilization rate at the decision point.
Mrule4 Select the machine with the highest utilization rate at the decision point.
Mrule5 Select the machine with the longest total idle time at the decision point.
Mrule6 Select the machine with the shortest total idle time at the decision point.

Mrule7 Select the machine that will result in the highest increase in the total production EC after completing
the operation to be processed.

Mrule8 Select the machine that will result in the lowest increase in the total production EC after completing the
operation to be processed.

Mrule9 Select the machine with the shortest processing time for the operation to be processed.
Mrule10 Select the machine with the longest processing time for the operation to be processed.
Mrule11 Select the machine with the lowest processing EC for the operation to be processed.
Mrule12 Select the machine with the highest processing EC for the operation to be processed.

Mrule13 Select the machine that will result in the lowest total production EC after completing the operation to
be processed.

Mrule14 Select the machine that will result in the highest total production EC after completing the operation to
be processed.
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Table 6. Action space of the target selection agent (α-weight of Cmax; β-weight of Etotal).

Target Selection Rule Description Target Selection Rule Description

Orule1 α = 1, β = 0 Orule6 α = 0.5, β = 0.5
Orule2 α = 0.9, β = 0.1 Orule7 α = 0.4, β = 0.6
Orule3 α = 0.8, β = 0.2 Orule8 α = 0.3, β = 0.7
Orule4 α = 0.7, β = 0.3 Orule9 α = 0.2, β = 0.8
Orule5 α = 0.6, β = 0.4 Orule10 α = 0.1, β = 0.9

Table 7. Action space of the AGV selection agent.

AGV Selection Rule Description

Arule1 Select the earliest available AGV at the decision point.
Arule2 Select the latest available AGV at the decision point.
Arule3 Select the available AGV closest to the workpiece to be transported at the decision point.
Arule4 Select the available AGV farthest from the workpiece to be transported at the decision point.
Arule5 Select the AGV with the highest utilization rate at the decision point.
Arule6 Select the AGV with the lowest utilization rate at the decision point.

In Table 5, some machine selection rules are not simply based on the known parame-
ter information but require relatively complex processing to obtain the decision-making
support information. For example, for Mrule5 and Mrule6, it is necessary to traverse all
available idle machines for the upcoming operation of the selected job and extract all idle
intervals for the available idle machines from time zero based on the information from the
already executed operations. Then, a suitable machine can be selected after obtaining the
total idle time of each available idle machine. Additionally, for Mrule7 and Mrule8, it is
necessary to first obtain the idle time increment of each available idle machine k, which is
the difference between the decision point time and the completion time of the last operation
closest to the decision point time on machine k (Ct

k). Then, the EC increment (∆Ek
total)

is the sum of the processing EC for the upcoming operation and the idle EC increment,
i.e., ∆Ek

total = TM
ijkPM

k + (t − Ct
k)PI

k, and the suitable machine will be selected by ∆Ek
total.

Moreover, for Mrule13 and Mrule14, the total idle time of each available idle machine k will
be updated to the sum of the known total idle intervals (TI

k) and the newly generated idle
interval, and the total processing time of each available idle machine k will be updated to
the sum of the processing time of the already processed operations (TM

k ) and the processing
time of the upcoming operation. Then, the total production EC of machine k (Ek

total) will be
updated, i.e., Ek

total = PM
k (TM

k + TM
ijk) + PI

k
[
TI

k + (t − Ct
k)
]
, and the available idle machine

with the lowest/highest total production EC will be selected. In general, once a specific
machine is chosen to execute the selected job, the values of decision variables Xijk and Yiji′ j′k
can be directly determined.

Similarly, for Arule3 and Arule4 in Table 7, it is necessary to acquire all available idle
AGVs at the decision point and obtain the corresponding location Vt

h of each available idle
AGV h. Then, the distances between each available idle AGV’s location and the transport
job’s target machine can be compared, which are defined as the known parameter TA

kk∗ in
Table 1, and the AGV with the minimum/maximum transport distance will be selected
to execute the assigned transport job. Overall, the transport jobs needed in production
are determined by the machine selected to execute each job. Once an AGV is assigned to
execute a transport task at the decision point, the values of decision variables Zijh and SA

ij can

be directly acquired; then, the value of the decision variable SM
ij can be indirectly obtained.

(3) Reward function

The reward function plays a crucial role in guiding the agent’s learning process by
providing feedback on the desirability of its actions, so its design should be closely related
to the scheduling objectives. In this study, the reward function is defined as follows:
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r = −α
TM

ijk − min
{

TM
ijk

}
max

{
TM

ijk

}
− min

{
TM

ijk

} − 1
2

β(
TM

ijkPM
k − min

{
TM

ijkPM
k

}
+ EI − EI−

max
{

TM
ijkPM

k

}
− min

{
TM

ijkPM
k

} +
TA

kk∗PA
h − min

{
TA

kk∗PA
h
}
+ ES − ES−

max
{

TA
kk∗PA

h
}
− min

{
TA

kk∗PA
h
} ) (20)

where EI− and ES− are the total standby EC of machines and AGVs, respectively, before the
action selection is executed.

4.3. Agent Collaboration Process

Based on the dynamic event handling strategy and different types of agents designed, the
process of various agents collaborating to solve the ISPEA problem is illustrated in Figure 1.
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When the manufacturing system exits the decision point, for machines with newly
added jobs in their pending processing job pools, the processing start time of these newly
added jobs is related to whether material handling is needed. If transport assistance is not
required, the starting time of processing the corresponding job will be the decision point
time; otherwise, it will be the end time of the AGV transport process from the decision
point time. Therefore, the values of the decision variables SA

ij and SM
ij can be determined

using the judgment of the decision point.

4.4. QMIX Architecture

QMIX is a value-based MARL algorithm integrating the ideas of Actor–Critic and
DQN algorithms, which adopts centralized learning and distributed execution strategies to
train multiple agents. The centralized critic network receives the global state to guide the
update of the actor network. Meanwhile, the DQN idea is employed to establish estimation
and target networks for the critic network, and the time difference error TDerror is calculated
to update the critic network.

QMIX utilizes a network to decompose the joint Q-value into a sophisticated nonlinear
combination of the Q-values obtained by each agent according to its local observations,
and the global and individual strategies are consistent. The standard QMIX architecture,
as shown in Figure 2, consists of a mixing network, an agent network structure, and a set
of hypernetworks. Each agent has its own network, which takes the current observation
and the previous action

(
oa

t , ua
t−1) as inputs and outputs an individual value function

Qa(τa, ua
t ) at each time step. The weights and biases of the mixing network are produced

by the hypernetworks. The hypernetworks take the current system state st as input and
output a vector that is reshaped into an appropriately sized matrix to form the weights
and biases of the mixing network. To guarantee the non-negativity of the mixing network
weights, the hypernetwork is designed with a linear layer followed by an absolute value
activation function. The intermediate layer biases are obtained through a linear layer,
and the final biases are generated by a nonlinear two-layer hypernetwork using an ReLU
activation function.
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Note that the continuous empirical data generated by the agent–environment interac-
tion in the RL process often show strong correlations, which can easily result in overfitting
during training and affect the algorithm’s generalization ability. Additionally, the reward
function incrementally shapes the agent’s strategy throughout the long-term learning pro-
cess, affecting the balance between the agent’s interests and the group’s interests. To better
achieve the collaborative optimization of various scheduling objectives and improve the
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algorithm optimization performance, the following three aspects of the classic QMIX are
improved in this study:

(1) Multi-Objective Solving Strategy

The current research on applying RL to address workshop scheduling problems sel-
dom touches on the EC objective, and the related work usually transforms the scheduling
problem into an SOP by assigning a specific weight to the EC objective. However, this
approach restricts the range of searching for optimal solutions in the solution space. Con-
sidering that the Pareto solutions of an MOP are usually not unique, the designed target
selection agent is integrated into the QMIX architecture, which can adjust the weights
of the two optimization objectives of the ISPEA problem within a round according to
the different decision environments, thereby expanding the search scope and effectively
achieving multi-objective optimization solutions.

(2) Reward Correction Strategy

RL relies on step-by-step immediate rewards that accumulate to generate the overall
reward for a round. In unsupervised situations, if RL relies solely on reward signals, these
signals are delayed, and it may take a long time to determine whether the current action
is effective. Therefore, only relying on immediate rewards may result in a discrepancy
between the actual scheduling results and the cumulative overall reward. Correspondingly,
a reward correction strategy is formulated, which adds delayed rewards based on the
objectives to correct the overall results at the end of a round.

The reward correction strategy integrates immediate rewards and delayed rewards
to form a comprehensive reward function, ensuring the timely and correct utilization of
reward signals. When designing the reward function, it is essential to strike a balance
between immediate and delayed rewards to avoid overly pursuing short-term rewards
while neglecting long-term benefits. Therefore, experiments are needed to adjust the
weights of these rewards to find the most effective learning strategy.

Combining this with the dynamic event handling strategy, when an urgent job is
inserted, a delayed reward needs to be offered based on the difference between the com-
pletion time and delivery time of the inserted job, and the reward function represented by
Formula (20) will be updated as follows:

r+ = (
TD − TC

TD
− Cmax

C∗
max

− Etotal
E∗

total
) (21)

where C∗
max and E∗

total represent the theoretical minimum completion time and minimum
total processing EC, respectively, and TD is expressed as

TD = TJ + ∑ln+1
j=1 T(n+1)j (22)

(3) Prioritized Experience Replay Mechanism

Prioritized experience replay (PER) is a technique to enhance the DQN learning process.
Classical experience replay stores interactions between the agent and the environment in a
replay buffer. During the training process, a batch of transitions is randomly sampled from
this buffer to update the network weights, as shown in Figure 3. This method treats all
experiences equally, but their contribution to learning may not be the same in reality. Some
experiences might be more valuable due to their rarity or the abundance of information
they provide. Accordingly, PER tackles this issue by assigning a priority to each experience,
enabling the more informative or crucial experiences to be sampled more frequently during
training and improving the efficiency of the learning process.
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The typical workflow of PER is as follows:

(1) Priority assignment: Instead of randomly sampling experiences, priorities are deter-
mined based on the TDerror corresponding to each experience. The TDerror reflects the
surprise of an experience, and a larger TDerror means the agent has more to learn from
this experience.

(2) Sampling: During network updates, experiences are sampled from the replay buffer
according to their priority probabilities, and experiences with a higher TDerror are
more likely to be selected.

(3) Weight update: To guarantee the learning process remains unbiased, updates from
the sampled experiences are weighted according to the reciprocal of their sampling
probabilities, preventing some experiences from being oversampled and exerting too
much influence on learning.

(4) Stochastic sampling: To reduce the computational cost of calculating the precise TDerror
for all experiences in the replay buffer, PER uses an approximate priority method.

To sum up, PER allows the agent to focus on the most beneficial experiences to improve
training efficiency. Although PER introduces additional computational overhead due to the
need to maintain priority and adjust updates, it can significantly enhance the performance
of QMIX.
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Within the improved QMIX algorithm framework, each agent is equipped with two
sets of neural network models: an estimation network and a target network. These two
types of networks have identical architectures but differ in their parameter update mecha-
nisms. Specifically, the parameters of the estimation network are continuously updated
with each training iteration. In contrast, the parameters of the target network are relatively
static and only updated by copying the current parameters of the estimation network after
a certain number of iterations. This design aims to reduce the correlation between Q-value
estimates and Q-value targets, thereby enhancing the overall stability of the algorithm. The
neural network architecture consists of an input layer, two hidden layers, a recurrent neural
network (RNN) layer, and an output layer. The detailed network structure is illustrated
in Figure 4. The specific configuration of the relevant parameters is provided in Table 8.
Note that the number of nodes in the input layer varies according to the agent, and is equal
to the sum of the elements of the current agent observation and the action taken in the
previous time step. Each node in the output layer corresponds to the Q-value of each action
in the current state.
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Table 8. Estimation network and target network structure parameters.

Network Layer Number of Nodes Activation Function

Input layer of job selection
agent/machine selection

agent/target selection
agent/AGV selection agent

22/19/16/14 /

Hidden layer 1 32 ReLU
RNN layer 32 ReLU

Hidden layer 2 32 ReLU
Output Layer 14 /

4.5. QMIX Training and Execution

The improved QMIX comprises offline training and online execution, as depicted in
Figures 5 and 6, respectively, and aims to realize centralized training and decentralized
execution. In the offline training phase, each agent takes actions based on its network,
generating experiences that are stored. During network training, small batches of expe-
riences are randomly selected from the experience pool. The Q-values for the actions
chosen by each agent are computed, and the QMIX network structure combines these
individual Q-values to obtain the overall Q-value. Then, TDerror is calculated, and the loss
function can be obtained to guide the network training. In the online execution phase,
the network parameters obtained from offline training are utilized for scheduling. Agents
directly generate actions based on their observations, thereby completing the predefined
scheduling tasks.



Processes 2024, 12, 2423 19 of 29

Processes 2024, 12, x FOR PEER REVIEW 20 of 31 

Hidden layer 2 32 ReLU 
Output Layer 14 / 

4.5. QMIX Training and Execution 

The improved QMIX comprises offline training and online execution, as depicted in 
Figures 5 and 6, respectively, and aims to realize centralized training and decentralized 
execution. In the offline training phase, each agent takes actions based on its network, 
generating experiences that are stored. During network training, small batches of expe-
riences are randomly selected from the experience pool. The Q-values for the 
actions chosen by each agent are computed, and the QMIX network structure 
combines these ~

Figure 5. QMIX offline training process. Figure 5. QMIX offline training process.

Processes 2024, 12, x FOR PEER REVIEW 21 of 31 
 

 

 
Figure 6. QMIX online execution process. 

5. Case Study 
To verify the effectiveness of the proposed method for solving dynamic ISPEA 

problems, the experimental study had two main aspects. Experiment 1 aims to compre-
hensively evaluate the performance of the QMIX method in this study based on the cases 
disclosed in the existing literature, and experiment 2 aims to test the ability of the pro-
posed method to handle a dynamic ISPEA based on an actual production case originat-
ing from a customized furniture manufacturing workshop. The DQN in the QMIX ar-
chitecture was implemented using the Python language and the Pytorch framework on a 
PC with an AMD Ryzen 5 5600H, with Radeon Graphics CPU@3.3 GHz, 16 GB RAM, 
and 64-bit Windows 11 OS. 

The QMIX method’s overall performance is greatly impacted by the setting of basic 
parameters. The discount factor determines the extent to which future rewards influence 
current decisions. A higher discount factor (close to 1) indicates a greater focus on 
long-term rewards, while a lower discount factor (close to 0) emphasizes more immedi-
ate gains. Therefore, from the perspective of the essence of scheduling problems, this 
study initially selected a higher discount factor to allocate manufacturing resources rea-
sonably over a longer time period to achieve maximum overall benefits. The learning 
rate determines the step size of each parameter update. While an overly low learning 
rate could cause the algorithm to converge slowly, an overly high learning rate could 
cause the algorithm to become unstable. Accordingly, to obtain high-quality solutions 
within a realistic calculation time, the learning rate should be set appropriately. The 
ε-greedy strategy was applied to balance exploration and exploitation, and the ε gradu-
ally decays at a certain rate as the training process progresses, based on its initial value. 
Its purpose is to allow for more exploration in the early stages of training to fully learn 
the environmental features, and gradually reduce this exploration in the later stages to 
focus more on utilizing the best strategies that have been learned. The capacity of the 
experience replay pool affects the training effectiveness of the model. An excessive ca-
pacity can increase the computational expense, while a low capacity may hinder the 
model from utilizing its historical experience for learning. Therefore, the capacity that is 
set for the experience replay pool should be able to maintain the diversity of the training 
process while ensuring model convergence and stability. The target network’s update 
frequency is mainly set to stabilize the learning process and improve training efficiency. 
The training parameter settings based on the existing applications of the QMIX [35] and 
our usage experience are shown in Table 9. 

Figure 6. QMIX online execution process.



Processes 2024, 12, 2423 20 of 29

5. Case Study

To verify the effectiveness of the proposed method for solving dynamic ISPEA prob-
lems, the experimental study had two main aspects. Experiment 1 aims to comprehensively
evaluate the performance of the QMIX method in this study based on the cases disclosed in
the existing literature, and experiment 2 aims to test the ability of the proposed method to
handle a dynamic ISPEA based on an actual production case originating from a customized
furniture manufacturing workshop. The DQN in the QMIX architecture was implemented
using the Python language and the Pytorch framework on a PC with an AMD Ryzen 5
5600H, with Radeon Graphics CPU@3.3 GHz, 16 GB RAM, and 64-bit Windows 11 OS.

The QMIX method’s overall performance is greatly impacted by the setting of basic
parameters. The discount factor determines the extent to which future rewards influence
current decisions. A higher discount factor (close to 1) indicates a greater focus on long-
term rewards, while a lower discount factor (close to 0) emphasizes more immediate gains.
Therefore, from the perspective of the essence of scheduling problems, this study initially
selected a higher discount factor to allocate manufacturing resources reasonably over a
longer time period to achieve maximum overall benefits. The learning rate determines
the step size of each parameter update. While an overly low learning rate could cause the
algorithm to converge slowly, an overly high learning rate could cause the algorithm to
become unstable. Accordingly, to obtain high-quality solutions within a realistic calculation
time, the learning rate should be set appropriately. The ε-greedy strategy was applied to
balance exploration and exploitation, and the ε gradually decays at a certain rate as the
training process progresses, based on its initial value. Its purpose is to allow for more
exploration in the early stages of training to fully learn the environmental features, and
gradually reduce this exploration in the later stages to focus more on utilizing the best
strategies that have been learned. The capacity of the experience replay pool affects the
training effectiveness of the model. An excessive capacity can increase the computational
expense, while a low capacity may hinder the model from utilizing its historical experience
for learning. Therefore, the capacity that is set for the experience replay pool should be
able to maintain the diversity of the training process while ensuring model convergence
and stability. The target network’s update frequency is mainly set to stabilize the learning
process and improve training efficiency. The training parameter settings based on the
existing applications of the QMIX [35] and our usage experience are shown in Table 9.

Table 9. Training parameter settings.

Parameter Value

Discount factor 0.96
Initial value of ε in ε-greedy strategy 1
Greedy strategy decay rate 0.002
Learning rate 0.001
Memory buffer capacity 100
Sample batch size 50
Target network update frequency 200
Maximum number of iterations 500

5.1. Experiment 1

To comprehensively evaluate the performance of the QMIX method used in this study,
the FJSP benchmark case [36] and the shop floor layout proposed in [37] were utilized
first, and the reward function was adjusted by ignoring the EC factors. Accordingly, the
Cmax obtained by the QMIX algorithm, DE algorithm [36], MAS algorithm [38], flexible
multi-agent system (FMAS) algorithm [39], and multi-objective imperialist competitive
algorithm (MICA) [40] is presented in Table 10.

Afterward, an FJSP with 14 jobs and 10 machines originating from a piston manufac-
turing workshop [41] was selected to further test the performance of the QMIX method.
This workshop was equipped with two AGVs for material handling, and the specific
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job process information and resource EC characteristics can be referred to in [41]. When
searching the optimal scheduling results with Cmax and Etotal as the optimization objec-
tives, it should be noted that the Etotal referenced in [41] includes the auxiliary energy
consumed when maintaining the production environment (e.g., lighting, air conditioning,
and heating), and the auxiliary EC was defined as the product of the auxiliary power factor
and Cmax. Then, the proposed QMIX method was run 20 times, and the Pareto solutions
obtained are presented in Table 11. The distribution of the Pareto solutions obtained by the
QMIX method and the NSGA-II employed in [41] is presented in Figure 7, and the Gantt
chart corresponding to the Pareto solution with the minimum Etotal acquired by the QMIX
method is depicted in Figure 8.

Table 10. Comparison of search results for examples at different scales.

Example
Method

DE [36] MAS [38] FMAS [39] MICA [40] QMIX

EX11 96 130 111 98 88
EX12 82 98 87 79 69
EX13 84 109 91 83 74
EX14 103 168 128 109 94
EX21 100 143 128 106 98
EX22 76 86 88 73 83
EX23 86 98 102 92 89
EX24 106 169 131 112 110
EX31 99 142 114 95 99
EX32 85 114 99 82 86
EX33 86 103 102 81 85
EX34 110 167 128 119 110

Table 11. Pareto solutions obtained by solving the case in [41].

Optimization Objective

Pareto Solution No.
Cmax
[min]

Etotal [kW·min]
Optimization Objective

Pareto Solution No.
Cmax
[min]

Etotal [kW·min]

1 204.2 1.4550 × 104 6 217.2 1.4121 × 104

2 208.5 1.4346 × 104 7 219.1 1.4095 × 104

3 209.9 1.4280 × 104 8 224.3 1.4052 × 104

4 211.7 1.4229 × 104 9 230.9 1.4003 × 104

5 213.5 1.4144 × 104 10 235.1 1.3988 × 104
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5.2. Experiment 2

Experiment 2 was related to a customized furniture manufacturing workshop, which
belongs to the flexible job shop and is designed to meet the rapidly changing product
demands of the furniture market. This workshop mainly produces six types of products,
with four machines and two AGVs, and uses an energy management system, which
enables the accurate collection of the daily electricity consumption data of machine tools
by installing intelligent digital meters at each workstation. Furthermore, it implemented a
working hour quota management system, which defines the expected time and resource
consumption for each product during the production process. The job process information
and machine EC characteristics for the six jobs planned for production in the workshop are
displayed in Tables 12 and 13, respectively. All raw materials and AGVs are initially in the
workshop material distribution area, and all AGVs are on standby. The AGVs’ rated power
is 2 kW, and the AGVs’ no-load power is 0.5 kW. Correspondingly, the time information of
an AGV travelling between different machines and its initial position is listed in Table 14.

Table 12. Job information.

Job Operation
Processing Time [min]

Machine 1 Machine 2 Machine 3 Machine 4

1
O11 16 15 14 -
O12 17 - 15 16

2
O21 17 18 16 -
O22 - 17 16 15

3
O31 20 - 19 19
O32 11 10 - 11

4
O41 17 - 15 17
O42 - 8 8 10

5

O51 8 9 10 -
O52 8 10 - 12
O53 - 13 15 13
O54 15 - 17 17
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Table 12. Cont.

Job Operation
Processing Time [min]

Machine 1 Machine 2 Machine 3 Machine 4

6

O61 8 10 9 -
O62 - 16 15 14
O63 - 10 9 8
O64 15 - 16 14

Table 13. Machine power information.

Machine 1 2 3 4

Average processing power PM
k [kW] 2 1.6 1.8 2.4

Standby power PI
k [kW] 0.5 0.6 0.3 0.4

Table 14. AGV transport time [min].

From
To Material Distribution

Area Machine 1 Machine 2 Machine 3 Machine 4

Material distribution area 0 2 4 10 12
Machine 1 12 0 2 8 10
Machine 2 10 12 0 6 8
Machine 3 4 6 8 0 2
Machine 4 2 4 6 12 0

For the above static ISPEA problem, which involved six jobs, four machines, and two
AGVs, the proposed QMIX method was run 20 times, and the Pareto solutions obtained are
presented in Table 15. Specifically, the Gantt charts of the scheduling scheme corresponding
to the Pareto solution with the minimum Cmax and Etotal are depicted in Figures 9 and 10,
respectively.
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Table 15. Pareto solutions obtained by solving the static ISPEA problem.

Optimization Objective

Pareto Solution No.
1 2 3 4 5 6

Cmax [min] 78 80 82 99 112 119
Etotal [kJ] 3.5844 × 104 3.3408 × 104 3.2616 × 104 3.2004 × 104 3.1734 × 104 3.1728 × 104

Furthermore, to verify the effectiveness of the QMIX method in solving the dynamic
ISPEA problem, an emergency job was randomly inserted in the time interval [20,40]
when the workshop organized production according to the scheduling plan shown in
Figure 10. Correspondingly, the index of the newly inserted job was marked as 7, and
its process information is shown in Table 16. The insertion time of the emergency job
was the 22nd minute from time zero, which means the job pool should be updated, and
the system running state variables also need to be updated accordingly after the 22nd
minute. From the perspective of maintaining energy-efficient production after inserting the
emergency job, the Gantt chart of the optimal scheduling scheme with the minimum Etotal
obtained by employing the QMIX method is depicted in Figure 11, and the specific values
of optimization objectives Etotal and Cmax are 3.5010 × 104 kJ and 80 min, respectively.
Considering that urgent orders generally require prompt delivery, the optimal scheduling
scheme with the minimum Cmax was also searched, and the corresponding Gantt chart is
displayed in Figure 12.

Table 16. Process information of the newly inserted job.

Operation No.
Processing Time [min]

Machine 1 Machine 2 Machine 3 Machine 4

1 16 15 14 -
2 17 - 15 16
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5.3. Discussion

In Experiment 1, from the perspective of the search results of the optimal solutions
presented in Figure 9, the QMIX method outperforms the MAS and FMAS algorithms
in all examples, outperforms the MICA in 66.67% of examples, and is not inferior to the
DE algorithm in 58.33% of the examples. Moreover, according to Figure 7, although the
optimal solutions obtained by the QMIX method are not better than those obtained by
the improved NSGA-II on the optimization objective of Cmax, the QMIX obtains better
solutions for the optimization objective of Etotal, which extends the boundary of the original
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Pareto front. Comparing the Pareto solutions with the minimum Etotal, the Etotal obtained
by the improved NSGA-II was further optimized and decreased by 6.5%. Therefore, the
QMIX method utilized in this study can be accepted for solving static ISPEA problems,
especially in scenarios with energy-efficient production requirements. It should also be
noted that heuristic and meta-heuristic algorithms require fewer computational resources
and converge quickly for small-scale scheduling problems. Although the QMIX method
finds better optimal solutions than the DE and MICA algorithms for small-scale scheduling
problems, the QMIX training process is rather time-consuming and highly computationally
demanding. Accordingly, the advantages of the traditional methods cannot be entirely
disregarded in practical applications, and it is necessary to choose an appropriate method
based on the problem scenario.

Since dynamic scheduling problems can be transformed into static scheduling prob-
lems for solutions, the QMIX method integrating the designed dynamic event handling
strategy is also suitable for solving dynamic ISPEA problems. When an emergency job is
added, its execution will inevitably use processing and transport resources. Due to the
need to minimize the impact on the original scheduling plan when executing dynamic
scheduling, it is necessary to improve resource utilization as much as possible, such as
minimizing standby periods, making full use of energy-efficient machines, and reducing
the frequency of workpiece handling. As shown in Figure 10, before inserting an emergency
job, machines 2 and 3 are relatively busy, while machine 4 is idle. After adding a job, it
can be found that the processing time for each operation of the new job on machine 1 is
longer than on other alternative machines, and the average processing power of machine 1
is higher than that of machines 2 and 3. However, choosing machine 1 to process the newly
inserted job can significantly reduce AGV transport EC. Therefore, as shown in Figure 11, all
operations of the newly inserted job were arranged on machine 1 for processing. Although
Etotal increased by 10.34%, Cmax remained unchanged.

Furthermore, the EC corresponding to various optimal scheduling schemes after
inserting an emergency job was decomposed. As shown in Figure 13, the machine EC
accounts for the majority of the total EC required to complete this batch of jobs. In terms
of Etotal, the total machine EC grew to fulfill demands of the emergency job, but the total
machine standby EC remained unchanged through reasonable scheduling. Meanwhile, the
total AGV EC increased by 6.55%, mostly due to an increase in AGV transport EC. Despite
the similar power characteristics of machine 1 and the AGV, the processing time for the
emergency job on machine 1 is much longer than its related transport time, resulting in
a much greater increase in machine EC than AGV EC. In contrast, in terms of Cmax, both
total machine EC and total AGV EC increased. Specifically, the increase in AGV EC was
greater, which was attributed to the increase in AGV transport activities. To shorten the job
completion time, high-power machine 4 was put into use. Meanwhile, the increase in AGV
transport activities increased the probability of machine tools waiting for jobs, leading to an
increase in machine standby EC. In order to minimize the makespan, it is necessary to fully
utilize all manufacturing resources and allocate workload reasonably. However, it should
also be noted that the different equipment power characteristics and activity durations may
lead to a sharp increase in Etotal. As revealed in Figure 12, the previously idle machine 4
was assigned job operations, and the workload of machines 2 and 3 was reduced. Although
Cmax decreased by 32.77%, approaching the best Cmax obtained before the insertion of the
job, Etotal increased by 29.57%.

Hence, the adjustment of the scheduling scheme for the newly inserted job has a
certain value in practical applications, and the QMIX method is also effective in solving
dynamic ISPEA problems.
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6. Conclusions

At present, the manufacturing industry is accelerating its transformation and devel-
opment toward greenization and intelligence. This paper takes flexible job shops as the
research object, considers the impact of logistics factors and emergency order insertions in
the workshop production process, and conducts dynamic ISPEA research with makespan
and total production EC as the optimization objectives. Further, combined with the de-
signed event handling strategy, the representative MARL algorithm QMIX is improved by
integrating a multi-objective solving strategy, a reward correction strategy, and a prioritized
experience replay mechanism to address the dynamic ISPEA problem, and its feasibility
and effectiveness are verified through experimental research. The presented work also indi-
cates that the ISPEA can optimize the makespan and total production EC simultaneously
by selecting suitable machines and AGVs for jobs and rationally arranging the processing
sequence of the operations allocated to each machine and the transport sequence of the
job-related workpieces allocated to each AGV.

The introduction of MARL to address the complex decision-making problems in
dynamic ISPEA can improve the flexibility and adaptability of the decision-making process.
Through the cooperation of various agents, manufacturing systems can handle complex
jobs and adapt to dynamic environments more efficiently. Correspondingly, the proposed
model and method provide an effective solution for manufacturing enterprises with high
levels of automation and intelligence (e.g., automobile and aerospace manufacturers) to
achieve energy-efficient production, especially in flexible job shops that require the efficient
utilization of both processing and logistics equipment. However, the potential limitations
of this study should also be noted. This study only focuses on responses to emergency
order insertions, but there are a variety of dynamic events in the workshop. Whether the
proposed dynamic scheduling method can be adjusted to handle other types of dynamic
events still needs exploration and demonstration. The DRL method applied in this study
has long training times and requires a significant amount of computational resources for
training in high-dimensional state spaces or spaces with frequent dynamic disturbances.
Therefore, its advantages in solving large-scale scheduling problems are not prominent, and
there is still room for improvement. Moreover, the operating characteristics of all machines
and AGVs, such as the power parameters and operation times of the job processes, are
assumed to be known and fixed in this study. In actual production environments, these
parameters may alter due to equipment aging or changes in working conditions, affecting
the applicability and stability of the scheduling schemes. Furthermore, this study only
investigates two scheduling optimization objectives, which may not fully reflect the actual
scheduling requirements in complex production situations.
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Therefore, to fully utilize the latest AI technology and explore the energy-saving
potential of workshops from the perspective of the manufacturing system level, future
research will focus on (1) improving the DRL method applied in this study and enhancing
its generality; (2) considering more types of dynamic events and introducing more opti-
mization objectives; and (3) considering the impact of AGV path planning on developing
energy-efficient scheduling schemes.
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