The Processing of a Novel Health Beverage Based on Extracts from Green Tea and Chios Mastiha
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Analysis
2.1.1. Microbiological Water Analysis
2.1.2. Physicochemical Water Analysis
2.2. Ingredient Analysis
2.3. Production of Three Innovative Beverages and Beverage Microbiological Analysis
- Green tea with Chios mastiha (MGT1);
- Matcha green tea with Chios mastiha (MGT2);
- Louisa green tea with Chios mastiha (MGT3).
2.4. Beverage Nutritional Value Determination
2.5. Stages for Development of Beverages
2.6. Beverage Production Control at a Pilot Level
3. Results and Discussion
3.1. Water Analysis Results
3.1.1. Microbiological Water Analysis Results
3.1.2. Physicochemical Water Analysis Results
3.2. Ingredient Analysis Results
3.3. Microbiological Analysis of Three Beverages Produced
3.3.1. MGT1 Analysis
3.3.2. MGT2 Analysis
3.3.3. MGT3 Analysis
3.4. Nutritional Value Determination of Three Beverages Produced
3.5. Stages Proposed for Development of Novel Beverages
3.6. Beverage Production Control at a Pilot Level
3.6.1. Control on First Day of Pilot Production
3.6.2. Control on 180th Day of Pilot Production
3.6.3. Three-Day Inspection (Opened Product)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Market Data Forecast. Europe Non-Alcoholic Beverage Market Growth and Forecast (2023 to 2028). 2023. Available online: https://www.marketdataforecast.com/market-reports/europe-non-alcoholic-beverage-market (accessed on 1 January 2024).
- Mansouri, F.E.; Farissi, H.E.; Cacciola, F.; Esteves da Silva, J.C.G.; Lovillo, M.P.; Majdoub, Y.O.E.; Trovato, E.; Mondello, L.; Khaddor, M.; Brigui, J. Profiling the Volatile and Non-Volatile Compounds Along with the Antioxidant Properties of Malted Barley. Separations 2022, 9, 119. [Google Scholar] [CrossRef]
- Statista. Non-Alcoholic Drinks-Greece. 2023. Available online: https://es.statista.com/outlook/cmo/non-alcoholic-drinks/greece (accessed on 1 January 2024).
- Association of Hellenic Beverage Industries. Available online: https://www.sevt.gr/en/ (accessed on 1 January 2024).
- Foundation of Economic and Industrial Research. The Impact of the Soft Drinks and Other Non-Alcoholic Beverages Sector on the Greek Economy. 2016. Available online: http://iobe.gr/docs/research/RES_05_B_04082016_REP_GR.pdf (accessed on 1 January 2024).
- Wang, C.; Han, J.; Pu, Y.; Wang, X. Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. Appl. Sci. 2022, 12, 5874. [Google Scholar] [CrossRef]
- Dubey, K.K.; Janve, M.; Ray, A.; Singhal, R.S. Ready-to-drink tea. In Trends in Non-Alcoholic Beverages; Academic Press: Cambridge, MA, USA, 2020; pp. 101–140. [Google Scholar] [CrossRef]
- Chen, L.; Mo, H.; Zhao, L.; Gao, W.; Wang, S.; Cromie, M.M.; Lu, C.; Wang, J.S.; Shen, C.L. Therapeutic properties of green tea against environmental insults. J. Nutr. Biochem. 2017, 40, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rietveld, A.; Wiseman, S. Antioxidant effects of tea: Evidence from human clinical trials. J. Nutr. 2003, 133, 3285–3292. [Google Scholar] [CrossRef]
- Rha, C.-S.; Jeong, H.W.; Park, S.; Lee, S.; Jung, Y.S.; Kim, D.-O. Antioxidative, Anti-Inflammatory, and Anticancer Effects of Purified Flavonol Glycosides and Aglycones in Green Tea. Antioxidants 2019, 8, 278. [Google Scholar] [CrossRef]
- Yan, Z.M.; Zhong, Y.Z.; Duan, Y.H.; Chen, Q.H.; Li, F.N. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020, 6, 115–123. [Google Scholar] [CrossRef]
- Sakagami, H.; Kishino, K.; Kobayashi, M.; Hashimoto, K.; Iida, S.; Shimetani, A.; Nakamura, Y.; Takahashi, K.; Ikarashi, T.; Fukamachi, H. Selective antibacterial and apoptosis-modulating activities of mastic. In Vivo 2009, 23, 215–223. [Google Scholar]
- Pachi, V.K.; Mikropoulou, E.V.; Gkiouvetidis, P.; Siafakas, K.; Argyropoulou, A.; Angelis, A.; Mitakou, S.; Halabalaki, M. Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. Chia, Anacardiaceae): A review. J. Ethnopharmacol. 2020, 254, 112485. [Google Scholar] [CrossRef]
- Dedoussis, G.V.; Kaliora, A.C.; Psarras, S.; Chiou, A.; Mylona, A.; Papadopoulos, N.G.; Andrikopoulos, N.K. Antiatherogenic effect of Pistacia lentiscus via GSH restoration and downregulation of CD36 mRNA expression. Atherosclerosis 2004, 174, 293–303. [Google Scholar] [CrossRef]
- Bampouli, A.; Kyriakopoulou, K.; Papaefstathiou, G.; Louli, V.; Krokida, M.; Magoulas, K. Comparison of different extraction methods of Pistacia lentiscus var. chia leaves: Yield, antioxidant activity and essential oil chemical composition. J. Appl. Res. Med. Aromat. Plants 2014, 1, 81–91. [Google Scholar] [CrossRef]
- Pantalos, G.; Vaou, N.; Papachristidou, S.; Stavropoulou, E.; Tsigalou, C.; Voidarou, C.; Bezirtzoglou, E. Antioxidant and Anti-Inflammatory Phytochemicals for the Treatment of Inflammatory Bowel Disease: A Systematic Review. Appl. Sci. 2024, 14, 2177. [Google Scholar] [CrossRef]
- Gioxari, A.; Kaliora, A.C.; Papalois, A.; Agrogiannis, G.; Triantafillidis, J.K.; Andrikopoulos, N.K. Pistacia lentiscus resin regulates intestinal damage and inflammation in trinitrobenzene sulfonic acid-induced colitis. J. Med. Food 2011, 14, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Amerikanou, C.; Papada, E.; Gioxari, A.; Smyrnioudis, I.; Kleftaki, S.-A.; Valsamidou, E.; Bruns, V.; Banerjee, R.; Trivella, M.G.; Milic, N. Mastiha Has Effiacy in Immune-Mediated Inflmmatory Diseases Through a microRNA-155 Th17 Dependent Action. Pharmacol. Res. 2021, 171, 105753. [Google Scholar] [CrossRef] [PubMed]
- Balan, K.V.; Prince, J.; Han, Z.; Dimas, K.; Cladaras, M.; Wyche, J.H.; Sitaras, N.M.; Pantazis, P. Antiproliferative activity and induction of apoptosis in human colon cancer cells treated in vitro with constituents of a product derived from Pistacia lentiscus L. var. chia. Phytomedicine 2007, 14, 263–272. [Google Scholar] [CrossRef]
- Vallianou, I.; Peroulis, N.; Pantazis, P.; Hadzopoulou-Cladaras, M. Camphene, a plant-derived monoterpene, reduces plasma cholesterol and triglycerides in hyperlipidemic rats independently of HMG-CoA reductase activity. PLoS ONE 2011, 6, 20516. [Google Scholar] [CrossRef]
- Katsanou, E.S.; Kyriakopoulou, K.; Emmanouil, C.; Fokialakis, N.; Skaltsounis, A.L.; Machera, K. Modulation of CYP1A1 and CYP1A2 hepatic enzymes after oral administration of mastic gum to male Wistar rats. PLoS ONE 2014, 9, 100190. [Google Scholar] [CrossRef]
- Dabos, K.J.; Sfika, E.; Vlatta, L.J.; Giannikopoulos, G. The effect of mastic gum on Helicobacter pylori: A randomized pilot study. Phytomedicine 2010, 17, 296–299. [Google Scholar] [CrossRef]
- Papada, E.; Kaliora, A.C. Antioxidant and Anti-Inflammatory Properties of Mastiha: A Review of Preclinical and Clinical Studies. Antioxidants 2019, 8, 208. [Google Scholar] [CrossRef]
- Ierapetritis, D. The Geography of the Chios Mastic Trade from the 17th through to the 19th Century. Ethnobot. Res. Appl. 2010, 8, 153–167. [Google Scholar] [CrossRef]
- Paraschos, S.; Mitakou, S.; Skaltsounis, A.L. Chios gum mastic: A review of its biological activities. Curr. Med. Chem. 2012, 19, 2292–2302. [Google Scholar] [CrossRef]
- Assimopoulou, A.N.; Papageorgiou, V.P. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part I. Pistacia lentiscus var. Chia. Biomed. Chromatogr. 2005, 19, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Poulios, E.; Vasios, G.K.; Psara, E.; Antasouras, G.; Gialeli, M.; Pavlidou, E.; Tsantili-Kakoulidou, A.; Troumbis, A.Y.; Giaginis, C. Antioxidant Activity of Medicinal Plants and Herbs of North Aegean, Greece: Current Clinical Evidence and Future Perspectives. Nat. Prod. J. 2023, 14, 31–44. [Google Scholar] [CrossRef]
- Magiatis, P.; Melliou, E.; Skaltsounis, A.L.; Chinou, I.B.; Mitaku, S. Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia. Planta Med. 1999, 65, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Soulaidopoulos, S.; Tsiogka, A.; Chrysohoou, C.; Lazarou, E.; Aznaouridis, K.; Doundoulakis, I.; Tyrovola, D.; Tousoulis, D.; Tsioufis, K.; Vlachopoulos, C.; et al. Overview of Chios Mastic Gum (Pistacia lentiscus) Effects on Human Health. Nutrients 2022, 14, 590. [Google Scholar] [CrossRef]
- ISO 7218:2007; Microbiology of Food and Animal Feeding Stuffs General Requirements and Guidance for Microbiological Examinations. ISO: Geneva, Switzerland, 2007.
- Sadler, S.D.; Murphy, P.A. Food Analysis, 1st ed.; Springer Science: Basel, Switzerland, 2010; Chapter 13. [Google Scholar]
- Tyl, C.; Sadler, G.D. Food Analysis, 5th ed.; Springer Science: Basel, Switzerland, 2017; Chapter 22. [Google Scholar]
- Griffiths, J.C. Coloring food and beverages. Food Technol. Chic. 2005, 59, 38. [Google Scholar]
- Lunkes, L.B.F.; Hashizume, L.N. Evaluation of the pH and titratable acidity of teas commercially available in Brazilian market. RGO Rev. Gaúcha Odontol. 2014, 62, 59–64. [Google Scholar] [CrossRef]
- Flores-Martínez, D.; Urías-Orona, V.; Hernández-García, L.; Rubio-Carrasco, W.; Silva-Gutiérrez, K.; Guevara-Zambrano, M.; Prieto-Cadena, J.; Serna-Méndez, T.; Muy-Rangel, D.; Niño-Medina, G. Physicochemical Parameters, Mineral Composition, and Nutraceutical Properties of Ready-to-Drink Flavored-Colored Commercial Teas. J. Chem. 2018, 2018, 2861541. [Google Scholar] [CrossRef]
- Gashe, K.; Alemu, T. Optimization and Evaluation of Bioactive Characteristics of Commercial Rumex abyssinicus (Mekmeko) Tea in Ethiopia. Preprints 2020, 2020110281. [Google Scholar] [CrossRef]
Risk | Risk Assessment | Preventive Measures | Validation of Preventive Measures |
---|---|---|---|
M M8: Presence of M/O: Escherichia coli Enterococci M9: Presence of parasites X X16: Concentration of chemicals above the legislative limits (Government Gazette 3282 B‘ 19/9/2017: Quality of water intended for human consumption) Φ F10: Presence of foreign bodies (stones, wood, mud) | M8: bA2 M9: cC3 X16: βA1 F10: bB1 | -Water treatment chlorination (M8, X16) -Filtration (M9, Φ10, Χ16) -Use of public water supply -Application of reverse osmosis system directive (M8, X16) | -Water treatment recordings -Sampling and analysis -Government Gazette 3282 ‘B 19 September 2017: Quality of water intended for human consumption |
Analysis Parameters | Result | Units | Limit of Detection (DL) | Method | Limits |
---|---|---|---|---|---|
OMX—Colony count at 22 °C | <DL | cfu/100 mL | 10 | In-house method according to ISO 7218/2007 | No unusual change |
OMX—Colony count at 37 °C | <DL | cfu/100 mL | 10 | In-house method according to ISO 7218/2007 | No unusual change |
Clostridium perfrigens | <DL | cfu/100 mL | 10 | In-house method according to ISO 7218/2007 | No unusual change |
Total coliforms | <DL | cfu/100 mL | 10 | In-house method according to ISO 7218/2007 | 0 |
Escherichia coli | <DL | cfu/100 mL | 10 | In-house method according to ISO 7218/2007 | 0 |
Enterococci | <DL | cfu/100 mL | 10 | In-house method according to ISO 7218/2007 | 0 |
Analysis Parameters | Result | Units | Limit of Detection (DL) | Method | Limits |
---|---|---|---|---|---|
Colour | 5 | mg/l Pt | - | APHA methods | |
Odor | Acceptable | - | - | Food and Beverage Code | |
Taste | Acceptable | - | - | Food and Beverage Code | |
Opacity | 0.1 | NTU | 0.02 | APHA 20th edition 2001 | <1.00 |
Electrical conductivity | 117 | μS/cm | 1 | APHA 2510 (25 °C) | <2500.0 |
pH | 6.5 | - | - | Ph meter | 6.50–9.50 |
Chlorides (Cl) | 30.1 | mg/L | 1 | Μοhr | <250.0 |
Chlorine (free) | 0.6 | mg/L | 0.01 | Lovibond | <0.60 |
Ammoniacal (NH4) | <DL | mg/L | 0.06 | 4500-NH3 b | <0.50 |
Nitrate (NO3) | 4.7 | mg KNO3/L | 0.4 | 4500-NO3-N e | <50.0 |
Nitrite (NO2) | <DL | mg NaNO2/L | 0.1 | 4500-ΝO2-Ν b | <0.50 |
Additive | Risk | Risk Assessment | Preventive Measures | Validation of Preventive Measures |
---|---|---|---|---|
A. Tea extracts | Χ X6: pesticide balances, heavy metals, presence of toxins (aflatoxin, ochratoxin A) X7: residues of cleaning chemicals and lubricants X8: perchlorates > 20 μg/kg X9: prohibited add-ons M M2: attendance Φ F3: foreign bodies F4: damaged packaging | X4: bB1 X7: cB1 X8: cB2 X9: cB1 M2: cC2 F3: bC2 F4: bC2 | -Training of staff (Φ4, M2) -Raw materials, specifications, and suppliers’ certificates/evaluated suppliers (M2, Φ3, Χ6, Χ7, Χ8, Χ9) -Evaluation of suppliers (X6, X7, X8, X9) | -Sample testing and final analysis -No complaints about foreign bodies in product EU 2015/682 on monitoring presence of perchlorates in food -Food and beverage code |
B. Eessential oils | Χ X10: pesticide balances, heavy metals, presence of mycotoxins M M3: presence of m/o → toxins B. cereus C. perfrigens Φ F5: packaging destruction | X10: bb1 M3: cB1 F5: bC2 | -Training of reception staff (Φ5, M3) -Raw material specifications and suppliers’ certificates/evaluated suppliers (M3, Φ5, Χ10) | -Sampling and final analysis -Regulation (EC) No.../... Regulation (EC) No 1881/2006 set maximum levels for certain contaminants in foodstuffs -Food and beverage code -Supplier certificates |
C. Sugar | Μ M4: presence of parasites M5: presence of yeasts/fungi X X11: presence of pigments Φ F6: presence of foreign bodies (stones, packaging materials) (sugar) F7: destruction of packages | M4: bc2 M5: bC2 X11: cC2 F6: cC2 F7: bC2 | Raw material specifications and suppliers’ certificates/evaluated suppliers (M4, M5, X11, F6) -Visual inspection of packages upon receipt (M4, F6) -Training of reception staff (M4, F6, F7) | -Sample testing and final analysis No complaints about foreign bodies in product -Supplier certificates -Regulation (EC) No.../... Regulation (EC) No 1881/2006 set maximum levels for certain contaminants in foodstuffs |
D. Flavorings | Μ M6: presence of M/O pathogens X X12: presence of toxic substances, pesticides, presence of mycotoxins—aflatoxins Φ F8: foreign bodies (stones, glass, wood) | M6: cC1 X12: cB1 F8: cG1 | -Raw material specifications and supplier certificates/evaluated suppliers (M6, Χ12, Φ8) -Visual inspection of packages upon receipt (Φ8) - Training of reception personnel (M6, F8) | Sample testing and final analysis -Supplier certificates -Food and beverage code |
E.Sweeteners—other additives (acidity regulators, antioxidants, preservatives) | Μ M7: presence of M/O pathogens X X13: presence of toxic substances, pesticides, presence of mycotoxins—aflatoxins X14: unattached materials Φ F9: foreign bodies (stones, glass, wood) | M7: cC1 X13: βA2 X14: cB1 F9: cG1 | -Raw material specifications and supplier certificates/evaluated suppliers (M7, X13, F9, X14) -Visual inspection of packages upon receipt (F9) -Training of reception staff (M7, F9) | -Sample testing and final analysis -Supplier certificates -Food and beverage code |
Analysis Parameters | Result | Units | Limit of Detection (DL) | Method |
---|---|---|---|---|
OMX—colony count at 37 °C | <DL | cfu/100 mL | 10 | In-house method according to ISO 7218/2007 |
Lactic acid bacteria | <DL | cfu/100 mL | 10 | In-house method according to ISO 7218/2007 |
Alicyclobacillus | <DL | cfu/100 mL | 1 | In-house method according to ISO 7218/2007 |
Yeasts | <DL | cfu/100 mL | 100 | In-house method according to ISO 7218/2007 |
Fungi | <DL | cfu/100 mL | 100 | In-house method according to ISO 7218/2007 |
Yeasts/fungi | <DL | cfu/100 mL | 100 | In-house method according to ISO 7218/2007 |
Analysis Parameters | Result | Units | Limit of Detection | Method |
---|---|---|---|---|
Sorbic Acid | 200 ± 30 | mg/L | max 250 | O.608/HPLC-DAD |
Benzoic Acid | 130 ± 10 | mg/L | max 150 | O.608/HPLC-DAD |
Analysis Parameters | Result | Units | Limit of Detection (DL) | Method |
---|---|---|---|---|
OΜΧ—colony count at 37 °C | <DL | cfu/100 mL | 10 | In-house method according to ISO 7218/2007 |
Lactic acid bacteria | <DL | cfu/100 mL | 10 | In-house method according to ISO 7218/2007 |
Alicyclobacillus | <DL | cfu/100 mL | 1 | In-house method according to ISO 7218/2007 |
Yeasts | <DL | cfu/100 mL | 100 | In-house method according to ISO 7218/2007 |
Fungi | <DL | cfu/100 mL | 100 | In-house method according to ISO 7218/2007 |
Yeasts/fungi | <DL | cfu/100 mL | 100 | In-house method according to ISO 7218/2007 |
Analysis Parameters | Result | Units | Limit of Detection (DL) | Method |
---|---|---|---|---|
Sorbic Acid | 200 ± 30 | mg/L | max 250 | O.608/HPLC-DAD |
Benzoic Acid | 130 ± 10 | mg/L | max 150 | O.608/HPLC-DAD |
Analysis Parameters | Result | Units | Limit of Detection (DL) | Method |
---|---|---|---|---|
OΜΧ—colony count at 37 °C | <DL | cfu/100 mL | 10 | In-house method according to ISO 7218/2007 |
Lactic acid bacteria | <DL | cfu/100 mL | 10 | In-house method according to ISO 7218/2007 |
Alicyclobacillus | <DL | cfu/100 mL | 1 | In-house method according to ISO 7218/2007 |
Yeasts | <DL | cfu/100 mL | 100 | In-house method according to ISO 7218/2007 |
Fungi | <DL | cfu/100 mL | 100 | In-house method according to ISO 7218/2007 |
Yeasts/fungi | <DL | cfu/100 mL | 100 | In-house method according to ISO 7218/2007 |
Analysis Parameters | Result | Units | Limit of Detection (DL) | Method |
---|---|---|---|---|
Sorbic Acid | 200 ± 30 | mg/L | max 250 | O.608/HPLC-DAD |
Benzoic Acid | 130 ± 10 | mg/L | max 150 | O.608/HPLC-DAD |
Analysis Parameters | Result | Units | Limit of Detection (DL) | Method |
---|---|---|---|---|
Sodium (Na) | 23.8 | mg/Kg | 0.10 | ICP-OES CYS EN 16943:2017 |
Analysis Parameters | Result | Units | Limit of Detection (DL) | Method |
---|---|---|---|---|
Sodium (Na) | 13.3 | mg/Kg | 0.10 | ICP-OES CYS EN 16943:2017 |
Analysis Parameters | Result | Units | Limit of Detection (DL) | Method |
---|---|---|---|---|
Sodium (Na) | 11.9 | mg/Kg | 0.10 | ICP-OES CYS EN 16943:2017 |
Analysis Parameters | Result | Units | Limit of Detection (DL) | Method | ||
---|---|---|---|---|---|---|
Total Energy Value | 0 | kj/100 mL | - | Computational (Reg. 1169/2011) | ||
Total Energy Value | 0 | kcal/100 mL | - | Computational (Reg. 1169/2011) | ||
Fats | <DL | g/100 mL | 0.1 | Soxhlet In-house Method | ||
Saturated Fats | <DL | g/100 mL | 0.1 | GLC EC Regulation 2568/91 | ||
Monounsaturated Fats | <DL | g/100 mL | 0.1 | GLC EC Regulation 2568/91 | ||
Polyunsaturated Fats | <DL | g/100 mL | 0.1 | GLC EC Regulation 2568/91 | ||
Carbohydrates (total) | <DL | g/100 mL | 0.1 | Computing | ||
Total Sugars | <DL | g/100 mL | 0.1 | HPLC-RI | ||
Proteins | <DL | g/100 mL | 0.1 | Kjeldahl In-house Method based on ISO/DIS 8968-2 | ||
Salt | 0.01 | g/100 mL | 0.01 | ICP-OES CYS EN 16943:2017 | ||
Ash (total) | <0.1 | g/100 mL | - | Food and Beverage Code | ||
Moisture | MGT1 99.7 | MGT2 97.5 | MGT3 98.7 | g/100 mL | - | Food and Beverage Code |
Trans Fat | <DL | g/100 mL | 0.1 | GLC EC Regulation 2568/91 |
Materials | Quantity of Materials (kg) | Quantitiy of Materials % |
---|---|---|
Water | 99.5–99.6% | |
Green tea extract | 0.14% | |
Malic acid | ||
Citric acid | ||
Ascorbic acid | ||
Potassium sorbate | ||
Sodium benzoate | ||
Matcha tea extract | 0.009% | |
Sucralose | ||
Acesulfame potassium | ||
Sodium citrate | ||
Chios mastic oil | 0.002% | |
Lemon verbena flavoring | 0.005% |
Texture | Taste | Color | Aroma |
---|---|---|---|
✓ | ✓ | ✓ | ✓ |
Measurements | Specifications |
---|---|
pH: 3.2 | pH: < 3.5 |
Acidity: 0.17% citric acid | Acidity: 0.15–0.20% citric acid |
Sorbic acid: 227 mg/L | Sorbic acid: < 250 mg/L |
Benzoic acid: 132 mg/L | Benzoic acid: <150 mg/L |
Analysis Parameters | Result | Units of Measurement | Limit of Detection (DL) | Method |
---|---|---|---|---|
pH | 3.1 | - | Ph meter | |
Ascorbic acid | 434 | mg/Kg | 5 | HPLC-UV |
Acidity | 0.18 | % | - | Even. EEC Regulation (EEC) No 2568/91 |
Benzoic acid | 131.8 | mg/Kg | 10 | HPLC UV O1012A |
Sorbic acid | 229 | mg/Kg | 10 | HPLC UV O1012A |
Analysis Parameters | Result | Units of Measurement | Limit of Detection (DL) | Method |
---|---|---|---|---|
OMX—colony count at 37 °C | <DL | CFU/G | 10 | In-house method according to ISO 7218/2007 |
Alicyclobacillus | <DL | CFU/G | 1 | Neogen Soleris ACB-109 |
Yeasts/fungi | <DL | CFU/G | 100 | In-house method according to ISO 7218/2007 |
Yeasts | <DL | CFU/G | 100 | In-house method according to ISO 7218/2007 |
Fungi | <DL | CFU/G | 100 | In-house method according to ISO 7218/2007 |
Analysis Parameters | Result | Units of Measurement | Limit of Detection (DL) | Method |
---|---|---|---|---|
pH | 3.1 | - | Ph meter | |
Ascorbic acid | 474 | mg/Kg | 5 | HPLC-UV |
Acidity | 0.192 | % | - | Even. EEC Regulation (EEC) No 2568/91 |
Benzoic acid | 145 | mg/Kg | 10 | HPLC UV O1012A |
Sorbic acid | 222 | mg/Kg | 10 | HPLC UV O1012A |
Analysis Parameters | Result | Units of Measurement | Limit of Detection (DL) | Method |
---|---|---|---|---|
OMX—colony count at 37 °C | <DL | CFU/G | 10 | In-house method according to ISO 7218/2007 |
Alicyclobacillus | <DL | CFU/G | 1 | Neogen Soleris ACB-109 |
Yeasts/fungi | <DL | CFU/G | 100 | In-house method according to ISO 7218/2007 |
Yeasts | <DL | CFU/G | 100 | In-house method according to ISO 7218/2007 |
Fungi | <DL | CFU/G | 100 | In-house method according to ISO 7218/2007 |
Analysis Parameters | Result | Units of Measurement | Limit of Detection (DL) | Method |
---|---|---|---|---|
OMX—Colony count at 37 °C | <DL | CFU/G | 10 | In-house method according to ISO 7218/2007 |
Alicyclobacillus | <DL | CFU/G | 1 | Neogen Soleris ACB-109 |
Yeasts/fungi | <DL | CFU/G | 100 | In-house method according to ISO 7218/2007 |
Yeasts | <DL | CFU/G | 100 | In-house method according to ISO 7218/2007 |
Fungi | <DL | CFU/G | 100 | In-house method according to ISO 7218/2007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itziou, A.; Ziouzios, D.; Zaralis, K.; Lakioti, E.; Karayannis, V.; Tsanaktsidis, C. The Processing of a Novel Health Beverage Based on Extracts from Green Tea and Chios Mastiha. Processes 2024, 12, 2433. https://doi.org/10.3390/pr12112433
Itziou A, Ziouzios D, Zaralis K, Lakioti E, Karayannis V, Tsanaktsidis C. The Processing of a Novel Health Beverage Based on Extracts from Green Tea and Chios Mastiha. Processes. 2024; 12(11):2433. https://doi.org/10.3390/pr12112433
Chicago/Turabian StyleItziou, Aikaterini, Dimitrios Ziouzios, Konstantinos Zaralis, Evangelia Lakioti, Vayos Karayannis, and Constantinos Tsanaktsidis. 2024. "The Processing of a Novel Health Beverage Based on Extracts from Green Tea and Chios Mastiha" Processes 12, no. 11: 2433. https://doi.org/10.3390/pr12112433
APA StyleItziou, A., Ziouzios, D., Zaralis, K., Lakioti, E., Karayannis, V., & Tsanaktsidis, C. (2024). The Processing of a Novel Health Beverage Based on Extracts from Green Tea and Chios Mastiha. Processes, 12(11), 2433. https://doi.org/10.3390/pr12112433