Hydrogen in Burners: Economic and Environmental Implications
Abstract
:1. Introduction
Previous Studies and Research Gaps
2. Fuels
2.1. Solid Fuels
2.2. Liquid Fuels
2.3. Gaseous Fuels
2.4. Biofuels
3. Hydrogen
3.1. Hydrogen Properties
3.2. Hydrogen Routes
3.2.1. Green Hydrogen
3.2.2. Pink Hydrogen
3.2.3. Gray Hydrogen
3.2.4. Blue Hydrogen
3.2.5. Turquoise Hydrogen
3.2.6. Biological Route
3.2.7. Solar-Driven Route
3.3. Storage and Transportation
3.4. Energy and Industrial Applications of Hydrogen
3.4.1. Conventional Energy Applications
3.4.2. Emerging and Promising Applications
3.5. Challenges and Safety in Hydrogen Utilization
3.5.1. Technical and Economic Challenges
3.5.2. Safety in the Use of Hydrogen
3.5.3. Advances and Risk Mitigation
4. Combustion
4.1. Hydrogen Combustion
Future Perspectives of Hydrogen in Combustion Engines
5. Burners
5.1. Classification of Burners
5.1.1. Classification of Burners Based on Air–Fuel Mixture
- Diffusion burners
- Premixed burners
- Partially premixed burners
- Stage burners
5.1.2. Classification of Burners Based on Fuel
- Gas burners
- Liquid fuel burners
- Solid fuel burners
- Dual fuel burners
6. Furnaces
7. Emissions
8. Economic Issues
8.1. Hydrogen Economy
8.2. Economic Challenges of Hydrogen Storage and Transmission
8.3. Future Prospects
9. Environment Impacts
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nnabuife, S.G.; Ugbeh-Johnson, J.; Okeke, N.E.; Ogbonnaya, C. Present and Projected Developments in Hydrogen Production: A Technological Review. Carbon Capture Sci. Technol. 2022, 3, 100042. [Google Scholar] [CrossRef]
- Abdin, Z. Bridging the energy future: The role and potential of hydrogen co-firing with natural gas. J. Clean. Prod. 2024, 436, 140724. [Google Scholar] [CrossRef]
- Zainal, B.S.; Ker, P.J.; Mohamed, H.; Ong, H.C.; Fattah, I.M.R.; Rahman, S.M.A.; Nghiem, L.D.; Mahlia, T.M.I. Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 2023, 189, 113941. [Google Scholar] [CrossRef]
- COP28; IRENA; GRA. Tripling Renewable Power and Doubling Energy Efficiency by 2030: Crucial Steps Towards 1.5 °C; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2023. [Google Scholar]
- Saccardo, R.R.; Domingues, A.M.; Battistelle, R.A.G.; Bezerra, B.S.; Siqueira, R.M.; Neto, J.B.S.S. Investment in photovoltaic energy: An attempt to frame Brazil within the 2030 passage target of the Paris agreement. Clean. Energy Syst. 2023, 5, 100070. [Google Scholar] [CrossRef]
- Harichandan, S.; Kar, S.K.; Bansal, R.; Mishra, S.K.; Balathanigaimani, M.S.; Dash, M. Energy transition research: A bibliometric mapping of current findings and direction for future research. Clean. Prod. Lett. 2022, 3, 100026. [Google Scholar] [CrossRef]
- Ocko, I.B.; Hamburg, S.P. Climate consequences of hydrogen emissions. Atmos. Chem. Phys. 2022, 22, 9349–9368. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, C.; Bai, F.; Wang, W.; An, S.; Zhao, K.; Li, Z.; Li, J.; Sun, H. A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel 2023, 355, 129455. [Google Scholar] [CrossRef]
- Gomes, F.A.F.; Yang, Y.; Talei, M. Decarbonizing combustion with hydrogen blended fuels: An exploratory study of impact of hydrogen on hydrocarbon autoignition. Fuel 2024, 364, 131028. [Google Scholar] [CrossRef]
- Frieden, F.; Leker, J. Future costs of hydrogen: A quantitative review. Sustain. Energy Fuels 2024, 8, 1806. [Google Scholar] [CrossRef]
- Lamb, J.J.; Hillestad, M.; Rytter, E.; Bock, R.; Nordgård, A.S.R.; Lien, K.M.; Burheim, O.S.; Pollet, B.G. Traditional routes for hydrogen production and carbon conversion. In Hydrogen, Biomass and Bioenergy; Lamb, J.J., Pollet, B.G., Eds.; Academic Press: London, UK, 2020; Chapter 3; pp. 21–53. [Google Scholar] [CrossRef]
- Shadidi, B.; Najafi, G.; Yusaf, T. A review of hydrogen as a fuel in internal combustion engines. Energies 2021, 14, 6209. [Google Scholar] [CrossRef]
- Hanto, J.; Herpich, P.; Löffler, K.; Hainsch, K.; Moskalenko, N.; Schmidt, S. Assessing the implications of hydrogen blending on the European energy system towards 2050. Adv. Appl. Energy 2024, 13, 100161. [Google Scholar] [CrossRef]
- Hurtubia, B.; Sauma, E. Economic and environmental analysis of hydrogen production when complementing renewable energy generation with grid electricity. Appl. Energy 2021, 304, 117739. [Google Scholar] [CrossRef]
- Arcos, J.M.M.; Santos, D.M.F. The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases 2023, 3, 25–46. [Google Scholar] [CrossRef]
- Hoang, A.T.; Pandey, A.; De Osés, F.J.M.; Chen, W.-H.; Said, Z.; Ng, K.H.; Ağbulut, Ü.; Tarełko, W.; Ölçer, A.I.; Nguyen, X.P. Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives. Renew. Sustain. Energy Rev. 2023, 188, 113790. [Google Scholar] [CrossRef]
- Franco, A.; Rocca, M. Industrial Decarbonization through Blended Combustion of Natural Gas and Hydrogen. Hydrogen 2024, 5, 519–539. [Google Scholar] [CrossRef]
- Lefebvre, A.H.; Ballal, D.R. Gas Turbine Combustion: Alternative Fuels and Emissions, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Zheng, A.; Xu, R.; Jia, G.; Zhu, J. Effects of hydrogen-rich fuel injection on the states of the raceway in blast furnace. Energy 2023, 274, 127237. [Google Scholar] [CrossRef]
- Algayyim, S.J.M.; Saleh, K.; Wandel, A.P.; Fattah, I.M.R.; Yusaf, T.; Alrazen, H.A. Influence of natural gas and hydrogen properties on internal combustion engine performance, combustion, and emissions: A review. Fuel 2024, 362, 130844. [Google Scholar] [CrossRef]
- Gee, A.J.; Proud, D.B.; Smith, N.; Chinnici, A.; Medwell, P.R. Hydrogen addition to a commercial self-aspirating burner and assessment of a practical burner modification strategy to improve performance. Int. J. Hydrogen Energy 2024, 49, 59–76. [Google Scholar] [CrossRef]
- Zhou, H.; Xue, J.; Gao, H.; Ma, N. Hydrogen-fueled gas turbines in future energy system. Int. J. Hydrogen Energy 2024, 64, 569–582. [Google Scholar] [CrossRef]
- Giacomazzi, E.; Troiani, G.; Di Nardo, A.; Calchetti, G.; Cecere, D.; Messina, G.; Carpenella, S. Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition. Energies 2023, 16, 7174. [Google Scholar] [CrossRef]
- Hu, M.; Wu, X.; Yuan, Y.; Xu, C. Competitive Analysis of Heavy Trucks with Five Types of Fuels under Different Scenarios—A Case Study of China. Energies 2024, 17, 3936. [Google Scholar] [CrossRef]
- Dorel, S.; Lucian, M.; Gheorghe, L.; Cristian, L.G. Green Hydrogen, a Solution for Replacing Fossil Fuels to Reduce CO2 Emissions. Processes 2024, 12, 1651. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Edlmann, K.; Heinemann, N.; Yang, J. Thermodynamic and transport properties of hydrogen containing streams. Sci. Data 2020, 7, 222. [Google Scholar] [CrossRef] [PubMed]
- Cernat, A.; Pana, C.; Negurescu, N.; Lazaroiu, G.; Nutu, C.; Fuiorescu, D. Hydrogen—An Alternative Fuel for Automotive Diesel Engines Used in Transportation. Sustainability 2020, 12, 9321. [Google Scholar] [CrossRef]
- Tutak, W.; Jamrozik, A.; Grab-Rogaliński, K. Co-Combustion of Hydrogen with Diesel and Biodiesel (RME) in a Dual-Fuel Compression-Ignition Engine. Energies 2023, 16, 4892. [Google Scholar] [CrossRef]
- Mcallister, S.; Chen, J.; Fernandez-Pello, A.C. Fundamentals of Combustion Processes; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Speight, J.G. Handbook of Industrial Hydrocarbon Processes, 2nd ed.; Gulf Professional Publishing: Houston, TX, USA, 2019. [Google Scholar] [CrossRef]
- Mullinger, P.; Jenkins, B. Industrial and Process Furnaces: Principles, Design and Operation, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2022; pp. 3–192. [Google Scholar]
- Tillman, D. The Combustion of Solid Fuels and Wastes, 1st ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Danişmaz, M.; Demirtaş, C. An Experimental Investigation of Clean Syngas Production from Waste Biomass by Gasification Method. Int. J. Comput. Exp. Sci. Eng. 2024, 10, 314–322. [Google Scholar] [CrossRef]
- Mishra, S.S.; Shanmugapriya, V. Pyrolysis of Biomass Using Renewable Energy as A Heating Medium: A Review. In Proceedings of the 2024 3rd International Conference on Computational Modelling, Simulation and Optimization—ICCMSO, Phuket, Thailand, 14–16 June 2024; pp. 367–376. [Google Scholar]
- Li, B.; Xiao, D.; Xie, H.; Huang, J.; Yan, Z. Coal Classification Based on Reflection Spectroscopy and the IAT-TELM Algorithm. ACS Omega 2023, 8, 35232–35241. [Google Scholar] [CrossRef]
- Minx, J.C.; Hilaire, J.; Müller-Hansen, F.; Nemet, G.; Diluiso, F.; Andrew, R.M.; Ayas, C.; Bauer, N.; Bi, S.L.; Clarke, L.; et al. Coal transitions—Part 2: Phase-out dynamics in global long-term mitigation scenarios. Environ. Res. Lett. 2024, 19, 033002. [Google Scholar] [CrossRef]
- Šramková, K.; Šomplák, R.; Nevrlý, V.; Jirásek, P.; Smejkalová, V.; Popela, P. Stratification and multi-representative optimization approach to waste composition analysis. Optim. Eng. 2021, 22, 1727–1754. [Google Scholar] [CrossRef]
- Schiavon, M.; Ravina, M.; Zanetti, M.; Panepinto, D. State-of-the-Art and Recent Advances in the Abatement of Gaseous Pollutants from Waste-to-Energy. Energies 2024, 17, 552. [Google Scholar] [CrossRef]
- Shahbazi, M.J.; Rahimpour, M.R. Diesel, naphtha, gasoline, and wax production from syngas. In Advances in Synthesis Gas: Methods, Technologies and Applications; Elsevier: Amsterdam, The Netherlands, 2023; Volume 3, Chapter 9; pp. 225–234. [Google Scholar] [CrossRef]
- Stout, S.; Douglas, G.S.; Uhler, A.D. Standard handbook oil spill. In Environmental Forensics, 2nd ed.; Academic Press: London, UK, 2016; pp. 509–564. [Google Scholar]
- Al-Zaini, E.O.; Al-Kafani, M.H.; Al-Suhail, A.B.K.; Farhan, M.M.; Jabur, A.T.; Jaber, A.A.; Kadhim, K.N.; Nassef, K.D. A review of bio-kerosene and biodiesel existed production technologies. In Proceedings of the AIP Conference Proceedings, Istanbul, Turkey, 6–7 June 2022; Volume 2776, p. 050007. [Google Scholar] [CrossRef]
- Knothe, G.; Razon, L.F. Biodiesel fuels. Prog. Energy Combust. Sci. 2017, 58, 36–59. [Google Scholar] [CrossRef]
- Liu, Y.; Cruz-Morales, P.; Zargar, A.; Belcher, M.S.; Pang, B.; Englund, E.; Dan, Q.; Yin, K.; Keasling, J.D. Biofuels for a sustainable future. Cell 2021, 184, 1636–1647. [Google Scholar] [CrossRef] [PubMed]
- Agaton, C.B.; Batac, K.I.T.; Reyes, E.M., Jr. Prospects and challenges for green hydrogen production and utilization in the Philippines. Int. J. Hydrogen Energy 2022, 47, 17859–17870. [Google Scholar] [CrossRef]
- Xie, Z.; Jin, Q.; Su, G.; Lu, W. A Review of Hydrogen Storage and Transportation: Progresses and Challenges. Energies 2024, 17, 4070. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. Beginner’s Guide to Aeronautics. Glenn Research Center. 2021. Available online: https://www.grc.nasa.gov/www/k-12/airplane/combst1.html# (accessed on 20 October 2022).
- Falfari, S.; Cazzoli, G.; Mariani, V.; Bianchi, G.M. Hydrogen Application as a Fuel in Internal Combustion Engines. Energies 2023, 16, 2545. [Google Scholar] [CrossRef]
- Armaroli, N.; Bandini, E.; Barbieri, A. Hydrogen as an energy carrier: Constraints and opportunities. Pure Appl. Chem. 2024, 96, 479–485. [Google Scholar] [CrossRef]
- Keçebaş, A.; Kayfeci, M. Hydrogen properties. In Solar Hydrogen Production; Academic Press: Cambridge, MA, USA, 2019; pp. 3–29. [Google Scholar] [CrossRef]
- Jeon, J.; Kim, S.J. Recent Progress in Hydrogen Flammability Prediction for the Safe Energy Systems. Energies 2020, 13, 6263. [Google Scholar] [CrossRef]
- Desantes, J.M.; Molina, S.; Novella, R.; López-Juárez, M. Comparative global warming impact and NOX emissions of conventional and hydrogen automotive propulsion systems. Energy Convers. Manag. 2020, 221, 113137. [Google Scholar] [CrossRef]
- Grigoriev, S.A.; Fateev, V.N.; Bessarabov, D.G.; Millet, P. Current status, research trends, and challenges in water electrolysis science and technology. Int. J. Hydrogen Energy 2020, 45, 26036–26058. [Google Scholar] [CrossRef]
- Fortin, P.; Khoza, T.; Cao, X.; Martinsen, S.Y.; Barnett, A.O.; Holdcroft, S. High-performance alkaline water electrolysis using Aemion™ anion exchange membranes. J. Power Sources 2020, 451, 227814. [Google Scholar] [CrossRef]
- Zhao, G.; Kraglund, M.R.; Frandsen, H.L.; Wulff, A.C.; Jensen, S.H.; Chen, M.; Graves, C.R. Life cycle assessment of H2O electrolysis technologies. Int. J. Hydrogen Energy 2020, 45, 23765–23781. [Google Scholar] [CrossRef]
- Haoran, C.; Xia, Y.; Wei, W.; Yongzhi, Z.; Bo, Z.; Leiqi, Z. Safety and efficiency problems of hydrogen production from alkaline water electrolyzers driven by renewable energy sources. Int. J. Hydrogen Energy 2024, 54, 700–712. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, Y.; Xu, H.; Martinez, A.; Chen, K.S. PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development—A review. Energy Environ. Sci. 2022, 15, 2288–2328. [Google Scholar] [CrossRef]
- Wang, T.; Cao, X.; Jiao, L. PEM water electrolysis for hydrogen production: Fundamentals, advances, and prospects. Carbon Neutrality 2022, 1, 21. [Google Scholar] [CrossRef]
- Iyer, S.; Kaur, G.; Haque, N.; Giddey, S. Review of experimental and modelling investigations for solid oxide electrolysis technology. Int. J. Hydrogen Energy 2024, 72, 537–558. [Google Scholar] [CrossRef]
- AlZahrani, A.A.; Dincer, I. Modeling and performance optimization of a solid oxide electrolysis system for hydrogen production. Appl. Energy 2018, 225, 471–485. [Google Scholar] [CrossRef]
- Parawan, A.J.R.; Tayactac, R.G. Application of Sun Tracking Concentrated Solar Power (CSP) Technology with Parabolic Reflectors to Power an Electrolysis System for Yielding Green Hydrogen from Potable Water. In Proceedings of the E3S Web of Conferences, Online, 19 September 2024; Volume 566, p. 04002. [Google Scholar] [CrossRef]
- Puig-Samper, G.; Bargiacchi, E.; Iribarren, D.; Dufour, J. Assessing the prospective environmental performance of hydrogen from high-temperature electrolysis coupled with concentrated solar power. Renew. Energy 2022, 196, 1258–1268. [Google Scholar] [CrossRef]
- Incer-Valverde, J.; Korayem, A.; Tsatsaronis, G.; Morosuk, T. “Colors” of hydrogen: Definitions and carbon intensity. Energy Convers. Manag. 2023, 291, 117294. [Google Scholar] [CrossRef]
- Fernández-Arias, P.; Antón-Sancho, Á.; Lampropoulos, G.; Vergara, D. Emerging Trends and Challenges in Pink Hydrogen Research. Energies 2024, 17, 2291. [Google Scholar] [CrossRef]
- Luin, U.; Valant, M. Electrolysis energy efficiency of highly concentrated FeCl2 solutions for power-to-solid energy storage technology. J. Solid State Electrochem. 2022, 26, 929–938. [Google Scholar] [CrossRef]
- Kandah, M.I. Electrolysis Design for Hydrogen Production. Res. Soc. Dev. 2022, 8, 79–88. [Google Scholar] [CrossRef]
- Krūmiņš, J.; Kļaviņš, M. Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future. Energies 2023, 16, 3612. [Google Scholar] [CrossRef]
- Razi, F.; Dincer, I. Renewable energy development and hydrogen economy in MENA region: A review. Renew. Sustain. Energy Rev. 2022, 168, 112763. [Google Scholar] [CrossRef]
- Amir, M.; Syed, A.A.; Iqra, S.; Saman, S.; Huma, K.; Mohd, F.; Nayeem, A.P.; Farha, N.; Tokeer, A. Hydrogen Energy as Sustainable Energy Resource for Carbon-Neutrality Realization. ACS Sustain. Resour. Manag. 2024, 1, 604–620. [Google Scholar] [CrossRef]
- Garcia-Vallejo, M.C.; Alzate, C.A.C. Sustainability of hydrogen production considering alternative technologies towards a neutral carbon society. Int. J. Hydrogen Energy 2024, 64, 853–863. [Google Scholar] [CrossRef]
- Khan, M.H.A.; Daiyan, R.; Neal, P.; Haque, N.; MacGill, I.; Amal, R. A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilization. Int. J. Hydrogen Energy 2021, 46, 22685–22706. [Google Scholar]
- Khan, M.I.; Al-Ghamdi, S.G. Hydrogen economy for sustainable development in GCC countries: A SWOT analysis considering current situation, challenges, and prospects. Int. J. Hydrogen Energy 2023, 48, 10315–10344. [Google Scholar] [CrossRef]
- Diab, J.; Fulcheri, L.; Hessel, V.; Rohani, V.; Frenklach, M. Why turquoise hydrogen will Be a game changer for the energy transition. Int. J. Hydrogen Energy 2022, 47, 25831–25848. [Google Scholar] [CrossRef]
- Sanyal, A.; Malalasekera, W.; Bandulasena, H.; Wijayantha, K.G.U. Review of the production of turquoise hydrogen from methane catalytic decomposition: Optimising reactors for Sustainable Hydrogen production. Int. J. Hydrogen Energy 2024, 72, 694–715. [Google Scholar] [CrossRef]
- Korányi, T.I.; Németh, M.; Beck, A.; Horváth, A. Recent advances in methane pyrolysis: Turquoise hydrogen with solid carbon production. Energies 2022, 15, 6342. [Google Scholar] [CrossRef]
- Bamiteko, S.O.; Okiki, P.A.; Olarinde, E.S.; Adeniran, A.S. Microbial Production of Hydrogen as Alternative to Fossil Fuel—A Review. In Proceedings of the 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), Online, 2–4 April 2024; pp. 1–7. [Google Scholar]
- Pandey, B.K.; Mishra, S.; Dhar, R.; Srivastava, R. Biological hydrogen production driven by photo-fermentation processes. In Solar-Driven Green Hydrogen Generation and Storage; Elsevier: Amsterdam, The Netherlands, 2023; pp. 223–235. [Google Scholar] [CrossRef]
- Li, P. Photosynthetic hydrogen production bacteria breeding technologies. In Waste to Renewable Biohydrogen; Academic Press: Cambridge, MA, USA, 2021; pp. 179–199. [Google Scholar] [CrossRef]
- Senthil, R.B.; Dinesh, A.V.; Ranjith, G.; Kishore, V.; Ewe, L.S.; Yew, W.K.; Baskaran, R. Sustainability considerations in bio-hydrogen from bio-algae with the aid of bio-algae cultivation and harvesting: Critical review. MRS Energy Sustain. 2024, 1–26. [Google Scholar] [CrossRef]
- Dari, D.N.; Freitas, I.S.; Aires, F.I.d.S.; Melo, R.L.F.; dos Santos, K.M.; da Silva Sousa, P.; Gonçalves de Sousa Junior, P.; Luthierre Gama Cavalcante, A.; Neto, F.S.; da Silva, J.L.; et al. An Updated Review of Recent Applications and Perspectives of Hydrogen Production from Biomass by Fermentation: A Comprehensive Analysis. Biomass 2024, 4, 132–163. [Google Scholar] [CrossRef]
- El Bari, H.; Lahboubi, N.; Habchi, S.; Rachidi, S.; Bayssi, O.; Nabil, N.; Mortezaei, Y.; Villa, R. Biohydrogen production from fermentation of organic waste, storage and applications. Clean. Waste Syst. 2022, 3, 100043. [Google Scholar] [CrossRef]
- Nouicer, I.; Kaghouche, B.; Ghenai, C.; Fares, M.; Nourdine, K. Effect of Solar Energy Technology on Green Hydrogen Production. In Advancements in Renewable Energy and Green Hydrogen; IGI Global: Hershey, PA, USA, 2024; pp. 76–83. [Google Scholar]
- Zhang, C.; Li, N.; An, G. Review of Concentrated Solar Power Technology Applications in Photocatalytic Water Purification and Energy Conversion: Overview, Challenges and Future Directions. Energies 2024, 17, 463. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Tang, Y.; Jin, J.; Li, W. Solar photovoltaic–thermal hydrogen production system based on full-spectrum utilization. J. Clean. Prod. 2023, 430, 139340. [Google Scholar] [CrossRef]
- Gopinath, M.; Marimuthu, R. A review on solar energy-based indirect water-splitting methods for hydrogen generation. Int. J. Hydrogen Energy 2022, 47, 37742–37759. [Google Scholar] [CrossRef]
- Song, H.; Luo, S.; Huang, H.; Deng, B.; Ye, J. Solar-driven hydrogen production: Recent advances, challenges, and future perspectives. ACS Energy Lett. 2022, 7, 1043–1065. [Google Scholar] [CrossRef]
- Arunachalam, M.; Han, D.S. Efficient solar-powered PEM electrolysis for sustainable hydrogen production: An integrated approach. Emergent Mater. 2024, 7, 1401–1415. [Google Scholar] [CrossRef]
- Al-Ezzi, A.S.; Ansari, M.N.M. Photovoltaic Solar Cells: A Review. Appl. Syst. Innov. 2022, 5, 67. [Google Scholar] [CrossRef]
- Lovegrove, K.; Pye, J. Fundamental principles of concentrating solar power systems. In Concentrating Solar Power Technology; Woodhead Publishing: Sawston, UK, 2021; pp. 19–71. [Google Scholar]
- García-Ferrero, J.; Merchán, R.P.; Santos, M.J.; Medina, A.; Hernández, A.C. Brayton technology for Concentrated Solar Power plants: Comparative analysis of central tower plants and parabolic dish farms. Energy Convers. Manag. 2022, 271, 116312. [Google Scholar] [CrossRef]
- Jayathunga, D.S.; Karunathilake, H.P.; Narayana, M.; Witharana, S. Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications-A review. Renew. Sustain. Energy Rev. 2024, 189, 113904. [Google Scholar] [CrossRef]
- Al-Farajat, R.K.; Gomaa, M.R.; Alzghoul, M.Z. Comparison between CSP Systems and Effect of Different Heat Transfer Fluids on the Performance. WSEAS Trans. Heat Mass Transf. 2022, 17, 196–205. [Google Scholar] [CrossRef]
- Dauletbay, A. Transportation of Hydrogen: Hydrogen Usage. In Hydrogen Technologies-Advances, Insights, and Applications; IntechOpen: London, UK, 2024. [Google Scholar]
- Wu, X.; Zhang, H.; Yang, M.; Jia, W.; Qiu, Y.; Lan, L. From the perspective of new technology of blending hydrogen into natural gas pipelines transmission: Mechanism, experimental study, and suggestions for further work of hydrogen embrittlement in high-strength pipeline steels. Int. J. Hydrogen Energy 2022, 47, 8071–8090. [Google Scholar] [CrossRef]
- Negro, V.; Noussan, M.; Chiaramonti, D. The potential role of ammonia for hydrogen storage and transport: A critical review of challenges and opportunities. Energies 2023, 16, 6192. [Google Scholar] [CrossRef]
- Cui, J.; Aziz, M. Techno-economic analysis of hydrogen transportation infrastructure using ammonia and methanol. Int. J. Hydrogen Energy 2023, 48, 15737–15747. [Google Scholar] [CrossRef]
- Yang, Y.; Tong, L.; Yin, S.; Liu, Y.; Wang, L.; Qiu, Y.; Ding, Y. Status and challenges of applications and industry chain technologies of hydrogen in the context of carbon neutrality. J. Clean. Prod. 2022, 376, 134347. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, F.; Chen, W.; Han, W.; Zhai, W.; Lu, Y.; Li, M. Effective reduction of hydrogen consumption in ultra-deep hydrodesulfurization of diesel: Deep insights into the effect of thermodynamic limitations during hydrotreating. Fuel 2024, 356, 129640. [Google Scholar] [CrossRef]
- Ghavam, S.; Vahdati, M.; Wilson, I.G.; Styring, P. Sustainable ammonia production processes. Front. Energy Res. 2021, 9, 580808. [Google Scholar] [CrossRef]
- Saab, R.; Polychronopoulou, K.; Zheng, L.; Kumar, S.; Schiffer, A. Synthesis and performance evaluation of hydrocracking catalysts: A review. J. Ind. Eng. Chem. 2020, 89, 83–103. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Al-Murisi, M.; Shehata, N.; Alami, A.H.; Radwan, A.; Wilbeforce, T.; Chae, K.; Sayed, E.T. Recent progress in Green Ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals. Energy Convers. Manag. 2023, 277, 116594. [Google Scholar] [CrossRef]
- Öztürk, A.; Yurtcan, A.B. Prospects for Hydrogen and Fuel Cells. In Prospects of Hydrogen Fueled Power Generation, 1st ed.; River Publishers: Maidstone, UK, 2024; p. 81. [Google Scholar]
- Das, D.; Chakraborty, I.; Bohre, A.K.; Kumar, P.; Agarwala, R. Sustainable integration of green hydrogen in renewable energy systems for residential and EV applications. Int. J. Energy Res. 2024, 2024, 8258624. [Google Scholar] [CrossRef]
- Grube, T.; Kraus, S.; Cerniauskas, S.; Linßen, J.; Stolten, D. The market introduction of hydrogen focusing on bus refueling. Int. J. Hydrogen Energy 2024, 56, 175–187. [Google Scholar] [CrossRef]
- Halder, P.; Babaie, M.; Salek, F.; Haque, N.; Savage, R.; Stevanovic, S.; Bodisco, T.A.; Zare, A. Advancements in hydrogen production, storage, distribution and refuelling for a sustainable transport sector: Hydrogen fuel cell vehicles. Int. J. Hydrogen Energy 2024, 52, 973–1004. [Google Scholar] [CrossRef]
- Fakhreddine, O.; Gharbia, Y.; Derakhshandeh, J.F.; Amer, A.M. Challenges and Solutions of Hydrogen Fuel Cells in Transportation Systems: A Review and Prospects. World Electr. Veh. J. 2023, 14, 156. [Google Scholar] [CrossRef]
- Calandra, D.; Wang, T.; Cane, M.; Alfiero, S. Management of hydrogen mobility challenges: A systematic literature review. J. Clean. Prod. 2023, 410, 137305. [Google Scholar] [CrossRef]
- Boretti, A. The perspective of hydrogen direct reduction of iron. J. Clean. Prod. 2023, 429, 139585. [Google Scholar] [CrossRef]
- Özgün, Ö.; Dirba, I.; Gutfleisch, O.; Ma, Y.; Raabe, D. Green Ironmaking at Higher H2 Pressure: Reduction Kinetics and Microstructure Formation During Hydrogen-Based Direct Reduction of Hematite Pellets. J. Sustain. Metall. 2024, 10, 1127–1140. [Google Scholar] [CrossRef]
- Chang, Y.; Wan, F.; Yao, X.; Wang, J.; Han, Y.; Li, H. Influence of hydrogen production on the CO2 emissions reduction of hydrogen metallurgy transformation in iron and steel industry. Energy Rep. 2023, 9, 3057–3071. [Google Scholar] [CrossRef]
- Kumar, N.R.S.; Suryan, A.; Manju, M.S. Hydrogen As An Alternative Aviation Fuel—A Review. In Ammonia and Hydrogen for Green Energy Transition; Springer: Berlin/Heidelberg, Germany, 2024; pp. 265–286. [Google Scholar]
- Proesmans, P.; Vos, R. Hydrogen, medium-range airplane design optimization for minimal global warming impact. CEAS Aeronaut. J. 2024, 15, 781–806. [Google Scholar] [CrossRef]
- Massaro, M.C.; Pramotton, S.; Marocco, P.; Monteverde, A.H.A.; Santarelli, M. Optimal design of a hydrogen-powered fuel cell system for aircraft applications. Energy Convers. Manag. 2024, 306, 118266. [Google Scholar] [CrossRef]
- Zou, C.; Li, J.; Zhang, X.; Jin, X.; Xiong, B.; Yu, H.; Liu, X.; Wang, S.; Li, Y.; Zhang, L.; et al. Industrial status, technological progress, challenges, and prospects of hydrogen energy. Nat. Gas Ind. B 2022, 9, 427–447. [Google Scholar] [CrossRef]
- Zier, M.; Stenzel, P.; Kotzur, L.; Stolten, D. A review of decarbonization options for the glass industry. Energy Convers. Manag. X 2020, 10, 100083. [Google Scholar]
- Zhang, J.; Li, J. Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future. Energies 2024, 17, 4148. [Google Scholar] [CrossRef]
- Oyewole, O.L.; Nwulu, N.I.; Okampo, E.J. Optimal design of hydrogen-based storage with a hybrid renewable energy system considering economic and environmental uncertainties. Energy Convers. Manag. 2024, 300, 117991. [Google Scholar] [CrossRef]
- AlZohbi, G.; Almoaikel, A.; AlShuhail, L. An overview on the technologies used to store hydrogen. Energy Rep. 2023, 9, 28–34. [Google Scholar] [CrossRef]
- Rasul, M.G.; Hazrat, M.A.; Sattar, M.A.; Jahirul, M.I.; Shearer, M.J. The future of hydrogen: Challenges on production, storage and applications. Energy Convers. Manag. 2022, 272, 116326. [Google Scholar] [CrossRef]
- Kumari, E.; Choudhary, B. Hydrogen is the future of energy security and sustainability: A review. J. Mech. Constr. Eng. JMCE 2023, 3, 1–13. [Google Scholar] [CrossRef]
- Jürgens, L.; Schäfers, H. Green hydrogen in the chemical industry—Key factors and cost competitiveness. In Proceedings of the 20th International Conference on the European Energy Market (EEM), Istanbul, Turkey, 10–12 June 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Marouani, I.; Guesmi, T.; Alshammari, B.M.; Alqunun, K.; Alzamil, A.; Alturki, M.; Hadj Abdallah, H. Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future. Processes 2023, 11, 2685. [Google Scholar] [CrossRef]
- Amin, M.; Shah, H.H.; Fareed, A.G.; Khan, W.U.; Chung, E.; Zia, A.; Farooqi, Z.U.R.; Lee, C. Hydrogen production through renewable and non-renewable energy processes and their impact on climate change. Int. J. Hydrogen Energy 2022, 47, 33112–33134. [Google Scholar] [CrossRef]
- Revinova, S.; Lazanyuk, I.; Gabrielyan, B.; Shahinyan, T.; Hakobyan, Y. Hydrogen in Energy Transition: The Problem of Economic Efficiency, Environmental Safety, and Technological Readiness of Transportation and Storage. Resources 2024, 13, 92. [Google Scholar] [CrossRef]
- Marc, A. Hydrogen For Mobility a Zero Carbon Transportation System. Glob. J. Eng. Res. 2024, 24, 1–9. [Google Scholar] [CrossRef]
- Cheekatamarla, P. Hydrogen and the Global Energy Transition—Path to Sustainability and Adoption across All Economic Sectors. Energies 2024, 17, 807. [Google Scholar] [CrossRef]
- Kim, D.M.; Lee, H.J. Estimation of flammable region through experimental observation of liquid hydrogen cloud leaked under various atmospheric conditions. Int. J. Hydrogen Energy 2024, 61, 1199–1211. [Google Scholar] [CrossRef]
- Kleszcz, S.; Assadi, M. Hydrogen safety considerations: Mitigating risks and securing operations in enclosed spaces. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2023; Volume 1294, p. 012057. [Google Scholar]
- Lin, Y.; Ling, X.; Yu, A.; Liu, Y.; Liu, D.; Wang, Y.; Wu, Q.; Lu, Y. Modeling of Hydrogen Dispersion, Jet Fires and Explosions Caused by Hydrogen Pipeline Leakage. Fire 2024, 7, 8. [Google Scholar] [CrossRef]
- Calabrese, M.; Portarapillo, M.; Di Nardo, A.; Venezia, V.; Turco, M.; Luciani, G.; Di Benedetto, A. Hydrogen Safety Challenges: A Comprehensive Review on Production, Storage, Transport, Utilization, and CFD-Based Consequence and Risk Assessment. Energies 2024, 17, 1350. [Google Scholar] [CrossRef]
- Guy, P.; Julien, C. Risks Associated with the Use of Hydrogen as an Energy Carrier or Source. J. Energy Power Technol. 2022, 4, 1–34. [Google Scholar] [CrossRef]
- Girão, A.F.; Completo, A. Eye-readable sensors for intuitive hydrogen monitoring. Int. J. Hydrogen Energy 2024, 65, 593–605. [Google Scholar] [CrossRef]
- Oh, D.-W.; Kang, K.; Lee, J.-H. Minimum Detection Concentration of Hydrogen in Air Depending on Substrate Type and Design of the 3ω Sensor. Sensors 2023, 23, 9009. [Google Scholar] [CrossRef]
- Bi, S.; Tan, D.; Fang, C.; Peng, Y.; Zeng, L.; Wang, Y.; Sun, N.; Zhang, Z.; Sun, H.; Jiang, C.; et al. High-performance palladium nanotube network as fast, high-resolution, and wide range hydrogen detector in atmosphere. Sens. Actuators B Chem. 2024, 404, 135307. [Google Scholar] [CrossRef]
- Zhang, F.; Yin, W.; Zhang, J. High Sensitivity Hydrogen Sensor via the Coupling of Tamm Plasmon Polaritons and Defect Mode. Chemosensors 2024, 12, 67. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, R.; Duan, Z.; Fan, L.; Zhang, S.; Cheng, L.; Xu, X. A hydrogen sensor based on an acoustic topological material with a coiled structure. J. Appl. Phys. 2024, 136, 024503. [Google Scholar] [CrossRef]
- Rao, R.R.A.; Srividya, R.; Sameera, V.S.; Bethi, B.; Prasad, K.S.N.V.; Srinivas, T.; Ganesh, B.; Praveen, B.V.S. Safety first: Managing hydrogen in production, handling, and applications. In Sustainable Hydrogen Energy: Production, Storage & Transportation; Arya, R., Tiwari, A., Verros, G., Malik, P., Davim, J., Eds.; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2024; pp. 275–304. [Google Scholar] [CrossRef]
- Lamari, F.; Weinberger, B.; Langlois, P.; Fruchart, D. Instances of Safety-Related Advances in Hydrogen as Regards Its Gaseous Transport and Buffer Storage and Its Solid-State Storage. Hydrogen 2024, 5, 387–402. [Google Scholar] [CrossRef]
- Kumar, S.; Nanan-Surujbally, A.; Sharma, D.P.; Pathak, D. Hydrogen safety/standards (national and international document standards on hydrogen energy and fuel cell). In Towards Hydrogen Infrastructure; Elsevier: Amsterdam, The Netherlands, 2024; pp. 315–346. [Google Scholar]
- Adithya, S.; Meda, U.S. A Review on the Development of Iot Enabled Hydrogen Sensing Systems. ECS Trans. 2022, 107, 4767–4789. [Google Scholar] [CrossRef]
- Yang, Z.; Hao, D.; Wang, F.; Qin, C.; Chen, X.; Tian, Y. Quantitative analysis of hydrogen leakage and diffusion processes based on real-time concentration measurement at different spatial positions in a customized chamber. Int. J. Hydrogen Energy 2024, 66, 231–241. [Google Scholar] [CrossRef]
- Ramaiyan, K.; Tsui, L.K.; Brosha, E.L.; Kreller, C.; Stetter, J.; Russ, T.; Du, W.; Peaslee, D.; Hunter, G.; Xu, J.; et al. Recent Developments in Sensor Technologies for Enabling the Hydrogen Economy. ECS Sens. Plus 2023, 2, 045601. [Google Scholar] [CrossRef]
- Hossain, M.A. Computational study of methane-air combustion using the species transport model. In AIAA SCITECH 2022 Forum; American Institute of Aeronautics and Astronautics, Inc.: Orlando, FL, USA, 2022; p. 1102. [Google Scholar] [CrossRef]
- Li, T.; Geschwindner, C.; Dreizler, A.; Böhm, B. Particle-resolved optical diagnostics of solid fuel combustion for clean power generation: A review. Meas. Sci. Technol. 2023, 34, 122001. [Google Scholar] [CrossRef]
- Kohse-Höinghaus, K. Combustion, chemistry, and carbon neutrality. Chem. Rev. 2023, 123, 5139–5219. [Google Scholar] [CrossRef]
- Rego, F.C.; Morgan, P.; Fernandes, P.; Hoffman, C. From Fuels to Smoke: Chemical Processes. In Fire Science: From Chemistry to Landscape Management; Springer: Cham, Switzerland, 2021; pp. 19–37. [Google Scholar] [CrossRef]
- Qiu, L.; Hua, Y.; Qian, Y.; Cheng, X. On the Radiative, Diffusion and Chemical Effects of Soot Formation in a Nonsmoking Laminar Ethylene Diffusion Flame. Combust. Sci. Technol. 2023, 195, 778–792. [Google Scholar] [CrossRef]
- Likhanov, V.A.; Anfilatov, A.A. Formation and burning of soot particles in a diesel cylinder when working on ethanol-fuel emulsion. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 862, p. 032044. [Google Scholar] [CrossRef]
- Stepanova, O.A.; Kasengaliev, M.K.; Umyrzhan, T.N.; Khazhidinova, A.R. Research combustion efficiency of unprojected coal. Bull. Shakarim Univ. Tech. Sci. 2024, 2, 364–370. [Google Scholar] [CrossRef]
- Gao, Y. The Impacts of Combustion Reaction on the Environment. Highlights Sci. Eng. Technol. 2024, 83, 51–55. [Google Scholar] [CrossRef]
- Cabascango, V.Q.; Bazhin, V.Y. Combustion optimization in gas burners of reverberatory furnaces during the melting of nickel alloys. J. Phys. Conf. Ser. 2021, 1728, 012019. [Google Scholar] [CrossRef]
- Tutunea, D.; Dumitru, I.; Stănciuc-Oţăt, O.V. Overview of the use of oxygen sensors in automotive applications. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2024; Volume 1303, p. 012014. [Google Scholar] [CrossRef]
- Inumaru, J.; Hasegawa, T.; Shirai, H.; Nishida, H.; Noda, N.; Ohyama, S. Fossil fuels combustion and environmental issues. In Advances in Power Boilers; Elsevier: Amsterdam, The Netherlands, 2021; Volume 2, pp. 1–56. [Google Scholar] [CrossRef]
- Guo, X.; Xiao, Y.; Zhao, L.; Shi, L.; Xue, X.; Li, X.; Liu, Z. Combustion behaviors of various coals and chars: From covalent bonds’ and radicals’ perspective. Fuel 2021, 297, 120749. [Google Scholar] [CrossRef]
- Karamitros, D.; Ibraimova, A.; Konstantinidis, K.; Koltsakis, G.; Choi, S.; Cho, J. Methane Conversion in Stoichiometric Natural Gas Engine Exhaust. SAE Tech. Pap. 2024. [Google Scholar] [CrossRef]
- Yaşar, M.F.; Ergen, G.; Cesur, I. Investigating the Use of Methane as an Alternative Fuel in Diesel Engines: A Numerical Approach. Int. J. Automot. Sci. Technol. 2023, 7, 349–359. [Google Scholar] [CrossRef]
- Cabrales, S.; Valencia, C.; Ramírez, C.; Ramírez, A.; Herrera, J.; Cadena, A. Stochastic cost-benefit analysis to assess new infrastructure to improve the reliability of the natural gas supply. Energy 2022, 246, 123421. [Google Scholar] [CrossRef]
- Sahoo, M.; Dey, S. A comparative study on the characterisation and combustion behaviour of high ash coals from two different geographical origins. Fuel 2021, 286, 119397. [Google Scholar] [CrossRef]
- Zheng, J.; Du, M.; Xiao, Z.; Zhu, X. Simulation of Soot Formation in Pulverized Coal Combustion under O2/N2 and O2/CO2 Atmospheres. ACS Omega 2024, 9, 22051–22064. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, J.; Luo, J. Life cycle cost analysis of power generation from underground coal gasification with carbon capture and storage (CCS) to measure the economic feasibility. Resour. Policy 2024, 92, 104996. [Google Scholar] [CrossRef]
- Wang, F.; Li, P.; Wang, G.; Mi, J. Moderate and intense low-oxygen dilution (MILD) combustion of liquid fuels: A review. Energy Fuels 2022, 36, 8026–8053. [Google Scholar] [CrossRef]
- Ismael, M.A.; Rosli, M.A.; Aziz, A.R.A.; Mohammed, S.E.; Opatola, R.A.; El-Adawy, M. Gas to liquid (GTL) role in diesel engine: Fuel characteristics and emission: A review. C Eng. Technol. 2023, 18, 100706. [Google Scholar] [CrossRef]
- Agrawal, A.K. Fuels: Sources, Conversion, and Utilization, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; pp. 414–450. [Google Scholar] [CrossRef]
- Akomolafe, O.O.; Olorunsogo, T.; Anyanwu, E.C.; Osasona, F.; Ogugua, J.O.; Daraojimba, O.H. Air quality and public health: A review of urban pollution sources and mitigation measures. Eng. Sci. Technol. J. 2024, 5, 259–271. [Google Scholar] [CrossRef]
- Rosato, D.A.; Thornton, M.; Sosa, J.; Bachman, C.; Godwin, G.B.; Ahmed, K.A. Stabilized detonation for hypersonic propulsion. Proc. Natl. Acad. Sci. USA 2021, 118, e2102244118. [Google Scholar] [CrossRef] [PubMed]
- Thakur, P. Advanced Mine Ventilation, 1st ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 79–92. [Google Scholar] [CrossRef]
- Turns, S.R. An Introduction to Combustion: Concepts and Applications, 3rd ed.; McGraw-Hill Companies: New York, NY, USA, 2012; pp. 2–17. [Google Scholar]
- Kiviluoma, J.; Helistö, N.; Putkonen, N.; Smith, C.; Koivisto, M.; Korpås, M.; Flynn, D.; Söder, L.; Taibi, E.; Guminski, A. Flexibility From the Electrification of Energy: How Heating, Transport, and Industries Can Support a 100% Sustainable Energy System. IEEE Power Energy Mag. 2022, 20, 55–65. [Google Scholar] [CrossRef]
- Habib, M.A.; Abdulrahman, G.A.; Alquaity, A.B.; Qasem, N.A. Hydrogen combustion, production, and applications: A review. Alex. Eng. J. 2024, 100, 182–207. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, S.W.; Seo, J.K. An Experimental Study on the Diffusion Characteristics of Hydrogen by Ventilation System. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Singapore, 9–14 June 2024. [Google Scholar] [CrossRef]
- Yuan, M.; Hu, Q.; Yang, H.; Wang, X.; Wang, J.; Qian, X.; Li, P.; Pang, L.; Gao, Y. Evolution of Explosion-Venting Flow Field and Hazard Induced by a Vented Hydrogen Explosion in a 45 m3 Container. Energy Fuels 2024, 38, 16924–16935. [Google Scholar] [CrossRef]
- Rogalev, A.; Rogalev, N.; Kharlamova, D.; Shcherbatov, I.; Karev, T. Development of Solutions for Increasing the Combustion Efficiency of Hydrogen in Water Vapor in a Hydrogen-Oxygen Steam Superheater. Inventions 2023, 8, 6. [Google Scholar] [CrossRef]
- Guo, L.; Ba, Q.; Zhang, S. Research on Characteristics of Hydrogen Dynamic Leakage and Combustion at High Pressure. Int. J. Energy Res. 2023, 2023, 6644038. [Google Scholar] [CrossRef]
- Paulitsch, N.; Giuliani, F.; Hofer, A.; Hofer, J.; Andracher, L. An innovative Concept for the complete and low-NOx Combustion of non-carbon Eco-fuels using a thermo-acoustically-driven, hydrogen-powered Pilot Stage. In Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. Volume 2: Coal, Biomass, Hydrogen, and Alternative Fuels; Controls, Diagnostics, and Instrumentation; Steam Turbine, Rotterdam, Netherlands, 13–17 June 2022; American Society of Mechanical Engineers: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Meulemans, M.; Durocher, A.; Bourque, G.; Bergthorson, J.M. NO measurements in high temperature hydrogen flames: The crucial role of the hydrogen oxidation chemistry for accurate NO predictions. Combust. Flame 2024, 261, 113279. [Google Scholar] [CrossRef]
- Schwarz, S.; Daurer, G.; Gaber, C.; Demuth, M.; Hochenauer, C. Experimental investigation of hydrogen enriched natural gas combustion with a focus on nitrogen oxide formation on a semi-industrial scale. Int. J. Hydrogen Energy 2024, 63, 173–183. [Google Scholar] [CrossRef]
- Rueda-Vázquez, J.M.; Serrano, J.; Pinzi, S.; Jiménez-Espadafor, F.J.; Dorado, M.P. A Review of the Use of Hydrogen in Compression Ignition Engines with Dual-Fuel Technology and Techniques for Reducing NOx Emissions. Sustainability 2024, 16, 3462. [Google Scholar] [CrossRef]
- Özyalcin, C.; Sterlepper, S.; Roiser, S.; Eichlseder, H.; Pischinger, S. Exhaust gas aftertreatment to minimize NOX emissions from hydrogen-fueled internal combustion engines. Appl. Energy 2024, 353, 122045. [Google Scholar] [CrossRef]
- Payri, R.; Novella, R.; Nasser, K.I.; Bori-Fabra, O. Spray Characterization of Direct Hydrogen Injection as a Green Fuel with Lower Emissions. Energies 2024, 17, 2405. [Google Scholar] [CrossRef]
- Marzouk, O.A. Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°C. Energies 2024, 17, 646. [Google Scholar] [CrossRef]
- Chen, P.S.-L.; Fan, H.; Enshaei, H.; Zhang, W.; Shi, W.; Abdussamie, N.; Miwa, T.; Qu, Z.; Yang, Z. Opportunities and Challenges of Hydrogen Ports: An Empirical Study in Australia and Japan. Hydrogen 2024, 5, 436–458. [Google Scholar] [CrossRef]
- Zabanova, Y. The EU in the Global Hydrogen Race: Bringing Together Climate Action, Energy Security, and Industrial Policy. In The Geopolitics of Hydrogen: Volume 1: European Strategies in Global Perspective; Quitzow, R., Zabanova, Y., Eds.; Springer: Cham, Switzerland, 2024; Volume 1, pp. 15–47. [Google Scholar] [CrossRef]
- Jaradat, M.; Almashaileh, S.; Bendea, C.; Juaidi, A.; Bendea, G.; Bungau, T. Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments. Energies 2024, 17, 3992. [Google Scholar] [CrossRef]
- Baukal, C.E., Jr. The John Zink Hamworthy Combustion Handbook: Volume 3–Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 16–51. [Google Scholar]
- Baukal, C.E., Jr. Industrial Burners Handbook, 1st ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Sengupta, A.; Mukherjee, R.; Mishra, V.K. Performance and emission characteristic of burners: A review. In Proceedings of the AIP Conference Proceedings, Jamshedpur, India, 29–30 August 2020; Volume 2341, p. 030027. [Google Scholar] [CrossRef]
- Ighodalo, O.A. Current trend in furnace technology in the melting industries. Res. J. Appl. Sci. Eng. Technol. 2011, 3, 540–545. [Google Scholar]
- Lezcano-Benítez, J.C.; Correa-Restrepo, D.; Amell-Arrieta, A.; Cadavid-Sierra, F. Numerical simulation of high-pressure burner with partially premixed flame. CTF Cienc. Tecnol. Y Futuro 2011, 4, 89–104. [Google Scholar] [CrossRef]
- Brumbaugh, J.E. Audel HVAC Fundamentals, Volume 2: Heating System Components, Gas and Oil Burners, and Automatic Controls, 4th ed.; John Wiley & Sons: Indianapolis, IN, USA, 2004; pp. 32–35. [Google Scholar]
- Ugboya, A.P. The design and development of a dual fuel burner. J. Multidiscip. Eng. Sci. Technol. 2019, 6, 9586–9591. [Google Scholar]
- Basu, P.; Kefa, C.; Jestin, L. Boilers and Burners: Design and Theory, 1st ed.; Springer Science & Business Media: New York, NY, USA, 2000; pp. 80–126. [Google Scholar]
- Deheri, C.; Acharya, S.K.; Thatoi, D.N.; Mohanty, A.P. A review on performance of biogas and hydrogen on diesel engine in dual fuel mode. Fuel 2020, 260, 116337. [Google Scholar] [CrossRef]
- Gupta, R.C. Fuels, Furnaces and Refractories, 1st ed.; PHI Learning Pvt. Ltd.: Delhi, India, 2016. [Google Scholar]
- Yusupbekov, N.R.; Kholmanov, U.U. System of automatic control of the technological process of combustion in gas combustion furnaces. In Proceedings of the AIP Conference Proceedings, Tashkent, Uzbekistan, 26–27 May 2023; Volume 3119. [Google Scholar] [CrossRef]
- Sotelo, D.; Favela-Contreras, A.; Lozoya, C.; Beltran-Carbajal, F.; Dieck-Assad, G.; Sotelo, C. Dynamic simulation of a crude oil distillation plant using Aspen-Hysys. Int. J. Simul. Model. 2019, 18, 229–241. [Google Scholar] [CrossRef]
- Ibrahim, S.; Jagannath, A.; Raj, A. Aromatics oxidation in the furnace of sulfur recovery units: Model development and optimization. J. Nat. Gas Sci. Eng. 2020, 83, 103581. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Huang, Z.; Wang, L.; Chen, W. Impact of hydrogen direct injection on engine combustion and emissions in a GDI engine. Adv. Mech. Eng. 2023, 15, 16878132231189117. [Google Scholar] [CrossRef]
- Toumasatos, Z.; Zhu, H.; Durbin, T.D.; Johnson, K.C.; Cao, S.; Karavalakis, G. Real-world particulate, GHG, and gaseous toxic emissions from heavy-duty diesel and natural gas vehicles. Atmos. Environ. 2024, 327, 120512. [Google Scholar] [CrossRef]
- Cai, Z.; Yan, F.; Shao, Y.; Liao, J.; Wu, Y.; Zheng, S.; Li, Y.X.; Hu, J.; Wang, Z.; Li, Z. Lumped model for evaluating dynamic filtration and pressure drop behaviour in diesel particulate filters. Fuel 2024, 365, 131311. [Google Scholar] [CrossRef]
- Elkaee, S.; Phule, A.D.; Yang, J.H. Advancements in Selective Catalytic Reduction (SCR) Technologies for NOx Reduction: A Comprehensive Review of Reducing Agents. Process Saf. Environ. Prot. 2024, 184, 854–880. [Google Scholar] [CrossRef]
- Wu, J.; Liu, G.; Zhang, X.; Zhang, C.; Li, C.; Gong, C.; Zhou, X.; Gong, Q.; Cheng, S.; Jiang, J. Design and Verification of Key Components of a New Selective Catalytic Reduction System in a Petrochemical Captive Power Plant. Processes 2023, 11, 2837. [Google Scholar] [CrossRef]
- Commane, R.; Schiferl, L.D. Climate mitigation policies for cities must consider air quality impacts. Chem 2022, 8, 910–923. [Google Scholar] [CrossRef]
- Tibrewal, K.; Tanaka, K.; Boucher, O.; Ciais, P. Levers of climate pledges influencing the Paris Agreement target. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023; p. EGU23-6566. [Google Scholar] [CrossRef]
- Sikora, A. European Green Deal–legal and financial challenges of the climate change. Era Forum 2021, 21, 681–697. [Google Scholar] [CrossRef]
- Bistline, J.; Blanford, G.; Brown, M.; Burtraw, D.; Domeshek, M.; Farbes, J.; Fawcett, A.; Hamilton, A.; Jenkins, J.; Zhao, A.; et al. Emissions and energy impacts of the Inflation Reduction Act. Science 2023, 380, 1324–1327. [Google Scholar] [CrossRef]
- Hennessy, E.M.; Singh, M.; Saltzer, S.; Azevedo, I.M. Pathways to zero emissions in California’s heavy-duty transportation sector. Environ. Res. Infrastruct. Sustain. 2024, 4, 035001. [Google Scholar] [CrossRef]
- Ghassabian, A.; Titus, A.R.; Conderino, S.; Azan, A.; Weinberger, R.; Thorpe, L.E. Beyond traffic jam alleviation: Evaluating the health and health equity impacts of New York City’s congestion pricing plan. J. Epidemiol. Community Health 2024, 78, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, R.C.; Fecht, D.; Davies, B.; Laverty, A.A. Health effects of low emission and congestion charging zones: A systematic review. Lancet Public Health 2023, 8, e559–e574. [Google Scholar] [CrossRef]
- Arshad, K.; Hussain, N.; Ashraf, M.H.; Saleem, M.Z. Air pollution and climate change as grand challenges to sustainability. Sci. Total Environ. 2024, 928, 172370. [Google Scholar]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Pleshivtseva, Y.; Derevyanov, M.; Pimenov, A.; Rapoport, A. Comprehensive review of low carbon hydrogen projects towards the decarbonization pathway. Int. J. Hydrogen Energy 2023, 48, 3703–3724. [Google Scholar] [CrossRef]
- Franzmann, D.; Heinrichs, H.; Lippkau, F.; Addanki, T.; Winkler, C.; Buchenberg, P.; Hamacher, T.; Blesl, M.; Linβen, J.; Stolten, D. Green hydrogen cost-potentials for global trade. Int. J. Hydrogen Energy 2023, 48, 33062–33076. [Google Scholar] [CrossRef]
- Grand View Research. Global Hydrogen Generation Market Size Report, 2030; Grand View Research: San Francisco, CA, USA, 2022; Available online: https://www.grandviewresearch.com/industry-analysis/hydrogengeneration-market (accessed on 8 November 2023).
- International Energy Agency. Global Hydrogen Review 2021; IEA Publications: Paris, France, 2021; pp. 103–140. [Google Scholar]
- Qusay, H.; Sameer, A.; Aws, S.; Marek, J.; Hayder, S.; Haitham, M.; Emad, A. Saudi Arabia energy transition: Assessing the future of green hydrogen in climate change mitigation. Int. J. Hydrogen Energy 2024, 55, 124–140. [Google Scholar] [CrossRef]
- Manaf, Z.; El Manaa, B.; Paul, O.; Ikram, B.; Wesam, B.; Ibrahim, M. Analytical model for a techno-economic assessment of green hydrogen production in photovoltaic power station case study Salalah city-Oman. Int. J. Hydrogen Energy 2022, 47, 14171–14179. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Zhang, Z.; Lin, K.; Zheng, M. Current Development Status, Policy Support and Promotion Path of China’s Green Hydrogen Industries under the Target of Carbon Emission Peaking and Carbon Neutrality. Sustainability 2023, 15, 10118. [Google Scholar] [CrossRef]
- Shi, J.; Xia, R.; Zheng, X.; Yao, R.; Zheng, J. A Review on Hydrogen Production from Ocean Renewable Energy and the Application Status. In Proceedings of the ASME 2023 Pressure Vessels & Piping Conference, Atlanta, GA, USA, 17 July 2023. [Google Scholar] [CrossRef]
- Sidhartha, H.; Sanjay, K.; Prashant, R. A systematic and critical review of green hydrogen economy in India. Int. J. Hydrogen Energy 2023, 48, 31425–31442. [Google Scholar] [CrossRef]
- Willian, N.; Eduarda, S.; Vitor, L. Green hydrogen-based pathways and alternatives: Towards the renewable energy transition in South America’s regions–Part B. Int. J. Hydrogen Energy 2022, 7, 1–15. [Google Scholar] [CrossRef]
- Taís, G.; Fernando, S.; José, R.; Julio, S. Unlocking Brazil’s green hydrogen potential: Overcoming barriers and formulating strategies to this promising sector. Int. J. Hydrogen Energy 2024, 49, 553–570. [Google Scholar] [CrossRef]
- de Castro, F.A.; de Oliveira, M.L.M.; de Lima, L.C.; Serra, D.S. Green Hydrogen: Perspectives and Challenges in Using the Natural Gas Network in Ceará/Brazil. J. Geosci. Environ. Prot. 2024, 12, 70–94. [Google Scholar] [CrossRef]
- Costa, T.; Monteiro, A.; Vicente, J.; Vasconcelos, A.; Malveira, M. Survey of Technical-Economic Perspectives and Challenges for the Green Hydrogen Market in Brazil. In Proceedings of the 2023 15th IEEE International Conference on Industry Applications (INDUSCON), São Bernardo do Campo, Brazil, 22–24 November 2023. [Google Scholar] [CrossRef]
- Gischler, C.; Daza, E.; Galeano, P.; Ramirez, M.; Gonzalez, J.; Cubillos, F.; Hartmann, N.; Pradelli, V.; Márquez, J.; Gutiérrez, J.; et al. Unlocking Green and Just Hydrogen in Latin America and the Caribbean; IDB: Washington, DC, USA, 2023; pp. 8–30. [Google Scholar] [CrossRef]
- Gökçek, M. Hydrogen generation from small-scale wind-powered electrolysis system in different power matching modes. Int. J. Hydrogen Energy 2010, 35, 10050–10059. [Google Scholar] [CrossRef]
- Greiner, C.J.; Korpås, M.A.; Holen, A.T. Norwegian case study on the production of hydrogen from wind power. Int. J. Hydrogen Energy 2007, 32, 1500–1507. [Google Scholar] [CrossRef]
- Jørgensen, C.; Ropenus, S. Production price of hydrogen from grid connected electrolysis in a power market with high wind penetration. Int. J. Hydrogen Energy 2008, 33, 5335–5344. [Google Scholar] [CrossRef]
- Hassan, Q.; Abdulateef, A.M.; Hafedh, S.A.; Al-samari, A.; Abdulateef, J.; Sameen, A.Z.; Salman, H.M.; Al-Jiboory, A.K.; Wieteska, S.; Jaszczur, M. Renewable energy-to-green hydrogen: A review of main resources routes, processes and evaluation. Int. J. Hydrogen Energy 2023, 48, 17383–17408. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Hydrogen production, storage, utilization and environmental impacts: A review. Environ. Chem. Lett. 2022, 20, 153–188. [Google Scholar] [CrossRef]
- Małachowska, A.; Łukasik, N.; Mioduska, J.; Gębicki, J. Hydrogen storage in geological formations—The potential of salt caverns. Energies 2022, 15, 5038. [Google Scholar] [CrossRef]
- Miao, B.; Giordano, L.; Chan, S.H. Long-distance renewable hydrogen transmission via cables and pipelines. Int. J. Hydrogen Energy 2021, 46, 18699–18718. [Google Scholar] [CrossRef]
- Nemmour, A.; Inayat, A.; Janajreh, I.; Ghenai, C. Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review. Int. J. Hydrogen Energy 2023, 48, 29011–29033. [Google Scholar] [CrossRef]
- Kupecki, J.; Niemczyk, A.; Jagielski, S.; Kluczowski, R.; Kosiorek, M.; Machaj, K. Boosting solid oxide electrolyzer performance by fine tuning the microstructure of electrodes–Preliminary study. Int. J. Hydrogen Energy 2023, 48, 26436–26445. [Google Scholar] [CrossRef]
- Pei, M.; Petäjäniemi, M.; Regnell, A.; Wijk, O. Toward a Fossil Free Future with HYBRIT: Development of Iron and Steelmaking Technology in Sweden and Finland. Metals 2020, 10, 972. [Google Scholar] [CrossRef]
- Zhou, T.; Xu, H.; Gosens, J.; Jotzo, F. China’s Hydrogen Plans: Near-Term Policy Challenges & Australia-China Links in Decarbonization. Policy Brief; The Australian National University: Camberra, Australia, 2022. [Google Scholar]
- Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P.H. Insights into renewable hydrogen energy: Recent advances and prospects. Mater. Sci. Energy Technol. 2020, 3, 319–327. [Google Scholar] [CrossRef]
- AlHumaidan, F.S.; Halabi, M.A.; Rana, M.S.; Vinoba, M. Blue hydrogen: Current status and future technologies. Energy Convers. Manag. 2023, 283, 116840. [Google Scholar] [CrossRef]
- Paulot, F.; Paynter, D.; Naik, V.; Malyshev, S.; Menzel, R.; Horowitz, L.W. Global modeling of hydrogen using GFDL-AM4.1: Sensitivity of soil removal and radiative forcing. Int. J. Hydrogen Energy 2021, 46, 13446–13460. [Google Scholar] [CrossRef]
- Warwick, N.; Griffiths, P.; Keeble, J.; Archibald, A.; Pyle, J. Atmospheric Implications of Increased Hydrogen Use; Crown: London, UK, 2022. [Google Scholar]
- Arrigoni, A.; Diaz, B.L. Hydrogen Emissions from a Hydrogen Economy and Their Potential Global Warming Impact; Technical Report; Publication Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; Watanabe, M.; et al. The Earth’s energy budget, climate feedbacks, and climate sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; pp. 673–1054. [Google Scholar] [CrossRef]
- Jayachandran, M.; Gatla, R.K.; Flah, A.; Milyani, A.H.; Milyani, H.M.; Blazek, V.; Prokop, L.; Kraiem, H. Challenges and opportunities in green hydrogen adoption for decarbonizing hard-to-abate industries: A comprehensive review. IEEE Access 2024, 12, 23363–23388. [Google Scholar] [CrossRef]
- Islam, M.H.; Burheim, O.S.; Pollet, B.G. Sonochemical and sonoelectro-chemical production of hydrogen. Ultrason. Sonochem. 2019, 51, 533–555. [Google Scholar] [CrossRef]
Main Focus of the Study | Research Gaps | Key Findings | Ref. |
---|---|---|---|
Focuses on the comparative analysis of heavy trucks powered by different types of fuels (diesel, LNG, electric, hydrogen, and methanol) in relation to costs, efficiency, and environmental impact. | Lack of detailed analysis on hydrogen’s energy properties, infrastructure and production challenges, and specific environmental impact compared to other fuels. |
| Hu et al. [24] |
| |||
| |||
| |||
| |||
The crucial role of green hydrogen in reducing CO2 emissions, highlighting its production from renewable sources and the economic and technological challenges associated with its implementation. It promotes the idea of a hydrogen-based economy as a pathway to achieving climate neutrality. | Need for in-depth analysis of hydrogen’s industrial applications, logistical and infrastructure challenges for large-scale production, comparison of production routes (gray, blue, turquoise), and detailed safety considerations. |
| Dorel et al. [25] |
| |||
| |||
Focuses on describing the thermodynamic and transport properties of hydrogen mixed with other gases, which is fundamental for geological storage and safe and efficient transportation. | Practical insights on hydrogen in industrial combustion, plus analysis of its economic, social, and safety impacts for large-scale use, are needed to understand its role in the energy transition. |
| Hassanpouryouzband et al. [26] |
| |||
| |||
Hydrogen as a promising alternative fuel for diesel engines in the automotive sector, highlighting its potential to increase engine efficiency and reduce emissions, thus contributing to more sustainable transport solutions. | Limited focus on hydrogen uses in automotive diesel engines, and lacks broader industrial applications, economic impacts, infrastructure challenges, and environmental benefits beyond transportation. |
| Cernat et al. [27] |
| |||
| |||
Explores the feasibility and benefits of hydrogen co-combustion in dual fuel compression ignition engines, emphasizing improvements in performance and emissions. | Lacks comprehensive economic assessment of hydrogen vs. traditional fuels, detailed exploration of long-term environmental impacts, and discussion on infrastructure and integration with other renewables beyond dual-fuel applications. |
| Tutak et al. [28] |
| |||
|
Basis of Classification | Types of Burners |
---|---|
Combustion process | Atmospheric burners Power burners High-speed burners Stage combustion burners |
Orientation | Horizontal Vertical With flame directed upwards With flame directed downwards |
Applicability | For industrial heating For industrial drying For industrial metal casting Incineration For heating boilers For heating ovens For heating furnaces |
Capacity | Small scale Medium scale Large scale |
Design | Single-stage burners Multiple-stage burners Swirl burners Premixed burners Surface combustion burners Flame retention burners |
Control system | Manual Automatic Modulating |
Emissions | Low NOx burners Ultralow NOx burners Burners with ultralow emissions Burners with high emissions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalcanti, M.H.C.; Pappalardo, J.R.; Barbosa, L.T.; Brasileiro, P.P.F.; Roque, B.A.C.; da Rocha e Silva, N.M.P.; Silva, M.F.d.; Converti, A.; Barbosa, C.M.B.d.M.; Sarubbo, L.A. Hydrogen in Burners: Economic and Environmental Implications. Processes 2024, 12, 2434. https://doi.org/10.3390/pr12112434
Cavalcanti MHC, Pappalardo JR, Barbosa LT, Brasileiro PPF, Roque BAC, da Rocha e Silva NMP, Silva MFd, Converti A, Barbosa CMBdM, Sarubbo LA. Hydrogen in Burners: Economic and Environmental Implications. Processes. 2024; 12(11):2434. https://doi.org/10.3390/pr12112434
Chicago/Turabian StyleCavalcanti, Matheus Henrique Castanha, Juliano Rodrigues Pappalardo, Luciano Tavares Barbosa, Pedro Pinto Ferreira Brasileiro, Bruno Augusto Cabral Roque, Nathália Maria Padilha da Rocha e Silva, Milena Fernandes da Silva, Attilio Converti, Celmy Maria Bezerra de Menezes Barbosa, and Leonie Asfora Sarubbo. 2024. "Hydrogen in Burners: Economic and Environmental Implications" Processes 12, no. 11: 2434. https://doi.org/10.3390/pr12112434
APA StyleCavalcanti, M. H. C., Pappalardo, J. R., Barbosa, L. T., Brasileiro, P. P. F., Roque, B. A. C., da Rocha e Silva, N. M. P., Silva, M. F. d., Converti, A., Barbosa, C. M. B. d. M., & Sarubbo, L. A. (2024). Hydrogen in Burners: Economic and Environmental Implications. Processes, 12(11), 2434. https://doi.org/10.3390/pr12112434