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Abstract: The accurate prediction of pressure and saturation distribution during the simulation of CO2

injection into saline aquifers is essential for the successful implementation of carbon sequestration
projects. Traditional numerical simulations, while reliable, are computationally expensive. Machine
learning (ML) has emerged as a promising tool to accelerate these simulations; however, challenges
remain in effectively capturing complex reservoir dynamics, particularly in regions experiencing
rapid changes in pressure and saturation. This article addresses the challenges by introducing a fully
automated, data-driven ML classifier that distinguishes between regions of fast and slow variation
within the reservoir. Firstly, we demonstrate the variability in pressure across different reservoir
grid blocks using a simple brine injection and production scenario, highlighting the limitations
of conventional acceleration approaches. Subsequently, the proposed methodology leverages ML
proxies to rapidly and accurately predict the behavior of slow-varying regions in CO2 injection
simulations, while traditional iterative methods are reserved for fast-varying areas. The results
show that this hybrid approach significantly reduces the computational load without compromising
on accuracy. This provides a more efficient and scalable solution for modeling CO2 storage in
saline aquifers.

Keywords: carbon capture and storage (CCS); CO2 injection; saline aquifers; reservoir simulation;
proxy models; machine learning (ML); grid blocks; classification; acceleration

1. Introduction

In recent years, the urgent need to mitigate anthropogenic carbon dioxide (CO2)
emissions into the atmosphere has reached unprecedented levels [1]. Since 1990, CO2
emissions have surged by nearly 60% [2], primarily due to modern society’s over-reliance
on fossil fuels for energy production [3], coupled with the adverse effects of deforestation
and unsustainable agricultural practices [3,4]. To avert the detrimental impacts of global
warming and climate change, such as rising sea levels, extreme weather events, water
scarcity, and biodiversity loss [5], it is imperative to redirect the rising trajectory of CO2
emissions towards the targets outlined in the 2015 Paris Agreement [6–8], whose primary
goal is to limit global temperature increase to below 1.5 ◦C above pre-industrial levels.

Carbon capture and storage (CCS) technology holds significant potential for tackling
the pressing challenge of reducing atmospheric CO2 concentrations [9,10]. With advance-
ments in CCS, this technology could contribute to a 15% reduction in overall emissions by
2050 [11], representing a significant step toward mitigating climate change. One specific
approach within CCS entails the permanent and long-term geological storage of captured
CO2 into suitable deep saline aquifers [9,10]. These underground porous formations offer
high reservoir porosity and permeability [12], along with a large storage capacity ranging
from 400 to 10,000 gigatons of CO2 [12–14]. Consequently, they are regarded as one of
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the most promising storage sites for large-scale CO2 sequestration when compared to
alternative types of reservoirs such as depleted oil and gas reservoirs or coal seams [12].

The process of CO2 storage into brine-bearing geological formations typically involves
injecting CO2 in a supercritical state at depths exceeding 800 m [9,15]. Supercritical CO2
has a significantly higher density than gaseous CO2, yet much lower density and viscosity
than the resident brine it displaces [15,16]. Within saline aquifers, four distinct CO2
trapping mechanisms are encountered: trapping in structural and stratigraphic traps
(structural trapping), trapping in the pore space at irreducible gas saturation (residual gas
trapping), partial dissolution of CO2 in the aqueous phase (solubility trapping), and mineral
trapping [9,12]. Over time, these mechanisms exhibit a gradual increase in effectiveness, as
depicted in Figure 1.
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Determining the CO2 injection policy that maximizes stored quantities while adhering
to geomechanical and market constraints requires careful consideration of several key
factors. Among these, pressure distribution and CO2 saturation stand out as the two
most critical elements of the optimization process. Monitoring the pressure distribution is
essential for safe and efficient storage, as excessive pressures can cause caprock fractures,
the reactivation of faults, and the opening of natural or artificial conduits and channels
within the reservoir [17–22]. Such events elevate the risk of induced seismicity and pose
serious hazards [23–25].

The occurrence of seismic activity, even at minor levels, can attract public scrutiny
of CCS operations due to its perceived risks. In severe cases, induced earthquakes could
cause casualties, damage infrastructure, and compromise caprock integrity, ultimately
undermining the long-term goals of secure CO2 containment. Additionally, induced
seismicity raises the risk of unintended migration of CO2 or formation of brine beyond the
intended storage zone, potentially contaminating shallow freshwater aquifers [17–22,26]
critical for drinking water and agriculture in nearby regions.

Given these risks, effective CO2 injection policies must integrate mechanisms to moni-
tor and control pressure within safe limits, minimizing potential hazards and protecting
essential water resources. Alongside pressure management, monitoring CO2 saturation
is equally crucial for understanding the distribution and behavior of injected CO2 within
the reservoir. By analyzing saturation levels, operators gain insights into the containment
stability and mobility of CO2 over time. Accurate mapping of saturation levels enables
engineers to predict CO2 movement and make informed adjustments to injection strategies,
ensuring both secure containment and optimal storage efficiency.
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Numerical reservoir simulation [27] is a mathematical tool that can be used to predict
the spatial and temporal distribution of the pressure and CO2 plume. By numerically
solving the differential and algebraic equations derived from the integration of the mass,
momentum, and energy conservation principles, together with thermodynamic equilibrium,
reservoir simulators can accurately describe multiphase fluid flow within deep saline
aquifers. However, these computations are CPU-time intensive, especially in the case of
compositional reservoir simulations, which rely on intricate Equations of State (EoS) to
determine the phase distribution and phase properties in each cell [28–34]. On top of that,
optimizing the injection policy requires many dozens, if not hundreds, of simulations to
be executed in order to study various schedules over long time periods, thus yielding an
enormous CPU workload. Hence, utilizing methods that achieve comparable accuracy to
reservoir simulators while requiring less computational effort than full-order simulations
is highly desirable.

Proxy models, also referred to as surrogate models or metamodels [35], serve as an
efficient alternative to the time-intense high-fidelity model (reservoir simulator), effectively
bridging the gap between speed and accuracy. With their unique capability to rapidly
generate predictions that closely mimic real reservoir performance within acceptable error
bounds, these models prove invaluable to reservoir engineers. Simply speaking, proxy
models can be thought of as functions of the form y = f(x), where x stands for the model
input (such as well location, initial pressure and saturation, and well operation schedule)
and y is the reservoir response over space and time. The advantage is that, unlike traditional
differential-equation-based methods that require iterative approaches, a proxy model, once
built, can be directly evaluated for any possible reservoir configuration. This allows it to
rapidly provide its response, y. According to Mohaghegh [36], proxy models fall into two
main categories: traditional and smart (Figure 2).
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The traditional proxy models can be further subdivided into data-fit, multi-fidelity,
and reduced-order ones. Data-fit models are non-physics-based, meaning that they do
not explicitly account for the underlying physics principles. Instead, their predictions are
based on statistical methods such as the interpolation or regression of the generated results
from a few runs of the reservoir simulator. On the other hand, multi-fidelity models are
physics-based, lower-fidelity models that are attained through coarser discretization [37]
or the simplification of physics assumptions [38]. Finally, reduced-order models are also
physics-based models that lower the dimensionality of the high-fidelity model by neglect-
ing irrelevant parameters while holding the characteristics and physics over a defined
space [39].

As far as smart proxy models are concerned, these models are trained using machine
learning (ML) and pattern recognition techniques to generate high-fidelity models. The
development of smart proxy models adopts either a well-based or a grid-based approach.
Well-based smart proxy models are employed when the objective is to generate predictions
for parameters associated with well locations, such as oil, gas, and water production
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over time. Conversely, grid-based models are utilized when pressure and saturation
predictions at a grid level are desired. Moreover, coupled smart proxy models offer a
comprehensive solution by predicting results at both well-based and grid-based levels [40].
Unlike traditional proxy models, they predict the pressure and phase saturation distribution
at each discretization block of the model and for each time step without sacrificing the
physics, dimensionality, or temporal/spatial resolution of the original reservoir system [41].

Developing proxy models for dynamic systems of any arbitrary complexity is no
easy task. The primary challenge lies in the significant variation in response variables,
such as pressure and saturation, across space and time. This variability makes it difficult
to accurately capture the system’s behavior using a proxy model. For instance, when a
well is initially shut in or activated, the pressure change around the wellbore is rapid and
substantial. Additionally, generating a suitable dataset to train the model while ensuring
sufficient generalization capabilities is another hurdle. However, for systems that exhibit
relatively slow variations over time, as is the case with flow in porous media, specific
properties of the response variable variation can be exploited to enhance the generation
process, simplify the model, and improve its automation and performance.

In this paper, we present a novel computational methodology that employs ML
modeling to accelerate numerical simulations of CO2 injection into deep underground
saline aquifers while maintaining accuracy. Prior studies [42–45] have investigated the
application of ML to accelerate such simulations; however, these efforts typically apply
ML models uniformly across all grid blocks within the reservoir model. This approach can
compromise accuracy, particularly in regions where pressure and CO2 saturation exhibit
rapid changes.

Our approach addresses this limitation by introducing a unique categorization of
grid cells into fast-varying and slow-varying ones—a strategy not previously explored in
the literature. This classification enables a targeted computational focus: in slow-varying
regions, where changes in pressure and saturation are gradual, ML-based predictions are
employed to speed up simulations. Conversely, traditional iterative methods are reserved
for fast-varying regions to ensure high accuracy in areas experiencing dynamic changes.

Specifically, the proposed method employs ML models to predict the future state
(pressure and saturation) of each grid block in a direct way, using information held by
the neighboring cells at the previous timesteps. Strictly speaking, the state of any cell in a
future timestep depends on that of all grid cells in the previous timestep. However, the
spatial dependence becomes weaker as the distance between the cells increases. In other
words, the grid blocks surrounding a focal cell directly are expected to contribute mostly
to its future state whereas grid blocks lying far away are almost uncorrelated. Therefore,
the vast majority of the cells in an aquifer reservoir model are expected to depend on its
neighboring grid blocks only. This is not true for cells that vary significantly over time as is
the case with those close to a well (an injector or a producer), hence the traditional iterative
solution method also needs to be employed for such cases.

The methodology developed to address the above-mentioned problem employs a
two-stage approach. In the first stage, a fully automated ML and IQR-based classifier is
used to classify the grid blocks in the simulator model into fast-varying and slow-varying
ones (Figure 3). By automating this process, we significantly reduce operator dependency
and ensure consistent classification across different simulation scenarios. Fast-varying grid
blocks represent areas where flow in the porous medium demonstrates high spatial and
temporal variance (i.e., typically close to the injectors where pressure disturbance is caused),
while slow-varying grid blocks represent areas where the CO2 and formation water flow
evolve very slowly; thus, their state is mostly related to the state of their neighboring cells
solely. This latter category includes cells lying far from the wells, as well as most grid
blocks during the post-injection phase, often lasting several decades, during which CO2
plume migration is solely capillarity and gravity driven. In the second stage, ML methods
are employed to predict the state of the slow-varying grid blocks based on the previous
states of the neighboring grid blocks by taking advantage of the slowly varying property.



Processes 2024, 12, 2447 5 of 24

Consequently, the problem, which typically involves millions of discretized equations, will
be drastically downscaled as the state of the fast-varying cells will only need to be predicted
by means of conventional iterative methods, thus offering a huge acceleration factor.

 

Figure  3. Distribution of  fast‐varying gridblocks  located near wells  and  slow‐

varying gridblocks lying far from wells. 

 

Figure 3. Distribution of fast-varying grid blocks located near wells and slow-varying grid blocks
lying far from wells.

Clearly, rather than splitting the proxy modeling problem into two parts, one might
consider building a huge, highly accurate proxy model. This model could incorporate any
required input to accurately predict the future reservoir state. However, this approach
is impractical for two main reasons. First, it is extremely challenging to ensure that the
training dataset used to develop the proxy model is adequate to meet such high standards
of generalization and predictive accuracy. Second, since speed is a major concern, a complex
model would increase the CPU time required for generating predictions, even if the model
had an explicit form.

This paper is laid out as follows: Section 2 formally establishes the need for classifying
grid blocks into fast-varying and slow-varying ones when using a proxy model that predicts
the pressure or phase saturation distributions based on the neighboring cells’ state in
the previous timesteps. Section 3 describes the proposed methodology, while Section 4
discusses the results obtained. Conclusions are presented in Section 5.

2. Proof of Concept

Accurately identifying the slow-varying and fast-varying areas within a reservoir
model is essential when using machine learning (ML) proxy models that describe the
state of a given grid block by its state and those of the neighboring blocks at the previous
time steps. This section highlights the importance of grid block classification through a
straightforward brine injection and production scenario in a simple, homogeneous saline
aquifer, where pressure is the sole variable exhibiting spatial and temporal variation.
Saturation is not considered at this stage as no CO2 is injected to keep the demonstrative
example simple. To maintain simplicity, pressure predictions from the ML proxy model
were limited to grid blocks with six adjacent faces (interior cells), as illustrated in Figure 4,
thus ignoring neighboring cells sharing a side or a point with the center block, or even
cells lying even farther away than them. Boundary grid blocks with three, four, or five
neighbor face tier cells, such as those lying on the top and bottom layer of the reservoir,
were excluded from the analysis.
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MATLAB Reservoir Simulation Toolbox (MRST) [47,48]. Injection and production 
schemes were designed with bottomhole pressure (BHP) as a well-level operational con-
straint, imposing maximum permissible BHP values of 5800 psi (400 bar) for injector I1 
and 3626 psi (250 bar) and 4351 psi (300 bar) for producers P1, P2, and P3, respectively. 
The simulation spanned a 9-year period, divided into 110 one-month time steps. Initially, 
only producer P1 operated for 14 months, followed by the activation of injector I1 and 

Figure 4. Focal cell that is in face contact with six adjacent cells in a three-dimensional Cartesian grid.

The aquifer system is modeled by a simple three-dimensional 25 × 25 × 4 Cartesian
grid with 100 m × 100 m × 75 m grid blocks, each representing a volume of 0.75 million m3.
A constant porosity of 0.2 and permeability of 50 mD are assigned to all grid blocks. To
simulate brine thermodynamics, a black-oil simulator is used [46]. One injector (I1) and
three producers (P1, P2, P3) are positioned at the top left, bottom left, top right, and
bottom right corners, respectively, as shown in Figure 5, and they vertically penetrate all
reservoir layers.
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brine injection and production.

To train the proxy model, a spatial–temporal dataset was generated using the MATLAB
Reservoir Simulation Toolbox (MRST) [47,48]. Injection and production schemes were
designed with bottomhole pressure (BHP) as a well-level operational constraint, imposing
maximum permissible BHP values of 5800 psi (400 bar) for injector I1 and 3626 psi (250 bar)
and 4351 psi (300 bar) for producers P1, P2, and P3, respectively. The simulation spanned a
9-year period, divided into 110 one-month time steps. Initially, only producer P1 operated
for 14 months, followed by the activation of injector I1 and producer P2 from month 14
to 50. Producer P3 commenced operation from month 50 until the end of the simulation.
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Table 1 and Figure 6 illustrate the operational phases of the injection and production wells
according to the operating scheme, and the corresponding average reservoir pressure over
time. Table 1 provides specific details of well activation periods and BHP constraints, while
Figure 6 graphically represents the three distinct phases characterized by pressure valleys
and peaks.

Table 1. Operational timeframes and BHP constraints for injector and production wells.

Wells Start Month End Month BHP Constraint

P1 0 14 3626 psi
P2 14 50 4351 psi
P3 50 110 4351 psi
I1 14 50 5800 psi
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Figure 6. Average reservoir pressure over time.

It is important to note that the difficulty in our approach lies in the proper selection of
the input–output information imposed on the proxy model, rather than its exact form, type,
or operation principle. To this end, a conventional three-layer feedforward artificial neural
network (ANN), illustrated in Figure 7, serves as the ML proxy model in this study. Given
the need for rapid proxy model predictions to accelerate the overall simulation, a simple
ANN architecture was adopted that rapidly produces predictions.

In detail, the input layer takes in seven features, which include the pressure values
from the target cell and its six neighboring cells at the previous time step, allowing for
a comprehensive capture of the spatiotemporal dynamics within the aquifer. This fea-
ture space is then passed to the intermediate hidden layer, which consists of 10 neurons.
Each neuron applies a linear transformation followed by a non-linear activation function
(sigmoid) to map the input data into a higher-dimensional space. Mathematically, this is
represented as follows:

h = s(W1xi + b1) (1)

where xi ∈ R7×1 represents the input pressure data for interior cell i, W1 ∈ R10×7 represents
the connection weights between the input and hidden layer, and b1 ∈ R10×1 is the bias
term for the hidden layer. The activation function s(·) is the non-linear sigmoid function
defined as follows:

s(z) =
1

1 + exp(−z)
(2)

After processing through the hidden layer, the output is passed through a linear
transformation at the output layer. The output layer contains a single neuron that predicts
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the pressure of target cell i for the subsequent time step using a linear activation function.
The final output yi ∈ R1×1 is given by the following:

yi = W2·s(W1xi + b1) + b2 (3)

where W2 ∈ R1×10 is the weight matrix connecting the hidden layer to the output neuron,
and b2 ∈ R1×1 is the bias for the output layer. Unlike the hidden layer, which uses the
sigmoid function, the output layer applies a linear activation function without further
transformation.

Processes 2024, 12, x FOR PEER REVIEW 8 of 24 
 

 

𝑠𝑠(𝑧𝑧) = 1
1+𝑒𝑒𝑒𝑒𝑒𝑒(−𝑧𝑧)

  (2) 

After processing through the hidden layer, the output is passed through a linear 
transformation at the output layer. The output layer contains a single neuron that predicts 
the pressure of target cell 𝑖𝑖 for the subsequent time step using a linear activation function. 
The final output 𝑦𝑦𝑖𝑖 ∈ ℝ1×1 is given by the following: 

𝑦𝑦𝑖𝑖 = 𝐖𝐖𝟐𝟐 ∙ 𝑠𝑠(𝐖𝐖𝟏𝟏𝐱𝐱𝐢𝐢 + 𝐛𝐛𝟏𝟏) + 𝐛𝐛𝟐𝟐  (3) 

where 𝐖𝐖𝟐𝟐 ∈ ℝ1×10 is the weight matrix connecting the hidden layer to the output neuron, 
and 𝐛𝐛𝟐𝟐 ∈ ℝ1×1 is the bias for the output layer. Unlike the hidden layer, which uses the 
sigmoid function, the output layer applies a linear activation function without further 
transformation. 

 
Figure 7. Feedforward ANN structure. 

Once the simulation was run, the {(𝐱𝐱𝑖𝑖 , 𝐲𝐲𝑖𝑖)} dataset was generated by collecting the 
pressure values predicted at each cell and timestep, and by combining them according to 
the cells’ connectivity. Note that the need to accelerate the overall simulation implies that 
a simple ANN architecture needs to be chosen to ensure rapid proxy model generation. 
More complex models, while potentially offering improved accuracy, would incur higher 
computational costs, counteracting the desired efficiency gains. While more complex 
models might potentially enhance accuracy, the trade-off in terms of computational cost 
is deemed undesired given the priority of computational efficiency. 

Figure 7. Feedforward ANN structure.

Once the simulation was run, the {(xi, yi)} dataset was generated by collecting the
pressure values predicted at each cell and timestep, and by combining them according to
the cells’ connectivity. Note that the need to accelerate the overall simulation implies that
a simple ANN architecture needs to be chosen to ensure rapid proxy model generation.
More complex models, while potentially offering improved accuracy, would incur higher
computational costs, counteracting the desired efficiency gains. While more complex
models might potentially enhance accuracy, the trade-off in terms of computational cost is
deemed undesired given the priority of computational efficiency.

The grid-based pressure histograms derived from the spatial–temporal dataset, shown
in Figure 8, demonstrate the distribution of all training input and training output pressure
values. Clearly, a highly non-uniform distribution of bars is identified, directly reflecting
the distinct influence of injection and production wells on each interior grid block. Factors
such as cells’ proximity to wells and operational history contribute to this grid-level
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pressure variability. The complex dynamics of the reservoir system are reflected in this
pressure distribution. The two histograms are largely similar; however, slight differences
arise because the Inputs histogram represents pressure values across the entire reservoir,
capturing the full spatial variation. In contrast, the second histogram, which focuses on
interior cells only, naturally shows a slightly narrower range of pressure variability due to
its more limited spatial scope.
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Figure 8. Grid-based pressure histogram of the spatial–temporal dataset.

To evaluate the trained ML proxy model’s ability to predict the interior grid blocks’
state, three key metrics were used: maximum absolute error, mean absolute error, and
standard deviation of the predicted pressure error over all grid blocks, per specific timestep.
The maximum absolute error identifies the largest individual prediction error, highlighting
specific timeframes and reservoir areas where the model struggles most. The mean absolute
error quantifies overall prediction accuracy by averaging absolute errors. Lastly, standard
deviation measures error dispersion around the mean, indicating model performance
consistency across grid blocks.

Figure 9 illustrates the temporal and spatial evolution of the evaluation metrics,
revealing distinct patterns. Maximum absolute errors peak at time steps 15 and 51, reaching
736 and 323 psi, respectively. These coincide with the deactivation of production well P1
(time step 14) and injector I1 and producer P2 (time step 50), suggesting the model struggles
to capture pressure dynamics in areas strongly affected by well-switching events. Figure 10
corroborates this, showing concentrated high errors in the interior cells near deactivated
and activated wells, contrasting with lower errors in distant regions. Notably, both mean
absolute error and standard deviation significantly decrease following well-switching
events. This indicates an improved model performance in the ensuing low-variance flow
regime as the system stabilizes post-disturbance.

This simplistic application demonstrates how the complexity of learning pressure
variation patterns can differ across reservoir regions. The analysis shows that most ar-
eas experience limited spatial and temporal pressure changes, making them suitable for
accurate modeling using simple ML proxies. However, certain localized regions exhibit
significantly more complex pressure dynamics, requiring conventional iterative methods
to accurately capture their state at specific time steps. Identifying which areas can be
effectively modeled with simple approaches and which demand more advanced techniques
is essential for optimizing computational efficiency and improving predictive accuracy in
reservoir simulations.
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Figure 9. Max absolute error, mean absolute error, and standard deviation in ML proxy
model training.
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Figure 10. Spatial distribution of absolute error in interior grid blocks at time steps 15 and 51.

3. Methodology

This section introduces a novel, fully automated, machine learning (ML)-driven
methodology for classifying grid blocks within a reservoir model as either fast-varying
or slow-varying, with the primary objective of accelerating numerical simulations of CO2
geological storage in deep saline aquifers.

As discussed in Section 2, prior attempts at using ML models to simulate grid-scale
pressure dynamics during brine injection and production—under conditions of time-
varying bottomhole pressure control and sudden well shut-ins and openings—revealed
limitations in proxy models. Specifically, these models struggled to accurately estimate
pressure in regions and time steps where fluctuations were highly unpredictable, partic-
ularly in areas affected by well-switching events. To address this challenge, a two-step
approach is proposed, as outlined in Figure 11.
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In the first stage, an ML proxy model is trained to predict changes in pressure and
saturation for each grid block within the reservoir. The model is trained on data generated
by a numerical simulator, which include the pressure and saturation values of each grid
block at successive time steps, along with the state of neighboring grid blocks. The simula-
tion runs that generate these datasets must be designed with a high degree of generality to
encompass the full spectrum of expected variability in grid block behavior. Additionally,
the datasets should strictly adhere to subsurface regulatory frameworks and align with
industry-standard best practices.

Once the ML proxy is trained, the next step involves collecting the proxy’s prediction
errors by comparing its predictions to the actual simulator results for each grid block and
time step. An interquartile range (IQR)-based statistical outlier detection method is then
applied to classify grid blocks based on the ML proxy’s error variance across all time steps.
To ensure precise classification, the IQR-based detector is applied separately to the pressure
and saturation predictions’ errors.

The IQR is determined as the difference between the third quartile (Q3) and the first
quartile (Q1) of the error distribution. Grid blocks with errors exceeding a predefined lower
threshold (Q1 − k × IQR) or upper threshold (Q3 + k × IQR) are classified as fast-varying.
The hyperparameter k controls the sensitivity of the classification and plays a critical role
in balancing computational efficiency and prediction accuracy.

A smaller value of k results in narrower thresholds, meaning that even slight variations
from the median error will cause more grid blocks to be classified as fast-varying. While this
approach may capture subtle variations, it can also increase the computational load because
more grid blocks are forwarded to the conventional iterative non-linear solver. On the
other hand, a larger k would result in wider thresholds, classifying fewer grid blocks as fast-
varying and reducing computational costs but potentially missing important variations.
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In practice, optimizing k is an iterative process aimed at achieving the best trade-off
between accurate classification and computational cost. A well-optimized k ensures that
computational resources are focused where they are most needed—on the fast-varying
regions—while the slow-varying regions are efficiently handled by the proxy model, reduc-
ing overall computational burden.

In the second stage, once the grid blocks have been classified, those identified as
outliers in either pressure or saturation predictions are excluded from further proxy model
analysis and are passed to the conventional iterative non-linear solver. The remaining
slow-varying grid blocks are used for further state prediction by the ML proxy model. At
this point, the ML proxy is retrained using only the slow-varying grid blocks, which form
a subset of the original dataset used for initial training. This division leads to significant
computational time savings, as the simpler and faster ML proxy models handle the major-
ity of grid blocks—those exhibiting low spatial and temporal variance—while the more
computationally expensive non-linear solvers are reserved exclusively for the fast-varying
grid blocks.

4. Results and Discussion

A three-dimensional Cartesian, physics-based reservoir model was developed using
the MATLAB Reservoir Simulation Toolbox (MRST) [47,48] to simulate CO2 injection and
brine production in a deep saline aquifer. This model integrates characteristics observed in
major commercial projects worldwide and serves as the basis for generating synthetic data
for testing the classification methodology described in Section 3.

The modeled aquifer spans 2100 m in both length and width, with a maximum
observed thickness of 250 m. The grid resolution is 210 m in both the x and y directions,
and 25 m in the z direction, resulting in a 10 × 10 × 10 grid configuration. The reservoir
displays Gaussian-distributed heterogeneity, with a median porosity of 25% and a median
permeability of 245 mD, reflecting the range of values typical in large-scale commercial
projects. Additionally, vertical permeability is set at 20% of the horizontal permeability in
the X and Y directions.

The top of the reservoir is positioned at a depth of 1925 m, determined from the
weighted average of large-scale commercial cases. The reservoir is assumed to be horizon-
tally layered and isothermal, with a maximum temperature of 100 ◦C. In the absence of
publicly available salinity data, a salinity of 150,000 ppm was adopted, based on values
from the L. Tuscaloosa Sandstone Formation in the SECARB Mississippi Pilot project [49].
This results in a top reservoir pressure of 206.1 bars. Relative permeabilities were calculated
using a connate water saturation of 0.27 and a residual CO2 saturation of 0.20, utilizing
built-in MRST functions that were uniquely implemented across all simulations.

To further accelerate the simulation, the black oil modeling technique described in [41]
was employed, producing the solution gas–oil ratio (altered to CO2–brine ratio) and oil
formation volume factor (altered to brine formation volume factor) as functions of pressure
for the aquifer with the specified characteristics (T = 100 ◦C and salinity of 150,000 ppm).
Two injection wells were placed on one side of the reservoir (ij: 1,1 and 1,10), while two
producers were positioned on the opposite side (ij: 10,1 and 10,10). Each injection well
was rate-controlled, injecting 0.85 million tons per year into the bottom two layers (9 and
10), corresponding to a perforated length of 50 m. The injectors were perforated at the
reservoir’s deepest layer only to ensure sufficient dissolution of the injected CO2 into the
brine, as the former is driven to the top due to buoyancy. A bottom hole pressure constraint
of 500 bars was imposed, consistent with the maximum allowable pressure buildup. The
production wells were configured to extract brine, reducing pressure and allowing for
more efficient CO2 injection and storage. They were bottom-hole pressure controlled at
400 bars each, and they were perforated in the bottom two layers (50 m long), to minimize
CO2 production.

The simulation covered a 5-year injection period, representing the initial phase of
model validation and aligning with typical 25-year storage operation permit durations.
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This was followed by a 5-year post-closure monitoring phase, bringing the total simulation
time to 10 years. During the injection phase, the simulation utilized monthly time steps
to generate results, while during the post-closure phase, quarterly intervals were used.
Figure 12 demonstrates the CO2 plume evolution at the end of the injection period (5 years)
and at the end of the monitoring period (10 years) by illustrating CO2 saturation (i.e., grid
block volume fraction occupied) for all grid blocks.
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While the proposed methodology is applicable to both interior and boundary cells,
the focus is placed on interior grid blocks, in order to assess the method’s effectiveness in
the most challenging areas of the aquifer model. Unlike boundary cells, which typically
experience flow from three to five directions, interior grid blocks can encounter fluid move-
ment from all six faces. This increase in complexity in flow patterns and interactions with
adjacent cells makes accurate prediction of CO2 migration and brine displacement in these
areas more challenging for machine learning (ML) proxies. By successfully demonstrating
the efficacy of the methodology in these areas, it can be confidently asserted that it is also
effective for application in boundary grid blocks.

The ML model used in the CO2 injection study within the aquifer is a three-layer
feedforward neural network (ANN), following the same architecture described in detail in
Section 2. The training dataset was generated through simulation, ensuring consistency and
the absence of noise. As a result, there was no requirement to apply specialized algorithms
designed for handling noise or outliers, as such complexities did not pertain to this dataset.

The ANN model takes as inputs the rates of change in pressure and saturation (dP/dt
and dS/dt) for both the focal cell and its six neighboring cells, which share one common face
with the focal cell, over the time intervals from ti−2 to ti−1 and from ti−1 to ti. Additionally,
it incorporates the pressure and saturation values at ti for both the focal cell and these
adjacent grid blocks. The model’s output then predicts the rate of change in pressure and
saturation (dP/dt and dS/dt) for the focal cell between ti and ti+1, enabling the prediction
of future reservoir behavior.

The use of derivatives, rather than only raw pressure and saturation values at indi-
vidual time steps, is driven by the need to maintain time step invariance. Specifically, in
reservoir simulation, time steps are not fixed, as they are often dynamically adjusted by the
non-linear solver depending on convergence behavior. For instance, the solver may require
more iterations to converge at a given moment, leading to variable time steps. By relying
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on dP/dt and dS/dt, the proxy model remains independent of the specific time intervals,
allowing it to seamlessly integrate with the solver’s adaptive time-stepping algorithm. This
approach preserves the model’s robustness and flexibility, ensuring that predictions are not
tied to a rigid time grid but rather reflect the intrinsic dynamics of the reservoir.

To further enhance the model’s temporal sensitivity, inputs from three consecutive
time steps—ti−2, ti−1, and ti—were selected. This choice is grounded in the Taylor series
expansion, a mathematical tool used to approximate complex, time-varying functions. For
example, it can represent pressure and saturation changes within a reservoir grid block as a
sum of their derivatives at a given point in time. The Taylor series can be expressed in its
general form as follows:

f (x) =
∞

∑
n=0

f (n)(a)
n!

(x − a)n (4)

where f (n)(a) is the nth derivative of the function evaluated at point a, n! is the factorial of
n, and (x − a)n represents the difference between x and a.

In the context of time-dependent processes like pressure or saturation in a grid block,
a represents the point in time at which the function is evaluated, which can be any relevant
time step (e.g., ti), and x represents the time point where the function is being approximated,
such as a future or neighboring time step (e.g., ti+1). Thus, the term (x − a) translates to
(ti+1 − ti), representing the time difference between two selected time steps.

Each derivative in the Taylor series has a specific physical meaning related to the
function’s evolution in time. The first derivative, f ′(ti), describes the rate of change (or
slope) of the function at time ti, indicating how fast the function is changing at that point.
The second derivative, f ′′ (ti), represents the curvature or the rate at which the rate of
change itself is evolving, capturing non-linear behavior or acceleration of changes over
time. Higher-order derivatives account for increasingly finer details of the function’s time
evolution, thus accounting for more complex, higher-order effects like the changes in
curvature and other non-linearly evolving processes.

By including not only the current rate of change but also previous time steps, the model
implicitly accounts for higher-order temporal effects that influence reservoir behavior. This
is especially significant in reservoir simulations, where fluid flow dynamics depend on
both the present state and the preceding changes. By incorporating data from multiple time
steps, the model enhances its accuracy by accounting for these cumulative effects, which
may otherwise be overlooked when only a single time step is considered.

Figure 13 provides a detailed breakdown of the errors in the model’s predictions of
pressure change (dP/dt) and saturation change (dS/dt) over time. The comparison is made
between two proxy models: one in which all time instances of the interior cells are used
for model training, and another where only the slow-varying grid blocks—representing
71% of all these time instances (31,093 out of 44,032)—are used. These 44,032 instances
correspond to the values across the 512 interior grid blocks evaluated at 86 time steps (from
time step 4 to 89), for which the ML model provides predictions. The slow-varying cells
were identified by the automated ML and the IQR-based classifier outlined in Section 3. As
part of this IQR-based selection process, a hyperparameter value of k = 0.5 was applied for
pressure and k = 20 for saturation.

Excluding 71% of the cells from the solver and handling them directly with the
ANN means the solver only needs to process 29% of the problem’s full dimension. This
reduction effectively brings down the time complexity to between 0.292 and 0.293 of that
required for the complete problem, translating to approximately 8% to 2.4% of the original
computational cost. Consequently, this method can decrease the computational burden by a
factor of 1/0.08 = 12 to 1/0.024 = 42, allowing users to conduct significantly more scenarios,
evaluate them efficiently, and ultimately select the optimal one for their purposes.

Errors are evaluated using three primary metrics: maximum absolute error, mean
absolute error, and standard deviation of the absolute error. These metrics are visualized for
both the full set of interior cells (in red) and the slow-varying cell runs (in blue). Note that
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including boundary cells with 3, 4, or 5 neighbors would result in more cells being classified
as slow-varying due to their proximity to the non-flow boundaries of the reservoir.

Processes 2024, 12, x FOR PEER REVIEW 15 of 24 
 

 

Figure 13 provides a detailed breakdown of the errors in the model’s predictions of 
pressure change (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 ) and saturation change (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 ) over time. The comparison is 
made between two proxy models: one in which all time instances of the interior cells are 
used for model training, and another where only the slow-varying grid blocks—repre-
senting 71% of all these time instances (31,093 out of 44,032)—are used. These 44,032 in-
stances correspond to the values across the 512 interior grid blocks evaluated at 86 time 
steps (from time step 4 to 89), for which the ML model provides predictions. The slow-
varying cells were identified by the automated ML and the IQR-based classifier outlined 
in Section 3. As part of this IQR-based selection process, a hyperparameter value of 𝑘𝑘 =
0.5 was applied for pressure and 𝑘𝑘 = 20 for saturation. 

Excluding 71% of the cells from the solver and handling them directly with the ANN 
means the solver only needs to process 29% of the problem’s full dimension. This reduc-
tion effectively brings down the time complexity to between 0.292 and 0.293 of that re-
quired for the complete problem, translating to approximately 8% to 2.4% of the original 
computational cost. Consequently, this method can decrease the computational burden 
by a factor of 1/0.08 = 12 to 1/0.024 = 42, allowing users to conduct significantly more sce-
narios, evaluate them efficiently, and ultimately select the optimal one for their purposes. 

Errors are evaluated using three primary metrics: maximum absolute error, mean 
absolute error, and standard deviation of the absolute error. These metrics are visualized 
for both the full set of interior cells (in red) and the slow-varying cell runs (in blue). Note that 
including boundary cells with 3, 4, or 5 neighbors would result in more cells being classified 
as slow-varying due to their proximity to the non-flow boundaries of the reservoir. 

 
Figure 13. Comparison of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 error metrics when the ML model is trained using all 
interior cells vs. slow-varying cells across time steps. 

In the case where the model is trained on all interior cells, the maximum absolute 
error for 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 remains relatively low throughout most time steps, with one notable ex-
ception: a sharp spike observed at time step 62. This peak suggests that the model strug-
gles to accurately predict pressure changes during this period due to rapid fluctuations in 
pressure rates between time steps 61 and 62, deviating from the general trend. The com-
plexity arises during the transition from the injection phase to the monitoring phase, 
marked by the shutdown of both injection and production wells. This operational change 
results in significant pressure rate fluctuations, which the model finds challenging to 

0 20 40 60 80 100

Time step

0

500

M
ax

 A
bs

 E
rr

dP/dt Error (psi/month)

All Interior Cells

Slow-varying Cells

0 20 40 60 80 100

Time step

0

50

100

M
ea

n 
A

bs
 E

rr

All Interior Cells

Slow-varying Cells

0 20 40 60 80 100

Time step

0

50

100

St
d 

D
ev

 A
bs

 E
rr

All Interior Cells

Slow-varying Cells

0 20 40 60 80 100

Time step

0

0.5

1

M
ax

 A
bs

 E
rr

10
-3 dS/dt Error (fraction/month)

All Interior Cells

Slow-varying Cells

0 20 40 60 80 100

Time step

0

1

2

M
ea

n 
A

bs
 E

rr

10
-5

All Interior Cells

Slow-varying Cells

0 20 40 60 80 100

Time step

0

1

St
d 

D
ev

 A
bs

 E
rr

10
-4

All Interior Cells

Slow-varying Cells

Figure 13. Comparison of dP/dt and dS/dt error metrics when the ML model is trained using all
interior cells vs. slow-varying cells across time steps.

In the case where the model is trained on all interior cells, the maximum absolute error
for dP/dt remains relatively low throughout most time steps, with one notable exception:
a sharp spike observed at time step 62. This peak suggests that the model struggles to
accurately predict pressure changes during this period due to rapid fluctuations in pressure
rates between time steps 61 and 62, deviating from the general trend. The complexity
arises during the transition from the injection phase to the monitoring phase, marked by
the shutdown of both injection and production wells. This operational change results
in significant pressure rate fluctuations, which the model finds challenging to capture
accurately, causing a temporary spike in error. After time step 62, as pressure rate changes
stabilize, the maximum absolute error decreases and levels off, indicating the system has
returned to a more predictable state. In contrast, in the second case where the model is
trained only on slow-varying cells, consistently low errors are observed without noticeable
spikes. These slow-varying cells experience gradual pressure changes, and the model
performs reliably under such stable conditions, demonstrating that it can handle smooth,
steady-state behavior more effectively.

The application of our methodology, which categorizes grid blocks based on variance
in pressure and saturation behavior, is validated by these results. The proxy model’s ability
to focus on slow-varying cells ensures that computational efforts are directed where they
are most effective, thus reinforcing the overall aim of reducing computational cost while
maintaining accuracy.

The mean absolute error for dP/dt follows a similar pattern in both cases. In the case
where the model is trained on all interior cells, there is a moderate increase in error at time
step 62, reflecting the difficulty of predicting pressure changes during rapid fluctuations.
However, in the second case, when trained only on slow-varying cells, the mean absolute
error remains consistently low and stable throughout the time steps, further demonstrat-
ing that the model is better suited to predicting pressure changes when the variations
are gradual.

Similarly, in the dS/dt (CO2 saturation change rate) error analysis, when the model is
trained on all interior cells, a comparable pattern emerges. While the maximum absolute
error for dS/dt starts off relatively low, it begins to fluctuate from time step 20 onward,
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peaking between time steps 46 and 76. These fluctuations reflect the model’s difficulty in
accurately predicting CO2 saturation changes during periods when the CO2 plume migrates
into interior cells that were previously unaffected. As CO2 saturates new regions of the
reservoir, cells that initially had no CO2 experience sudden, large changes in saturation,
leading to rapid rate changes and increased errors. This issue is not confined to regions
near the wells, as it is primarily associated with the movement of the plume within the
reservoir. While early time steps show greater errors close to the wells due to the initial
migration of the plume, as the plume progresses further into the reservoir, errors also arise
in cells located farther from the wells. After time step 76, the maximum absolute error
begins to decrease, implying that the reservoir enters a more stable phase, and the model’s
predictions for saturation become more reliable as the system stabilizes.

In contrast, in the case where the model is trained only on slow-varying cells, the
maximum absolute error remains consistently low across all time steps. There are no
significant spikes in error, suggesting that the model performs reliably when predicting
saturation changes in these regions. This indicates that the model is well-suited to handling
areas with slow, steady-state CO2 migration and struggles more with the complex dynamics
present in cells experiencing rapid saturation changes.

Again, these results underscore the effectiveness of the classification-based method-
ology. By applying the ML proxy model to slow-varying grid blocks, the system can
achieve reliable predictions with significantly lower computational effort, demonstrating
the efficiency gains sought in this study.

The mean absolute error for dS/dt follows a similar trend to the maximum absolute
error. When all interior cells are used for training, there is a gradual increase in the mean
error starting around time step 20, peaking at time step 63, reflecting the model’s difficulty
in predicting saturation changes during periods of rapid CO2 redistribution. After time
step 71, the mean absolute error decreases, suggesting that the model regains some degree
of predictive accuracy as the saturation changes slow down.

Conversely, when the model is trained only on slow-varying cells, the mean absolute
error remains low and stable throughout the entire simulation, demonstrating that the
model can predict CO2 saturation changes in these regions with high accuracy. The absence
of significant error increases indicates that the model performs well when saturation
changes are gradual and steady.

The standard deviation of the absolute error for dS/dt reveals additional insights into
the variability of the model’s predictions. In the case where all interior cells are used, the
standard deviation increases significantly from time step 20 onward, peaking between time
steps 58 and 70. This increase in variability suggests that the model’s predictions become
more inconsistent across different cells during periods of rapid saturation changes. The
higher standard deviation during this period indicates that certain cells in the reservoir
are experiencing large, unpredictable changes in CO2 saturation, which the model finds
challenging to capture accurately.

In contrast, when the model is trained on slow-varying cells, the standard deviation
remains consistently low across all time steps. This suggests that the model’s predictions of
saturation changes in slow-varying cells are not only more accurate but also more consistent,
as the gradual nature of saturation changes in these cells allows the model to maintain
steady and reliable predictions.

These findings reaffirm the benefits of focusing on slow-varying cells, as highlighted
in the methodology section. The ability of the proxy model to produce consistent and
accurate results in these regions aligns with the broader goal of optimizing computational
efficiency in large-scale CO2 sequestration simulations.

It is important to emphasize that although the ML model is designed to predict the
pressure rate change, dP/dt, the primary objective remains the prediction of the absolute
pressure P. Therefore, in addition to analyzing the error in dP/dt predictions, scatter plots
were employed to evaluate the ML model’s ability to predict the absolute pressure across
all interior cells and the slow-varying ones. These scatter plots, presented in Figure 14,
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compare the predicted pressure P̂ and the actual pressure P, offering a visual insight into
the model’s predictive accuracy.
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The transformation from the predicted rate of pressure change to the absolute pressure
is governed by the following relationship:

P̂i+1 = Pi +
d̂P
dt i

(ti+1 − ti) (5)

In this equation, the predicted pressure P̂i+1 at the next time step is computed based
on the actual pressure Pi at the current time step and the predicted rate of change d̂P

dt i,
scaled by the time interval (ti+1 − ti).

In Figure 14, the points in the plots are color-coded based on the absolute pressure
differences between consecutive time steps, with blue representing smaller differences
and red indicating larger ones. In other words, the more reddish the point color, the
greater the pressure change in the timestep, which needs to be predicted by the ML model.
Furthermore, the scatter plots distinguish between the injection and monitoring periods,
where red denotes the injection phase and blue represents the monitoring phase.

For the case where the model is trained on all interior cells, the scatter plots on the
left indicate that the predicted values generally follow a linear relationship with the actual
values, closely aligning along the P̂ = P line, shown as a dashed black line. However, while
the plots may suggest better performance at lower pressure levels, this might be misleading.
The appearance of fewer errors at lower pressures is not due to improved model accuracy,
but rather to the fact that fewer data points fall into this range during the early stages
of CO2 injection, where pressure builds up rapidly. In fact, the model still struggles to
predict pressure for fast-varying cells in these early stages, but the smaller number of data
points makes this difficulty less apparent. The model’s primary challenge lies in predicting
rapid pressure changes, rather than being inherently more accurate at lower pressures.
Nevertheless, accurate predictions during the phase of rapid pressure buildup are critical,
as they help identify when the injection rate is approaching or exceeding the aquifer’s
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capacity. Excessive pressure can lead to induced seismicity or leakage into overlying
formations, posing significant risks.

As time progresses and more data points accumulate at higher pressure levels, the
model’s errors become more evident. The cooler colors in the scatter plot indicate smaller
pressure differences between consecutive time steps, showing that the model’s difficulty
lies in capturing the increasingly non-linear behavior of the reservoir, particularly as it tries
to handle fast-varying cells. It is clear that the model’s accuracy is primarily influenced by
how well it can manage sudden changes in pressure, rather than pressure magnitude itself.

The lower-left scatter plot, which differentiates between the injection and monitoring
phases, highlights further aspects of the model’s performance. During the injection phase,
shown in red points, the model faces challenges, particularly at higher pressures, where the
spread of data points is more pronounced. This is largely due to the rapid and unpredictable
pressure fluctuations that occur during CO2 injection, making it difficult for the model to
maintain accuracy. However, the spread of points is more a reflection of the fast pressure
changes during injection, rather than just the pressure levels themselves.

In the monitoring phase, represented by blue points, where fewer data points are
present, there is still a noticeable spread and deviation from the P̂ = P line. This deviation
occurs because the monitoring phase includes the transition from the injection period to the
monitoring period, particularly around time step 62, when all wells are shut down. During
this transition, the pressure dynamics shift rapidly as the system adjusts to the cessation
of injection, leading to complex pressure variations that the model struggles to capture,
especially in fast-varying cells. Note that accurate predictions in the monitoring phase
are equally as crucial as those in the injection phase. Reliable predictions are essential for
assessing sequestration effectiveness and mitigating potential leakage risks throughout the
entire CO2 storage process.

In contrast, when the model is trained on slow-varying cells, as can be seen in the
scatter plots on the right, its performance improves significantly across all pressure ranges.
These cells experience more gradual pressure changes, leading to tighter alignment between
the predicted and actual values, regardless of pressure. This improvement is due to the
exclusion of fast-varying cells, which exhibit rapid and unpredictable pressure fluctuations.
By focusing only on slow-varying cells, the model is relieved of the challenges associated
with rapid pressure changes, resulting in more accurate and consistent predictions across
both the injection and monitoring phases.

Figure 15 provides further insight into the ML model’s performance, this time focusing
on CO2 saturation predictions Ŝ compared to actual values S. The transformation from
dS/dt to S is analogous to Equation (5), but with saturation replacing pressure. The scatter
plots indicate that predictions for all interior cells are notably more accurate than those
for pressure, with data points closely clustering around the ideal Ŝ = S line, even during
periods of more rapid saturation changes. This suggests that the model can generally handle
saturation dynamics effectively, which contrasts with the greater challenges observed in
predicting pressure changes. Given this higher accuracy in saturation predictions, more
lenient thresholds were applied for the classifier in the case of saturation, allowing the
inclusion of a broader range of cells in the slow-varying saturation category. Note that since
grid blocks identified as outliers in either pressure or saturation predictions are excluded
from further proxy model analysis, this explains why less grid blocks remain in the slow-
varying saturation category, as shown in Figure 15, despite the more lenient thresholds.

Figure 16 offers a final comparison of the errors in pressure and saturation predictions
over the entire 10-year period, showing how these errors accumulate in the two cases. In the
first case, where all grid blocks are considered and the proxy model operates independently
from the non-linear solver, the errors for both pressure and saturation steadily increase
over time. The maximum, mean, and standard deviation of the errors rise continuously,
with the accumulation becoming so large that the predictions generated by the model
become unreliable.
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Figure 16. Comparison of cumulative error metrics for P and S when the ML model is trained using
all interior cells vs. slow-varying cells.

For instance, at the midpoint of the simulation (5 years), the mean error in pressure
for the case where all interior cells are considered reaches approximately 120 psi, while the
mean error in saturation reaches 9.07 × 10−5 in fraction. In contrast, in the case where only
the slow-varying cells are considered, the mean error in pressure is substantially lower at
about 8 psi, and the error in saturation is around 4.16 × 10−6 fraction. This stark difference
highlights the improved accuracy achieved by focusing on slow-varying cells.

By the end of the 10-year simulation, the accumulation of errors becomes even more
pronounced. In the case where all interior cells are used, the error in pressure escalates to
approximately 161 psi, and the saturation error increases to about 0.0002 fraction. However,
in the slow-varying cell case, the pressure error remains much lower at around 8 psi, while
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the saturation error is limited to 9.98 × 10−6 fraction. These numbers demonstrate that the
application of the proposed methodology results in significantly lower error accumulation,
making it a more reliable option for long-term predictions.

This error accumulation can be better understood by examining how pressure and
saturation predictions evolve at each time step. Each predicted state at time step ti+1,
denoted as P̂i+1 and Ŝi+1, is computed using the following formulas:

P̂i+1 = P̂i +
d̂P
dt i

(ti+1 − ti) (6)

Ŝi+1 = Ŝi +
d̂S
dt i

(ti+1 − ti) (7)

While the error in one time step may seem negligible, it is carried forward and
compounded in subsequent time steps, leading to a cumulative effect. Over a series of time
steps, the compounding effect becomes significant. As time progresses, this accumulation
results in a large deviation from the true system state, especially since there is no feedback
from the non-linear solver to correct the trajectory.

In contrast, the second approach utilizes a hybrid methodology wherein regions
of the grid exhibiting rapid changes in pressure and saturation are selectively excluded
from ML-based predictions. Instead, the non-linear solver is employed in these regions
to provide more accurate estimates of Pi and Si at critical time steps, mitigating error
accumulation in the areas most prone to dynamic changes. For grid blocks where pressure
and saturation vary slowly, the ML model continues to make predictions, as the risk of
significant error accumulation is considerably lower in these zones. As illustrated in
Figure 16, this hybrid approach yields significantly more stable and accurate results over
time, with errors remaining consistently lower compared to the first case. The strategic
exclusion of fast-varying regions from ML-based predictions is therefore highly effective in
maintaining model fidelity, demonstrating the advantage of adaptive modeling in reducing
long-term error accumulation.

It should further be noted that the results obtained are limited by the size and com-
plexity of the selected ML model. In this specific example, the model used was a single
hidden-layer ANN containing 10 neurons, thus rapidly increasing its response speed, while
limiting its learning capacity. Clearly, by increasing the size of the network, either by
adding more neurons to the hidden layer or by introducing additional hidden layers, the
model’s learning capacity can be enhanced.

5. Conclusions

This article introduces a novel and highly efficient approach to accelerating numerical
simulations of CO2 geological storage in deep saline aquifers by integrating machine
learning (ML) proxy models into traditional reservoir simulation workflows. The core
innovation of this approach lies in the strategic classification of reservoir grid blocks based
on their dynamic behavior in terms of pressure and saturation changes. Specifically, the
proposed method differentiates between fast-varying and slow-varying regions within the
reservoir, which allows for a targeted allocation of computational resources, significantly
enhancing the overall efficiency of the simulation process without sacrificing accuracy or
precision in key areas.

The classification methodology presented in this work follows a two-stage process. In
the first stage, an ML proxy model is developed and trained using the dataset from grid
blocks within distinct regions of the reservoir, such as interior or boundary cells. Given
the need for rapid, yet reliable, predictions, the chosen ML proxy model is deliberately
simple, striking an optimal balance between computational speed and predictive accuracy.
Following the initial training, the ML model is further refined to focus on slow-varying
grid blocks—those exhibiting minimal spatial and temporal variations. At this stage, the
ML proxy is retrained using only the slow-varying subset of grid blocks, significantly



Processes 2024, 12, 2447 21 of 24

improving computational efficiency. By isolating the slow-varying blocks, which constitute
the majority of the grid, the ML proxy model can efficiently handle their predictions,
while more resource-intensive non-linear solvers are applied exclusively to the fast-varying
blocks. This division between fast and slow dynamics leads to significant time savings, as
computationally expensive calculations are avoided for regions where they are unnecessary.

The identification of fast-varying regions is conducted using an ML and interquartile
range (IQR)-based outlier detection technique, which automatically flags grid blocks where
the proxy model’s predictions deviate substantially from the expected range based on
the overall model behavior. These flagged grid blocks, as already mentioned, are then
classified as fast-varying and treated with conventional iterative solvers. Fast-varying grid
blocks are typically located around critical regions such as wells, where rapid changes in
pressure and saturation often occur due to well activation or deactivation, or significant
fluctuations in injection and production rates. These regions are challenging to identify
due to complex interactions between well operations and reservoir properties, such as well
perforation details, injection rates, wellbore inclination, and petrophysical characteristics
like permeability anisotropy. The automation of this identification process through machine
learning greatly reduces the possibility of human error and offers substantial time savings
over manual methods.

Importantly, while this study utilized a fully automated ML and IQR-based classifier
to distinguish fast- and slow-varying regions, other classification techniques could also
have been employed. The classifier chosen demonstrated a satisfactory performance in
detecting regions with low spatial and temporal variance, but future work could explore
alternative models to enhance detection accuracy or further optimize computational speed.
This highlights the adaptability of the framework to different ML approaches, depending
on the specific requirements of the reservoir model or the operational scenario.

Fast-varying cells need to be handled regularly by the non-linear solver of the dif-
ferential equations governing the flow while honoring the values predicted by the proxy
model. Although acceleration is guaranteed due to the vast reduction in the number of cell
variables to be predicted, it is recommended that smart numbering must be assigned to
those cells. This will allow the system matrix to remain banded rather than just sparse, so
as to take full advantage of the linear solver available.

Another notable aspect of this work is the flexibility of the proposed methodology,
which is not limited to CO2 injection into deep saline aquifers. The approach can be readily
adapted to other subsurface storage applications, such as CO2 injection into depleted oil
reservoirs. In these cases, an additional variable—such as oil saturation—would need to
be predicted to account for multi-phase flow dynamics. Furthermore, for CO2 injection
into aquifers, the model could be extended to predict the amount of CO2 dissolved in the
aqueous phase, a key factor in long-term storage security. However, in this study, the focus
was intentionally narrowed to the prediction of pressure and CO2 saturation to validate
the methodology and demonstrate its effectiveness in classifying reservoir dynamics.

It is important to note that this study only serves as an initial validation of the proposed
hybrid methodology, limited to a single scheduling scenario to explore the foundational
capabilities of the method. Future iterations will require larger datasets, and the simulation
runs generating these datasets must be designed with a high degree of generality to encom-
pass the full spectrum of expected variability in grid block behavior. This means that the
input data used to train the ML models should be derived from simulations that capture a
broad range of subsurface conditions, including various injection and production scenarios,
and petrophysical properties such as permeability and porosity distributions. This ensures
that the proxy models are robust and capable of generalizing to diverse operational condi-
tions encountered in field-scale projects. Moreover, it is imperative that the datasets strictly
adhere to subsurface regulatory frameworks and align with industry-standard best prac-
tices for CO2 storage and reservoir simulation. Compliance with these standards ensures
that the methodology remains applicable to real-world projects, where operational safety,
regulatory requirements, and long-term containment integrity are paramount. Adherence
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to regulatory frameworks also ensures that the results produced by the simulations can be
used in formal reporting and decision-making processes, which are critical for the approval
and monitoring of CO2 storage projects.

The proposed method is particularly viable for CO2 injection into saline aquifers,
where accurate pressure estimation near wells is critical for maintaining CO2 containment
integrity. In such projects, pressure management is closely tied to geomechanical stability,
as excessive pressures can lead to fracturing or caprock failure, potentially compromising
the containment of injected CO2. Since the grid blocks in which wells are perforated
are classified as fast-varying under this methodology, the rigorous, non-linear solvers
are applied to these critical regions, ensuring that bottom-hole pressure (BHP) estimates
remain highly accurate. This is essential for managing well integrity and mitigating risks
related to geomechanical issues, such as induced seismicity or the migration of CO2 through
fractures. The proposed approach thus provides a robust solution for ensuring the precision
of near-wellbore simulations while simultaneously reducing computational costs across
the broader reservoir model.

In summary, the proposed ML-based approach provides a highly efficient and flexible
solution for simulating CO2 storage in geological formations. By automating the clas-
sification of grid blocks into fast- and slow-varying categories, this method enables the
selective application of computational resources, delivering substantial time savings while
ensuring that critical areas, such as those near wells, receive the rigorous attention needed
for accurate pressure estimation. The versatility of this methodology extends beyond CO2
injection into aquifers, offering the potential for application in a wide range of subsurface
storage scenarios. Future work could further refine the classifier models used or extend the
approach to include additional variables, such as CO2 dissolution in water or multiphase
flow considerations in depleted reservoirs. Overall, this method represents a significant
advancement in the field of reservoir simulation, with important implications for the ef-
ficiency and accuracy of CO2 storage operations and their contribution to global climate
mitigation efforts through improved carbon sequestration strategies.
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