CO2-Enhanced Gas Recovery in Offshore Carbon-Rich Gas Reservoirs—Part 1: In Situ Gas Dispersion Behaviors
Abstract
:1. Introduction
2. Dispersion Theory
3. Experimental Materials and Procedure
3.1. Cores and Fluids
3.2. Experimental Procedure
4. Results and Discussion
4.1. EGR and CO2 Breakthrough
4.2. CO2 Dispersion Behaviors
5. Conclusions
- The higher the concentration of CO2 in the injected gas, the later the breakthrough time of CO2, the shorter the transition zone, and the smaller the dispersion coefficient. The average dispersion coefficient is about 1 × 10 cm3/s under the experimental conditions of this study. Additionally, both the breakthrough time of CO2 and the recovery of CH4 are influenced by permeability.
- The higher the concentration of CO2 in the injected gas, the greater the difference in physical properties between the injected gas and the formation gas, making it less likely to achieve miscibility and thus resulting in a smaller dispersion coefficient.
- As the permeability decreases, the viscous resistance of the fluid increases, leading to a short transition zone. The formation fluid is more likely to be displaced in a piston-like manner, reducing the degree of dispersion. Besides analyzing the CO2 breakthrough curve, more advanced techniques should be used to characterize the transition zone in greater depth and quantitatively.
- Npe is inversely proportional to the dispersion coefficient. The longer the transition zone of the CO2 breakthrough curve, the larger the Npe and the smaller the dispersion coefficient. Conversely, the shorter and steeper the transition zone of the CO2 breakthrough curve, the smaller the Npe and the larger the dispersion coefficient.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, M.; Shuai, C.; Ahmed, M. Analysis of energy consumption and greenhouse gas emissions trend in China, India, the USA, and Russia. Int. J. Environ. Sci. Technol. 2023, 20, 2683–2698. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Wang, F.; Wu, J.; Wang, Y. The carrying behavior of water-based fracturing fluid in shale reservoir fractures and molecular dynamics of sand-carrying mechanism. Processes 2024, 12, 2051. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Han, Y. A numerical investigation on kick control with the displacement kill method during a well test in a deep-water gas reservoir: A case study. Processes 2024, 12, 2090. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; He, D.; Wei, Y.; Li, J.; Jia, A.; Chen, J.; Zhao, Q.; Li, Y.; Li, J.; et al. Theory, technology and prospects of conventional and unconventional natural gas. Pet. Explor. Dev. 2018, 45, 604–618. [Google Scholar] [CrossRef]
- Hamza, A.; Hussein, I.A.; Al-Marri, M.J.; Mahmoud, M.; Shawabkeh, R.; Aparicio, S. CO2 enhanced gas recovery and sequestration in depleted gas reservoirs: A review. J. Petrol. Sci. Eng. 2021, 196, 107685. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, L.; Zhao, C.; Zhang, Y.; Song, Y. A review of research on the dispersion process and CO2 enhanced natural gas recovery in depleted gas reservoir. J. Petrol. Sci. Eng. 2022, 208, 109682. [Google Scholar] [CrossRef]
- Hussain, M.; Sidiq, A. Nitrogen injection for enhanced gas recovery in natural gas reservoirs. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Brisbane, QLD, Australia, 18–20 October 2010. [Google Scholar] [CrossRef]
- Babadagli, T.; Al-Bemani, A.S. Waterflooding in gas condensate reservoirs: A review of recovery mechanisms and laboratory data. J. Petrol. Sci. Eng. 2001, 29, 133–144. [Google Scholar]
- Orr, F.M., Jr.; Jessen, K. Uncertainties in gas injection for enhanced hydrocarbon recovery. SPE J. 2007, 12, 531–535. [Google Scholar]
- Tananykhin, D.S.; Struchkov, I.A.; Khormali, A.; Roschin, P. Investigation of the influences of asphaltene deposition on oilfield development using reservoir simulation. Pet. Explor. Dev. 2022, 49, 1138–1149. [Google Scholar] [CrossRef]
- van der Burgt, M.J.; Cantle, J.; Boutkan, V.K. Carbon dioxide disposal from coal-based IGCC’s in depleted gas fields. Energy Convers. Manag. 1992, 33, 603–610. [Google Scholar] [CrossRef]
- Oldenburg, C.M.; Stevens, S.H.; Benson, S.M. Economic feasibility of carbon sequestration with enhanced gas recovery (CSEGR). Energy 2004, 29, 1413–1422. [Google Scholar] [CrossRef]
- Seo, J.G.; Mamora, D.D. Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs. J. Energy Resour. Technol. 2005, 127, 1–6. [Google Scholar] [CrossRef]
- Van Der Meer, B. Carbon dioxide storage in natural gas reservoir. Oil Gas Sci. Technol. Rev. IFP 2005, 60, 527–536. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Xing, W.; Jian, W.; Liu, Z.; Li, T.; Song, Y. Laboratory experiment of CO2–CH4 displacement and dispersion in sandpacks in enhanced gas recovery. J. Nat. Gas Sci. Eng. 2015, 26, 1585–1594. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Zhao, J.; Jiang, L.; Song, Y. Dispersion characteristics of CO2 enhanced gas recovery over a wide range of temperature and pressure. J. Nat. Gas Sci. Eng. 2020, 73, 103056. [Google Scholar] [CrossRef]
- Sidiq, H.; Amin, R. Mathematical model for calculating the dispersion coefficient of super critical CO2 from the results of laboratory experiments on enhanced gas recovery. J. Nat. Gas Sci. Eng. 2009, 1, 177–182. [Google Scholar] [CrossRef]
- Sidiq, H.; Amin, R. The impact of pore pressure on CO2-methane displacement. Petrol. Sci. Technol. 2012, 30, 2531–2542. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Ren, B.; Li, H.-Y.; Yang, Y.-Z.; Wang, Z.-Q.; Wang, B.; Xu, J.-C.; Agarwal, R. CO2 storage with enhanced gas recovery (CSEGR): A review of experimental and numerical studies. Pet. Sci. 2022, 19, 594–607. [Google Scholar] [CrossRef]
- Abba, M.K.; Al-Otaibi, A.; Abbas, A.J. Influence of permeability and injection orientation variations on dispersion coefficient during enhanced gas recovery by CO2 injection. Energies 2019, 12, 2328. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Chen, M.; Xu, S. Experimental study on dispersion characteristics and CH4 recovery efficiency of CO2, N2 and their mixtures for enhancing gas recovery. J. Nat. Gas Sci. Eng. 2022, 216, 110756. [Google Scholar]
- Honari, A.; Bijeljic, B.; Johns, M.L.; May, E.F. Enhanced gas recovery with CO2 sequestration: The effect of medium heterogeneity on the dispersion of supercritical CO2–CH4. Int. J. Greenh. Gas Con. 2015, 39, 39–50. [Google Scholar] [CrossRef]
- Nogueira, M.C.; Mamora, D.D. Effect of flue-gas impurities on the process of injection and storage of CO2 in depleted gas reservoirs. J. Energy Resour.-ASME 2008, 130, 013301. [Google Scholar] [CrossRef]
- Turta, A.T.; Sim, S.S.K.; Singhal, A.K.; Hawkins, B.F. Basic investigations on enhanced gas recovery by gas-gas displacement. J. Can. Pet. Technol. 2008, 47, 39–44. [Google Scholar] [CrossRef]
- Sim, S.S.K.; Turtata, A.T.; Singhal, A.K.; Hawkins, B.F. Enhanced gas recovery: Factors affecting gas-gas displacement efficiency. J. Can. Pet. Technol. 2009, 48, 49–55. [Google Scholar] [CrossRef]
- Liu, S.; Song, Y.; Zhao, C.; Zhang, Y.; Lv, P.; Jiang, L.; Liu, Y.; Zhao, Y. The horizontal dispersion properties of CO2-CH4 in sand packs with CO2 displacing the simulated natural gas. J. Nat. Gas Sci. Eng. 2018, 50, 293–300. [Google Scholar] [CrossRef]
- Mohammed, N.; Abbas, A.J.; Enyi, G.C.; Suleiman, S.M.; Edem, D.E.; Abba, M.K. Alternating N2 gas injection as a potential technique for enhanced gas recovery and CO2 storage in consolidated rocks: An experimental study. J. Pet. Explor. Prod. Technol. 2020, 10, 3883–3903. [Google Scholar] [CrossRef]
- Wei, X.; Massarotto, P.; Wang, G.; Rudolph, V.; Golding, S.D. CO2 sequestration in coals and enhanced coalbed methane recovery: New numerical approach. Fuel 2010, 89, 1110–1118. [Google Scholar] [CrossRef]
- Pooladi-Darvish, M.; Hong, H.; Theys, S.; Stocker, R.; Bachu, S.; Dashtgard, S. CO2 injection for enhanced gas recovery and geological storage of CO2 in the Long Coulee Glauconite F Pool, Alberta. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2008. SPE-115789-MS. [Google Scholar]
- Zhang, H.; Pei, J.; Zhang, Y.; Jiang, C.; Zhu, J.; Ai, N.; Hu, Q.; Yu, J. Overpressure reservoirs of the Huangliu formation of the Dongfang area, Yinggehai basin, South China Sea. Petrol. Explor. Dev. 2013, 40, 305–315. [Google Scholar] [CrossRef]
- Peters, E.J. Advanced Petrophysics: Dispersion, Interfacial Phenomena; Greenleaf Book Group: Austin, TX, USA, 2012. [Google Scholar]
- Perkins, T.K.; Johnston, O.C. A review of diffusion and dispersion in porous media. SPE J. 1963, 3, 70–84. [Google Scholar] [CrossRef]
- Delgado, J. Longitudinal and transverse dispersion in porous media. Chem. Eng. Res. Des. 2007, 85, 1245–1252. [Google Scholar] [CrossRef]
No. | Length cm | Diameter cm | Permeability mD | Porosity % |
---|---|---|---|---|
DF1-1-5 | 4.93 | 2.54 | 17.64 | 32.19 |
DF1-1-7 | 4.98 | 2.54 | 17.28 | 30.36 |
DF1-1-48 | 5.09 | 2.54 | 14.68 | 34.00 |
DF1-1-8 | 4.88 | 2.54 | 16.65 | 33.65 |
DF1-1-9 | 4.78 | 2.54 | 15.89 | 34.25 |
DF1-1-10 | 4.89 | 2.55 | 15.80 | 35.01 |
DF1-1-11 | 4.88 | 2.54 | 16.52 | 32.25 |
DF1-1-12 | 4.77 | 2.53 | 16.51 | 34.77 |
DF1-1-52 | 5.01 | 2.54 | 15.23 | 33.89 |
DF1-1-60 | 4.95 | 2.54 | 14.90 | 34.39 |
DF1-1-15 | 4.88 | 2.53 | 16.39 | 31.88 |
DF1-1-16 | 4.88 | 2.54 | 16.12 | 36.24 |
No. | Development Scheme | Objective | Evolutive Permeability mD |
---|---|---|---|
1# | 14 MPa → 7 MPa | - | 14.62 |
2# | 14 MPa → 5 MPa, 5 MPa → 7 MPa | 1#/2# compare the effect of depleted development pressure | 6.65 |
3# | 14 MPa → 5 MPa, 5 MPa → 7 MPa | 2#/3# compare the effect of permeability | 3.9 |
4# | 14 MPa → 7 MPa | 1#/4#/5#/6# compare the effect of the injected gas composition | 3.0 |
5# | 14 MPa → 7 MPa | 1.7 | |
6# | 14 MPa → 7 MPa | 0.97 |
Component | Composition, mol% |
---|---|
CH4 | 70 |
N2 | 25 |
CO2 | 5 |
Component | Composition, mol% | ||
---|---|---|---|
CH4 | 10 | 30 | 50 |
N2 | 0 | 0 | 0 |
CO2 | 90 | 70 | 50 |
Number | CO2 Content of Injected Gas | Darcy Velocity 10−3 cm/s | Permeability mD | Npe | Dispersion Coefficient 10−3 cm2/s |
---|---|---|---|---|---|
1# | 90% | 4.991 | 14.62 | 290 | 1.012 |
4# | 90% | 3.993 | 3 | 360 | 0.680 |
5# | 70% | 3.993 | 1.7 | 261 | 0.938 |
6# | 50% | 4.991 | 0.97 | 268 | 1.141 |
2# | 90% | 4.991 | 6.65 | 238 | 1.232 |
3# | 90% | 4.991 | 3.9 | 274 | 1.070 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, P.; Zha, Y.; Ye, Q.; Xiong, R.; Zhao, N.; Mo, F.; Sun, L.; Li, M.; Zeng, Y.; Liang, B. CO2-Enhanced Gas Recovery in Offshore Carbon-Rich Gas Reservoirs—Part 1: In Situ Gas Dispersion Behaviors. Processes 2024, 12, 2479. https://doi.org/10.3390/pr12112479
Jiang P, Zha Y, Ye Q, Xiong R, Zhao N, Mo F, Sun L, Li M, Zeng Y, Liang B. CO2-Enhanced Gas Recovery in Offshore Carbon-Rich Gas Reservoirs—Part 1: In Situ Gas Dispersion Behaviors. Processes. 2024; 12(11):2479. https://doi.org/10.3390/pr12112479
Chicago/Turabian StyleJiang, Ping, Yuqiang Zha, Qing Ye, Runfu Xiong, Nan Zhao, Fengyang Mo, Lei Sun, Minxuan Li, Yuqi Zeng, and Bin Liang. 2024. "CO2-Enhanced Gas Recovery in Offshore Carbon-Rich Gas Reservoirs—Part 1: In Situ Gas Dispersion Behaviors" Processes 12, no. 11: 2479. https://doi.org/10.3390/pr12112479
APA StyleJiang, P., Zha, Y., Ye, Q., Xiong, R., Zhao, N., Mo, F., Sun, L., Li, M., Zeng, Y., & Liang, B. (2024). CO2-Enhanced Gas Recovery in Offshore Carbon-Rich Gas Reservoirs—Part 1: In Situ Gas Dispersion Behaviors. Processes, 12(11), 2479. https://doi.org/10.3390/pr12112479