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Abstract: Multi-criteria decision making (MCDM) is necessary for choosing one from the available
alternatives (or from the Pareto-optimal solutions obtained by multi-objective optimization), where
the performance of each alternative is quantified against several criteria (or objectives). This paper
presents a comprehensive review of the application of MCDM methods in chemical and process engi-
neering. It systematically outlines the essential steps in MCDM including the various normalization,
weighting, and MCDM methods that are critical to decision making. The review draws on published
papers identified through a search in the Scopus database, focusing on works by authors with more
contributions to the field and on highly cited papers. Each selected paper was analyzed based on the
MCDM, normalization, and weighting methods used. Additionally, this paper introduces two readily
available programs for performing MCDM calculations. In short, it provides insights into the MCDM
steps and methods, highlights their applications in chemical and process engineering, and discusses
the challenges and prospects in this area.

Keywords: multi-criteria decision making; MCDM; chemical engineering; process engineering;
multi-objective optimization; MOO; weighting methods; normalization methods

1. Introduction

Optimization is an important area within chemical engineering and has found nu-
merous applications in chemical engineering like in many other disciplines. Traditionally,
optimization is for minimizing or maximizing a single objective (i.e., single objective opti-
mization, SOO). In the last 25 years, optimization for multiple objectives (i.e., multi-objective
optimization, MOO) has attracted increasing interest from chemical and process engineers
and has now become common for applications (see the review by Cui et al. [1] on MOO in
the energy area, Madoumier et al. [2] on MOO in food processing, and Rangaiah et al. [3]
on MOO in chemical engineering). Both SOO and MOO problems involve one or more
decision variables, each with its lower and upper bounds, and may have equality and/or
inequality constraints.

The SOO of an application generally gives only one optimal solution (i.e., a minimum
and a maximum in the case of minimization and maximization applications, respectively).
On the other hand, objectives in MOO are often conflicting, which means that there is no
single optimal solution for simultaneously optimizing all of the objectives in the application.
Hence, MOO provides a set of optimal solutions, known as Pareto-optimal, non-dominated,
non-inferior, and efficient solutions. Objective values of any one of these solutions cannot
be further improved without worsening one or more objective values of another solution
in the set of Pareto-optimal solutions.
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Pareto-optimal solutions for a process optimization problem having two objectives
to be maximized, are illustrated in Figure 1, which shows the optimal values of objectives
only. The optimal values of decision variables, although crucial in implementing an
optimal solution, are not required for understanding the trade-off relationship of Pareto-
optimal solutions and so they are not shown in Figure 1. This figure is for maximizing
both ethylene selectivity and ethane conversion simultaneously, in an industrial reactor
producing ethylene from ethane by steam cracking [4]. Figure 1 illustrates Pareto-optimal
solutions as filled blue circles, while filled red triangles represent the dominated/inferior
solutions. Both the objectives (i.e., ethane conversion and ethylene selectivity) of these
Pareto-optimal solutions cannot be improved simultaneously. As depicted in Figure 1,
improvement in one objective (e.g., ethylene selectivity) of any Pareto-optimal solution is
accompanied by worsening of the other objective (e.g., ethane conversion); in other words,
there is a trade-off between the two objectives. The number of Pareto-optimal solutions
obtained by solving an MOO problem is usually large (say, 50 or more). The objectives
in chemical and process engineering applications can be related to fundamentals (e.g.,
conversion, selectivity and recovery), economics (e.g., capital cost, operating cost, payback
period, and net present value), energy (e.g., steam required, electricity required, and exergy
loss), environment (e.g., CO2 emissions and environmental impact), control (e.g., integral
error and condition number), safety (e.g., inventory, inherent safety index), etc. [3].
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Figure 1. Dominated and Pareto-optimal solutions for the simultaneous maximization of ethane
conversion and ethylene selectivity of an industrial reactor producing ethylene by the steam cracking
of ethane.

In some applications, there may be a limited number (e.g., 3 to 20) of alternatives [5],
and the performance of each of them is evaluated according to several criteria. For example,
Husain et al. [6] investigated the selection of an optimal renewable energy source in
India from the four alternatives: solar, wind, hydro, and biomass. Performance of these
alternatives is quantified in terms of 10 criteria from C1 to C10 (Table 1). Here, C1 represents
the Installed Cost ($/kW). C2 denotes the Operating and Maintenance Cost ($/kW.y).
C3 is the Levelized Cost of Electricity ($/kWh). C4 refers to Efficiency (%). C5 is the
Capacity Factor (%). C6 quantifies Greenhouse Gas Emission (gCO2/kWh), C7 measures
Land Requirement (m2/kW), C8 denotes Job Creation (Job-years/GWh), and C9 reflects
Technical Maturity, on a scale of 1 to 5. Finally, C10 captures Social Acceptance, also on a
scale of 1 to 5. Husain et al. [6] compiled the criteria values of all four alternatives in Table 1
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as follows: values of C1 to C8 from the literature, values of technical maturity (C9) based on
expert opinion, and values for social acceptance (C10) from a survey questionnaire. Values
of C1 to C8 for each alternative may be by the design of each renewable energy system
based on technical expertise or by solving an appropriate MOO problem.

Table 1. Alternatives and criteria for the selection of a renewable energy source in India [6]. Here,
criteria C1, C2, C3, C6, and C7 should be minimized whereas C4, C5, C8, C9, and C10 should
be maximized.

Alternatives (Renewable
Energy Sources)

Criteria

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Solar 596 9000 0.038 22 19 48 12 0.87 4 4.58

Wind 1038 28,000 0.04 35 33 11 250 0.17 4 4.17

Hydro 1817 45,425 0.065 76.61 57 24 500 0.27 5 3.56

Biomass 1154 46,160 0.057 84.33 68 230 13 0.21 3 4.00

Eventually, for any application, only one solution from the Pareto-optimal solutions
(e.g., Figure 1) obtained by solving the related MOO problem or only one of the available
alternatives (e.g., Table 1) is required for implementation. This selection or decision making
falls within the field of multi-criteria decision making (MCDM), which refers to decision
making in the presence of multiple, often conflicting, criteria. This analysis involves
several steps, and many methods are available for them. MCDM generally ranks the given
alternatives, and one of the top-ranked alternatives can be chosen for implementation.

MCDM has been researched in diverse disciplines including economics, business,
healthcare, transportation, and industrial engineering. Partly because of its interdisciplinary
nature, the terminology in the MCDM field varies. For example, criterion, attribute, and
objective have the same significance; MCDM is also known as multi-attribute decision
making (MADM), multi-criteria decision analysis/aid/aiding (MCDA), and multi-criteria
analysis (MCA). On the other hand, MCDM problems have been classified into two groups
by Hwang and Yoon [7]: MADM and multi-objective decision making (MODM), of which
the latter is essentially the MOO outlined above and common in (chemical) engineering.
For MOO, interested readers can refer to the review paper by Rangaiah et al. [3] and the
book by Rangaiah [8] for its techniques and applications in chemical engineering. The
present paper adopted the following terminology: criteria (synonymous with objectives and
attributes), alternatives (synonymous with Pareto-optimal, non-dominated, non-inferior,
and efficient solutions), MCDM (synonymous with MADM, MCDA, and MCA), and MOO
(synonymous with MODM). Depending on the application, MOO may be required to find
the Pareto-optimal solutions (i.e., alternatives) before MCDM.

Although MOO has become popular in the chemical and process engineering field,
the application of and studies on MCDM in this field are limited. However, MCDM is
essential for selecting one of the Pareto-optimal solutions found by MOO. Moreover, it
is required for decision making when there are competing alternatives (for a chemical
process, feedstock choices, material selections, site locations, vendors, supply chains, etc.)
and multiple criteria. Hence, the broad aims of this paper are to: (1) highlight the need
for MCDM in chemical and process engineering, (2) outline the steps and methods for
MCDM, (3) present MCDM programs, (4) review MCDM applications in chemical and
process engineering, (5) outline studies in chemical and process engineering applications,
and (6) discuss challenges and opportunities in MCDM.

This work uniquely contributes to the emerging field by providing a concise overview
of MCDM and an in-depth review of MCDM applications in the chemical and process
engineering field. This is motivated by the limited application and study of MCDM in
this field. The overview covers the main steps in MCDM, normalization techniques, some
weighting approaches, and popular/recent MCDM methods; it offers tailored insights
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for researchers and practitioners new to MCDM. Furthermore, a distinctive aspect of
this paper is the exploration of practical tools (e.g., an Excel VBA-based program (i.e.,
EMCDM) and a Python library (i.e., PyMCDM)) that are readily accessible. Then, we
review some MCDM applications in chemical engineering and discuss the potential of
integrating MCDM methods with emerging technologies, such as artificial intelligence
(AI) and machine learning (ML) algorithms [9], providing a future-oriented perspective on
decision-making advancements. This approach not only bridges theory and practice, but
also establishes a foundation for future studies aimed at more complex MCDM problems
in chemical and process engineering.

The rest of this paper is organized as follows. Section 2 outlines the essential steps in
MCDM. Sections 3 and 4 describe the normalization and weighting methods, respectively.
Section 5 reviews popular and/or recent MCDM methods. Section 6 covers two MCDM
programs available to interested readers. Sections 7 and 8 explore the application of MCDM
in chemical and process engineering as reported in journal papers. Section 9 discusses
the challenges associated with MCDM. Finally, Section 10 presents the conclusions of
this study.

2. Steps in Multi-Criteria Decision Making

The general steps of MCDM are depicted in Figure 2. Initially, as aforementioned,
a numerical solution of the related MOO problem may be required to generate a set of
Pareto-optimal solutions. These solutions or alternatives represent the best possible trade-
offs among the conflicting criteria, without any one solution being superior across all
criteria. Following this, alternatives-criteria matrix (ACM), like that in Table 1, should be
meticulously constructed. This matrix includes all of the alternatives, and their values of
criteria considered.
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After constructing the ACM, the next crucial step is the normalization of criteria
values to ensure comparability by transforming them to a common scale. This can be
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accomplished through various normalization methods such as vector normalization, sum
normalization, max-min normalization, and max normalization. Each of these methods
adjusts the criteria values differently based on its governing principle. In general, the
normalized criteria values are in the range of 0 to 1. More details of normalization methods
are given in Section 3.

After normalization, assigning weights to each of the criteria is often necessary, re-
flecting the relative importance of each criterion as perceived by decision-makers. Note
that weights can be determined subjectively by decision-makers or through weighting
methods such as the entropy method, criteria importance through intercriteria correlation
(CRITIC) method, stepwise weight assessment ratio analysis (SWARA) method, or even
simple methods like equal weighting (i.e., mean method). Principles of selected weighting
methods are covered in Section 4.

The culmination of the MCDM involves ranking the alternatives in the weighted,
normalized ACM to identify the most preferable one(s). Various MCDM methods in
the literature can be employed for this purpose [10,11] such as the technique for order
of preference by similarity to ideal solution (TOPSIS), simple additive weighting (SAW),
or multi-attributive border approximation area comparison (MABAC). Each method has
a different underlying algorithm to calculate the performance scores and determine the
ranking of alternatives in the weighted, normalized ACM. Classification of MCDM methods
and some of the MCDM methods used in chemical and process engineering are outlined
in Section 5.

Finally, decision-makers can review the top-ranked alternative(s), make the (final)
decision, and terminate. If necessary, they can decide to perform sensitivity analysis
by making changes in ACM, normalization, weighting, and/or MCDM methods, and
repeat the MCDM steps. Sometimes, an MOO problem needs to be updated to consider
potential changes in the chemical process (e.g., feed availability, product demand, and
feed/product prices) and solved to update the Pareto-optimal solutions. Alternatively, the
number of alternatives and/or criteria values may have to be adjusted. The ranking of
alternatives with another normalization, weighting, and/or MCDM method can also be
studied. Sensitivity analysis provides insights into the effect of potential changes in various
steps of MCDM on the ranking of all alternatives as well as the top-ranked alternatives.

3. Normalization Methods

The notation and symbols employed in this paper are as follows. ACM consists
of m rows (i.e., m alternatives) and n columns (i.e., n criteria). A criterion can be for
maximization (i.e., a benefit criterion) or minimization (i.e., a cost criterion). The symbol fij

denotes the value (or measurement) of the jth criterion for the ith alternative in the ACM;
here, i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}. Likewise, fkj is the value of the jth criterion
for the kth alternative, with k ∈ {1, 2, . . . , m}. Additionally, the symbol Fij represents the
normalized fij value. The symbol wj indicates the weight assigned to the jth criterion.

Table 2 presents various normalization methods utilized to normalize the criteria
values of different magnitudes to a common scale. Each method comes with two formulas,
a direct normalization formula applicable to maximization criteria, and an inverse normal-
ization formula for minimization criteria. As the name implies, the inverse normalization
formula effectively reverses the optimization direction, meaning that if the jth criterion ( fij)
is originally for minimization (smaller-the-better), its normalized counterpart (Fij) would
be transformed to the maximization (larger-the-better) type due to the introduction of a
negative sign to fij or the use of its reciprocal.
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Table 2. Normalization methods.

Normalization Method

Direct Normalization (for
Maximization Criteria)

i∈{1, 2,. . .,m}
k∈{1, 2,. . .,m}
j∈{1, 2,. . .,n}

Inverse Normalization (for
Minimization Criteria)

i∈{1, 2,. . .,m}
k∈{1, 2,. . .,m}
j∈{1, 2,. . .,n}

Sum normalization [12] Fij =
fij

m
∑

k=1
fkj

Fij =
(1/ fij)

m
∑

k=1
(1/ fkj)

Vector normalization [12] Fij =
fij√

m
∑

k=1
fkj

2
Fij = 1 − fij√

m
∑

k=1
fkj

2

Max-Min normalization [12] Fij =
fij−mink( fkj)

maxk( fkj)−mink( fkj)
Fij =

maxk( fkj)− fij
maxk( fkj)−mink( fkj)

Max normalization [12] Fij =
fij

maxk( fkj)
Fij =

mink( fkj)
fij

Logarithmic normalization [13] Fij =
ln( fij)

ln(∏m
k=1 fkj) Fij =

1−
ln( fij)

ln(∏m
k=1 fkj)

m−1

Peldschus nonlinear normalization [13] Fij =

(
fij

maxk( fkj)

)2

Fij =

(
mink( fkj)

fij

)3

It is important to highlight that not all MCDM and weighting methods employ both
direct and inverse normalization formulas in their original algorithms. For instance, both
the original TOPSIS proposed in Hwang and Yoon [7] and the original MOORA (MOO
on the basis of ratio analysis) method introduced by Brauers and Zavadskas [14] solely
employ the direct normalization formula of the vector normalization method. The entropy
weighting method described in Hwang and Yoon [7] only utilizes the direct normalization
formula of the sum normalization method.

4. Weighting Methods

To assign weight to each criterion, decision-makers may leverage their domain ex-
pertise for weight determination. Alternatively, they can employ established weighting
methods, which are divided into two categories: subjective and objective weighting meth-
ods. For subjective weighting methods, decision-makers are required to provide their
preference assessments with respect to the criteria, thereby reflecting their personal judg-
ments and insights. On the contrary, objective weighting methods do not require such
preference assessments from decision-makers; instead, these methods derive weights based
solely on the constructed ACM. Some popular objective and subjective weighting methods,
shown in Figure 3, are outlined in the following two subsections, in alphabetical sequence.
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4.1. Objective Weighting Methods

Criteria importance through the intercriteria correlation (CRITIC) method evaluates
the pairwise correlations among the criteria within the ACM, along with the standard devi-
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ation of each criterion, to determine their weights. As delineated in Diakoulaki et al. [15]
and Vujicic et al. [16], the evaluation begins by normalizing the original ACM using the
max-min normalization; then, pairwise correlations between all criteria are calculated to
form a symmetric n × n correlation matrix, where each value ranges from −1 to +1; −1 indi-
cates a completely negative correlation, +1 indicates an entirely positive correlation, and 0
indicates no correlation between the two criteria. Following this, the standard deviation of
values of each criterion is computed. Finally, weights are derived by integrating the correla-
tion values and the standard deviations, following the equations in Diakoulaki et al. [15].
The CRITIC method captures the diversity of criterion values and their interdependencies,
providing a comprehensive approach to weight assignment. See Diakoulaki et al. [15] for
the steps and equations of this method.

The entropy weighting method relies on a measure of uncertainty in the information,
expressed through the principles of probability theory. When there is substantial variation
in the values of a particular criterion across the alternatives in ACM, this criterion receives a
correspondingly higher weight. The entropy weighting method starts with normalizing the
original ACM using the sum normalization, as described in Hwang and Yoon [7] and many
other studies [17–19]. Next, the aggregated entropy value for each criterion is computed.
The criteria weights are then derived based on these entropy values, effectively translating
the degree of uncertainty into a quantitative weighting metric. See Sałabun et al. [20] for
the steps and equations of the entropy weighting method.

The Gini coefficient weighting method, introduced in Li and Chi [21], applies the
concept of the Gini coefficient, traditionally utilized to measure income inequality [22].
It capitalizes on the variability among criteria values within ACM to assign weights,
considering the differences in data distribution across criteria. It does not require an explicit
normalization of the original ACM. The Gini coefficient for each criterion is calculated by
assessing the differences between pairs of all alternatives for that criterion, adjusted by the
average value of that criterion (somewhat like normalization). Next, the weight of each
criterion is determined by dividing its Gini coefficient by the sum of Gini coefficients of all
criteria, which ensures that the sum of all weights equals one. See Li and Chi [21] for the
steps and equations of the Gini coefficient method.

The mean weighting method is the simplest approach to allocating weights to criteria.
It assumes that all criteria are of equal importance, thereby allocating an equal weight to
each criterion [18]. The mean method does not require any values in ACM, calculations
or normalization, making it straightforward and applicable to cases where a uniform
assessment of criteria is deemed appropriate or as an initial trial.

The method based on the removal effects of criteria (MEREC) is a recent weighting
method introduced by Keshavarz-Ghorabaee et al. [23]. It determines the criteria weights
based on the removal effect of each criterion on the overall performance of alternatives.
A criterion is assigned a higher weight if its removal significantly affects the aggregate
performance assessment. The process begins with the normalization of the ACM using
max normalization; notably, MEREC employs the direct normalization formula in the max
normalization method for minimization objectives as well as the inverse normalization
formula for maximization objectives, which is opposite to the conventional practice (Table 2).
Then, considering all criteria, the overall performance assessments of all alternatives are
calculated, followed by the performance assessments with each criterion removed one
by one. Next, for each criterion, the aggregated absolute deviation is computed based
on these performance assessments. The weight of each criterion is then calculated by
dividing its aggregated absolute deviation by the sum of the aggregated absolute deviations
for all criteria. See Keshavarz-Ghorabaee et al. [23] for the steps and equations of the
MEREC method.

The standard deviation (StDev) weighting method assigns weights to criteria based
on their standard deviation values. It begins by normalizing the original ACM using
max-min normalization as outlined in Diakoulaki et al. [15] and Mukhametzyanov [24].
Next, the standard deviation of each criterion is calculated. The weight of each criterion is
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then determined by dividing its standard deviation by the sum of the standard deviations
of all criteria. See Diakoulaki et al. [15] for the steps and equations of the StDev method.

The statistical variance (StatVar) weighting method closely resembles the StDev
method, with the primary distinction being its use of variance values of criteria to determine
the weights. Essentially, both the StDev and StatVar methods directly operate on the
principle that if the values of a criterion across all alternatives exhibit a small variance (say,
in the extreme case, where all values of this criterion are identical, resulting in a variance of
zero), a small weight should be assigned to that criterion. This is because such a criterion
does not help much in distinguishing the alternatives [25]. See Rao and Patel [26] for the
steps and equations of the StatVar method.

4.2. Subjective Weighting Methods

The analytic hierarchy process (AHP) method, originally developed by Saaty [27],
is one of the most widely applied methods for determining criteria weights based on
decision-makers’ subjective pairwise comparisons. To facilitate this, Saaty’s 1–9 assessment
scale (Table 3) is typically employed. The AHP method begins with constructing a decision
hierarchy, organizing the decision goal (e.g., decide on the optimal renewable energy
source in India), criteria (e.g., installed cost, efficiency, greenhouse gas emission, land
requirement, etc.), and alternatives (e.g., solar, wind, hydro, etc.) into a structured model.
Decision-makers then perform subjective pairwise comparisons, evaluating the relative
importance of each pair of criteria using the Saaty scale. These comparisons are compiled
into a n × n pairwise comparison matrix. Following this, the eigenvalue method is used to
find the priority eigenvector from these matrices, which then determines the weights of
the criteria. Instead of this method, there is a simpler approximation technique (using sum
normalization), which is popular in many applications [28–31].

Table 3. Saaty’s 1–9 pairwise comparison scale.

Scale Compare Between Events x and y
1 Equal importance of x against y
3 Moderate importance of x against y
5 Essential or strong importance of x against y
7 Very strong importance of x against y
9 Extreme importance of x against y

2, 4, 6, 8 Intermediate value between adjacent scales
Any decimal within [1, 9] (e.g., 2.3 and 5.1) Finer scale

Reciprocals (e.g., 1/3 and 1/7) If event x has one of the above numbers assigned to it when compared with event
y, then y has the reciprocal value when compared with x.

In addition to determining criteria weights, it is crucial to recognize that the AHP
method can be further utilized for decision making directly (i.e., act as an MCDM method).
For this, AHP requires decision-makers to conduct subjective pairwise comparisons among
all pairs of alternatives with respect to each criterion, leading to n number of m × m
pairwise comparison matrices (these are different from the pairwise comparison matrix
based on criteria, used for weights in the previous paragraph). According to the original
AHP method in Saaty [27], all of these pairwise comparisons are purely subjective, sourcing
directly from the decision-makers. TA typical ACM, like that in Table 1, is not immediately
compatible with the AHP acting as an MCDM method. However, mapping of the objective
quantitative data to Saaty’s 1–9 scale, like what Si et al. [32] performed, is possible. Further
discussion on AHP as an MCDM method is presented in Section 5. In the present subsection,
the focus is on describing AHP as a subjective weighting method. See Saaty [27] for the
steps and equations of the AHP method.

The best-worst method (BWM), originally developed by Rezaei [33], employs two vectors
of pairwise comparisons to determine the weights of criteria. It yields multiple sets of weights.
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Building on this concept, Rezaei [34] proposed a linear approach that generates a unique set of
weights. This method distinguishes itself by identifying the most and least preferred criteria
(i.e., best and worst criteria that the decision-makers specify) and then uses these benchmarks to
assess the relative importance of all other criteria. BWM utilizes two vectors: the best-to-others
(BO) vector, where the best criterion is compared to all others using a scale from 1 to 9, and
the others-to-worst (OW) vector, which compares all criteria against the worst criterion. The
weights of the criteria are then determined through a linear optimization model that seeks to
minimize the inconsistency among the comparisons. BWM is simple and efficient in deriving
consistent criteria weights. See Rezaei [34] for the steps and equations of the BWM method.

The full consistency method (FUCOM), developed by Pamučar et al. [35], is a novel
subjective weighting approach that derives criteria weights based on pairwise comparisons
with an emphasis on achieving full consistency in the decision-makers’ preferences. It starts
by having decision-makers establish the relative importance of criteria through pairwise
comparisons, arranging them in descending order of importance. Next, decision-makers
specify preference ratios for each pair of criteria, comparing each criterion’s importance
relative to the next. The consistency of these pairwise comparisons is then checked using a
consistency coefficient. If necessary, adjustments are made to ensure the final weight values
satisfy the full consistency condition.

The step-wise weight assessment ratio analysis (SWARA) method, developed by
Keršulienė et al. [36], is another subjective weighting method. Like AHP, it derives weights
based on the decision-makers’ preferences. SWARA begins by arranging the criteria in
descending order of importance as determined by the decision-makers. Following this
initial sorting, the decision-makers need to assign a relative importance value, ranging
from 0 to 1, for each criterion relative to its predecessor, starting from the second criterion.
The subsequent calculations involve deriving the coefficients Kj and Qj using specific
formulas [36]. The final weight for each objective is then determined by normalizing Qj
across all objectives.

Other novel approaches for subjective weighting are RANCOM [37] and KEMIRA [38].

5. MCDM Methods

There are more than 200 MCDM methods, which can be classified into several types, as
shown in Figure 4. This classification is based on the grouping in Ishizaka and Nemery [39]
and Thakkar [40]. The commonly used methods in each type are also shown in Figure 4.
They are outlined in the following subsections, wherein the methods are covered in al-
phabetical order. Detailed steps and equations of each method are available in the re-
spective cited reference. Criteria weights are typically required for the MCDM methods
presented here; the exception is the GRA variant described in Section 5.1, which does not
require weights.
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5.1. Reference Type MCDM Methods

Reference type MCDM methods are a class of decision-making methods that evaluate
and rank alternatives by measuring their performance relative to one or more ideal reference
solutions. These ideal solutions encompass the positive ideal solution having the best values
of each criterion in the ACM, and the negative ideal solution having the worst values of
each criterion in the ACM.

The combinative distance-based assessment (CODAS) method of Keshavarz-
Ghorabaee [41] is underpinned by the core principle of finding the performance score
for each alternative by calculating both Euclidean and Taxicab distances from the negative
ideal solution. Inherently, an alternative that exhibits greater distance from this negative
ideal solution is considered more favorable. As stated in Keshavarz-Ghorabaee [41], if
there are two alternatives that are incomparable according to Euclidean distance, then the
Taxicab distance is used as the secondary measure.

The gray/grey relational analysis (GRA) method, based on the principles of gray
system theory [42], has multiple variants in the MCDM literature. The specific variant we
reference, as outlined by Martinez-Morales et al. [43], is notable by its autonomy from user-
specified inputs (e.g., weight for each criterion). A fundamental step in the GRA method
involves finding the positive ideal solution. Next, the method computes the distances
between each alternative and this ideal solution to compute the gray relational coefficient.
This coefficient assesses the similarity of each alternative to the ideal reference, enabling
the ranking of alternatives.

The linear programming technique for multidimensional analysis of preference
(LINMAP), developed by Srinivasan and Shocker [44], is another method for ranking the
alternatives in the ACM. Like other reference type MCDM methods, a positive ideal solution
needs to be identified. Next, the method involves the calculation of distances between each
alternative and this ideal solution. Finally, the alternative that lies closest to the positive
ideal solution is recommended. This procedure presumes that decision-makers prefer
the alternative closest to the positive ideal solution, thus facilitating a direct and intuitive
assessment of options based on their proximity to this ideal. Note that LINMAP can also
be employed to estimate the criteria weights using the linear programming technique. See
Srinivasan and Shocker [44] for the detailed steps and equations of the LINMAP method
including the linear programming formulation used to calculate weights. Alternatively,
refer to Sayyaadi and Mehrabipour [45] for the calculation of distances and rankings for
the alternatives.

The multi-attributive border approximation area comparison (MABAC) method of
Pamučar and Ćirović [46] focuses on calculating the sum of the distances of alternatives
from a unique reference solution known as the border approximation area matrix. This
matrix is derived from the product of the weighted normalized values of each criterion
across all alternatives. Like other MCDM methods, MABAC starts with the construction
of a weighted normalized ACM from the original ACM. This is followed by determining
the border approximation area value for each criterion, collectively forming the border
approximation area matrix. Next, the distances between each alternative and the border
approximation area matrix are computed. These distances are used to derive assessment
scores and rankings for the alternatives.

The preference ranking on the basis of ideal-average distance (PROBID) method,
developed by Wang et al. [47], distinguishes itself by evaluating alternatives against a
spectrum of reference solutions. This spectrum encompasses a hierarchy of ideal solutions,
starting from the most positive ideal solution and extending through lesser tiers (e.g., 2nd
and 3rd most positive ideal solutions) down to the most negative ideal solution. Further-
more, the PROBID method incorporates an average solution to provide a comprehensive
baseline for comparison. Its procedure involves calculating the distances between each
alternative and the different tiers of ideal solutions and uniquely integrates these distances
in an inversely weighted manner (e.g., coefficients 1, 1/2, and 1/3 are multiplied with the
distances to the most positive ideal, 2nd positive ideal, and 3rd positive ideal solutions,
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respectively). This integration, combined with the distance from the average solution, is
used to compute an overall performance score.

The technique for order of preference by similarity to ideal solution (TOPSIS),
formulated by Hwang and Yoon [7], is probably the most prominent reference type MCDM
method, employed extensively across a variety of disciplines. It requires the identification
of two reference solutions, that is, the positive ideal and the negative ideal solutions.
TOPSIS evaluates alternatives based on their distances from these reference points. The
top-ranked alternative is that having the smallest distance to the positive ideal solution and
simultaneously the largest distance to the negative ideal solution. This dual assessment in
TOPSIS provides a more balanced evaluation of the alternatives.

Visekriterijumska Optimizacija i Kompromisno Resenje (VIKOR), a phrase of Ser-
bian origin, standing for multi-criteria optimization and compromise solution, is another
commonly used reference type MCDM method. It was originally introduced as one appli-
cable technique by Opricovic [48], anchored in the principle of identifying a compromise
solution. Like TOPSIS, it needs two reference solutions: the positive ideal and the negative
ideal solutions. These are utilized to compute the utility and regret measures for each
alternative, where utility assesses how closely an alternative approaches the positive ideal
solution, while regret measures the extent of deviation from the negative ideal solution.
Alternatives are then ranked based on a composite index that integrates these two measures,
ensuring a balanced evaluation. As described in Opricovic and Tzeng [49], if alternatives
are close in terms of the utility measure, the regret measure serves as a secondary criterion.
See Opricovic and Tzeng [49] for the steps and equations of the VIKOR method.

5.2. Aggregation Type MCDM Methods

Aggregation type MCDM methods are a class of decision-making methods that evalu-
ate and rank alternatives by aggregating their weighted performance scores (often through
additive or multiplicative operations) across multiple criteria.

The analytic hierarchy process (AHP), mentioned earlier in Section 4, can be extended
beyond determining the weights of n criteria, to function as an MCDM method for ranking
alternatives. After constructing the hierarchy of overall decision goal, criteria, and alter-
natives, it requires decision-makers to employ Saaty’s 1–9 scale and provide subjective
pairwise comparisons among all pairs of m alternatives with respect to each criterion,
effectively leading to n number of m × m pairwise comparison matrices. As per the original
AHP method described in Saaty [27], all of these pairwise comparisons are entirely subjec-
tive, sourced directly from the judgments of the decision-makers. For each m × m pairwise
comparison matrix, AHP calculates the local priority value of each alternative with respect
to the corresponding criterion using a technique like that utilized for determining criteria
weights (e.g., eigenvalue method or its approximation technique); this results in a local
priority vector (sized m × 1) for each criterion.

Subsequently, AHP iterates through all n criteria, calculates, and amalgamates these
m × 1 priority vectors into an m × n local priority matrix, in which each row indicates
the priority value of an alternative with respect to all n criteria. This m × n local priority
matrix is then multiplied by the n × 1 weights vector to aggregate into an m × 1 vector
representing the global priorities of the m alternatives. The alternative with the highest
global priority value is ranked as the top choice. Note that the ACM with quantitative and
objective (i.e., not subjective judgements from decision-makers) data or measurements (e.g.,
the one in Table 1) is not necessary for MCDM by AHP. However, instead of subjective
values for pairwise comparison matrices, the ACM can be transformed to Saaty’s 1–9 scale,
as demonstrated in Si et al. [32] for the selection of green technologies to retrofit existing
buildings considering three criteria: energy saving, investment cost, and payback period.

The analytic network process (ANP), developed by Saaty [50] as an extension of AHP,
addresses complex decision-making situations where the elements of the problem are inter-
dependent and cannot be structured hierarchically. Unlike AHP, which organizes factors
in a strict hierarchy, ANP utilizes a network structure that allows for multiple levels of
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interactions between decision layers and criteria. This method involves building a network
of criteria and sub-criteria that not only influence one another, but also contribute to the
overall decision goal. Decision-makers use pairwise comparisons not only to determine
the weights of criteria. but also to assess the influence of different elements on each other
within the network. These comparisons are then used to aggregate the influences and
priorities across the network to aid decision making.

The complex proportional assessment (COPRAS) method, proposed by Zavadskas
et al. [51], is another aggregation type MCDM method. It employs a systematic approach
to rank alternatives based on their relative importance. After constructing the weighted
normalized ACM, COPRAS calculates the sum of the weighted normalized value for all
benefit criteria and the sum of the weighted normalized value for all cost criteria, for each
alternative. Then, the two sums from each alternative are aggregated to determine the
relative importance of each alternative according to specific equations of the method [51].
The highest scoring alternative is the top-ranked choice.

The Faire Un Choix Adéquat (FUCA) method, described in Fernando et al. [52], is
a simple aggregation type MCDM method. It operates by initially assigning ranks to
alternatives for each criterion. Specifically, with respect to one criterion, the best alternative
receives rank 1, and the worst alternative receives rank m. Depending on whether the
criterion is for maximization or minimization, the best value refers to the largest or smallest,
respectively. After ranking alternatives for all criteria, FUCA performs aggregation by
computing a weighted sum of these ranks for each alternative. The alternative with the
smallest aggregated rank score is recommended as the top choice.

The MOO on the basis of ratio analysis (MOORA) method, introduced by Brauers
and Zavadskas [14], is extensively applied in various fields for MCDM. After constructing
the weighted normalized ACM, the performance score for each alternative is calculated by
subtracting the aggregate of the cost criteria values from the aggregate of the benefit criteria
values. The alternative having the highest performance score is the top-ranked choice.

The multiplicative exponent weighting (MEW) method, also known as the weighted
product method or model (WPM), described in Miller and Starr [53], is another aggre-
gation type MCDM method. After constructing the normalized ACM, typically by max
normalization, MEW raises the normalized criteria values to the power of their correspond-
ing weights [54]. Then, for each alternative, this method aggregates these exponentiated
criteria values by multiplying them together. The alternative that yields the highest product
(i.e., performance score) from this multiplication is deemed the top-ranked choice. See
Wang and Rangaiah [55] for the detailed steps and equations of the SAW method.

The simple additive weighting (SAW) method, also known as the weighted sum
method or model (WSM), described in Fishburn [56] and MacCrimmon [57], is probably
the simplest aggregation type MCDM method. After constructing the weighted normalized
ACM, typically by max normalization, this method sums up the weighted normalized
criteria values for each alternative. The alternative with the highest sum (i.e., performance
score) is the top-ranked choice. See Wang and Rangaiah [55] for the steps and equations of
the SAW method. There is also a weighted aggregated sum product assessment (WASPAS)
method proposed by Zavadskas et al. [58]; this utilizes a weighted sum of the performance
scores from both SAW and MEW [59].

5.3. Outranking Type Methods

Outranking type MCDM methods are a class of methods that evaluate and rank the
alternatives based on pairwise comparisons across all criteria. They establish an outranking
relationship by determining the degree to which one alternative is preferred over another.

The ELECTRE (Elimination et Choix Traduisant la Realité, translated to: Elimina-
tion and Choice Expressing the Reality) family of methods were originally proposed by
Roy [60]. These are distinguished by their use of outranking relations, which establish
whether one alternative is preferable to another based on a series of pairwise comparisons
across all criteria. These methods assess the strengths and weaknesses of each alternative,
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applying thresholds of significance and veto to manage the contradictions inherent in
decision making. It involves constructing a preference structure among alternatives by
considering both the strength of evidence that one alternative outranks another and the
intensity of any veto that overrides a suggested preference. ELECTRE methods have been
developed and refined over a few decades, with several variants like ELECTRE I, II, III,
and IV as well as different extensions. See Roy and Vanderpooten [61] for the steps and
equations of the ELECTRE family methods.

PROMETHEE (Preference Ranking Organization Method for Enrichment Evalua-
tions), developed by Brans et al. [62], is another outranking type MCDM method. It begins
with the calculation of preference indices for each criterion, which quantify the degree of
preference of one alternative over another. These indices are generated using predefined
preference functions that can be customized to reflect specific decision-making contexts
including the importance of certain thresholds that signify substantial differences in criteria
values. The calculated preference indices for each pair of alternatives are then employed to
establish a global outranking score, which serves to construct a comprehensive preference
structure across all alternatives. This structure effectively ranks the alternatives from the
most to the least preferred, based on their global outranking scores. Like the ELECTRE
methods, PROMETHEE also has several variants, such as PROMETHEE I and II, which
provide partial and complete ranking solutions, respectively. See Brans and De Smet [63]
for the steps and equations of PROMETHEE.

5.4. MODM Type Methods

As mentioned in Section 1, some of the literature has categorized MODM as a subset
of MCDM [7,40]. MODM methods focus on finding optimal solutions for optimization
problems with two or more objectives. Essentially synonymous with MOO, they aim to
identify solutions that best satisfy all objectives simultaneously.

In the context of chemical and process engineering, commonly used MOO method-
ologies, such as the elitist non-dominated sorting genetic algorithm II (NSGA-II) and
multi-objective particle swarm optimization (MOPSO), are less frequently applied directly
within the MCDM framework itself. Instead, they are typically utilized to generate a
set of non-dominated solutions prior to MCDM. However, linear programming and its
extension, goal programming, prominently feature in MCDM literature. For example,
LINMAP method described in Section 5.1 can utilize linear programming to determine
criteria weights, followed by steps for ranking alternatives and decision-making.

Goal programming is a technique within the field of MCDM [64]. It expands upon
linear programming, enabling decision-makers to define and prioritize specific goals, each
with its own target value. The method focuses on minimizing the deviations from these
target values, effectively handling trade-offs among competing objectives by assigning
priority levels and weights to each goal. This prioritization helps in identifying a solution
that best aligns with the preferences of decision-makers and strategic objectives. Commonly
seen in MCDM literature, goal programming provides a structured framework for making
complex decisions in a systematic and quantified manner. See Jones and Tamiz [64] for the
recent developments in goal programming.

Both LINMAP and GP find one compromise or trade-off solution for the conflicting
criteria; thus, they effectively combine solving MOO problem and MCDM. On the other
hand, methods such as NSGA-II and MOPSO solve the MOO problem to find many
Pareto-optimal solutions.

6. MCDM Programs

There is a need for robust programs that ensure accurate and consistent calculations in
MCDM. While some tools have one or two MCDM methods implemented, the availability
of comprehensive programs that integrate multiple methods is very limited. Such programs
are invaluable for conducting thorough sensitivity analyses and comparing the outcomes
of various MCDM methods. In this section, we introduce two notable programs that
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address this need: EMCDM, an Excel VBA-based program, and PyMCDM, a Python-
based library. Both these programs, described in the following subsections, facilitate the
application of multiple MCDM methods, offering flexibility and depth for researchers and
practitioners alike.

6.1. EMCDM (Excel VBA-Based MCDM) Program

Our group has developed a comprehensive computer program for MCDM, named
EMCDM, which is based on Microsoft Excel 365 VBA [30,65]. We chose Excel VBA because
of the popularity of MS Excel in both academia and industry. EMCDM has already been
openly shared with many interested researchers, practitioners, and students. To utilize
this program, decision-makers simply need to follow the five steps shown in Figure 5. The
“Overview” sheet provides a brief guide on how to use the program, and the “Results
from MOO” sheet is where decision-makers input their ACM in the first step. Next, in
the second step, the decision-makers are required to provide essential information such as
the number of objectives (or criteria), number of decision variables, number of constraints,
and number of solutions (or alternatives). Note that the number of decision variables
and number of constraints are optional and can be given as zero if not applicable. In
the third step, decision-makers are to choose the type of criteria, where “Max” denotes
maximization (or benefit), and “Min” indicates minimization (or cost). The fourth step
involves entering weights, which can be manually entered by the decision-makers (ensuring
the sum of the weights equals one) or computed using one of the eight weighting methods
displayed on the right side of the main interface (Figure 5). Finally, the decision-makers
can click an individual MCDM method that they wish to apply (e.g., FUCA) from the left
side of the main interface, to obtain its calculation results; or click the “Run All Methods”
button to obtain results from all 16 MCDM methods implemented in EMCDM.
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6.2. PyMCDM (Python-Based MCDM) Program

Recently, Kizielewicz et al. [66] developed a comprehensive Python-based MCDM
program/library, named PyMCDM. This library leverages the capabilities of several well-
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known Python packages. It primarily utilizes the Numpy library for mathematical calcula-
tions and data representation through ndarray objects and Matplotlib for data visualization.
Additionally, it incorporates elements of the SciPy libraries. PyMCDM (version 1.1.0), as
presented in Kizielewicz et al. [66], has fifteen MCDM methods (e.g., CODAS and TOPSIS),
ten weighting methods (e.g., Entropy and CRITIC), and eight normalization methods (e.g.,
Sum and Vector). Users of this library need a basic understanding of Python programming
and have their Python environment set up properly. For those interested in exploring this
tool, Kizielewicz et al. [66] provides sample code illustrating how to use it. Alternatively,
interested readers may refer to the example provided in Table 4 as the starting point. We
tried both EMCDM and PyMCDM for this example and obtained the same results for the
CODAS method with entropy weights.

Table 4. Sample code for using the PyMCDM (version 1.1.0) program with an example ACM from
Chakraborty and Zavadskas [67].

# !pip install pymcdm
import numpy as np
from pymcdm.methods import CODAS
from pymcdm.weights import entropy_weights
from pymcdm.helpers import rrankdata

# Define the alternatives-criteria matrix (ACM)
# 7 alternatives and 5 criteria
ACM = np.array([[60, 0.4, 2540, 500, 990],

[6.35, 0.15, 1016, 3000, 1041],
[6.8, 0.1, 1727.2, 1500, 1676],
[10, 0.2, 1000, 2000, 965],
[2.5, 0.1, 560, 500, 915],
[4.5, 0.08, 1016, 350, 508],
[3, 0.1, 1778, 1000, 920]], dtype=‘float’)

# Find criteria weights using entropy weighting method
weights = entropy_weights(ACM)

# Define the type of each criterion, 1 for maximization, −1 for minimization
types = np.array ([1, −1, 1, 1, 1])

# Instantiate a CODAS object
codas = CODAS()

# Compute the performance scores and ranking of alternatives
performance_scores = codas(ACM, weights, types)
ranking = rrankdata(performance_scores)

for p, r in zip(performance_scores, ranking):
print(p, r)

Aside from the EMCDM program and the PyMCDM library described here, several
other MCDM tools are also available. One of them is the scikit-criteria [68], a Python
package that integrates with the broader scikit-learn environment and offers MCDM
methods such as TOPSIS, VIKOR, and ELECTRE, making it compatible with other data
science and machine learning workflows. Another Python library is pyDecision [69], which
provides multiple weighting schemes and a variety of MCDM methods including SAW,
WASPAS, and MOORA.

7. MCDM Studies in Chemical Engineering

To find the reported studies on MCDM and its use in chemical engineering, the
Scopus database was chosen and searched using several search terms. Search settings are
summarized in Table 5. In the Scopus database, the subject area of chemical engineering has
numerous journals; of these, some journals are broad, covering all engineering disciplines
or science (including chemistry). Such broad journals are manually excluded to focus on
those journals closely related to chemical engineering. After this screening, the number
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of journals included in the search was still large, at more than 160. In other words, the
search for MCDM studies in chemical engineering is sufficiently comprehensive and covers
almost all journals of interest to chemical engineers. Here, MCDM studies refer to those
articles that have applied and/or analyzed MCDM procedures and/or methods. Likewise,
MOO studies refer to the articles that have applied and/or analyzed MOO.

Table 5. Settings for search in the Scopus database.

Search Fields Title, Abstract, Keywords
Publication Years 2000 to 2023

Subject Area Chemical Engineering (see text for some journals excluded)
Document Type Journal article

Language English

Search Terms for MCDM studies MCDM, MADM, MCDA, or MCA with each of these as full
form with/without hyphen and acronym

Search Terms for MOO studies
Multi-objective optimization; tri-objective optimization or
bi-objective optimization with each of these with/without

hyphen and optimization (instead of optimization)

Important details of the search adopted for finding studies on MCDM applications are
as follows.

Database and Keywords: We conducted a systematic search using the Scopus database,
employing search words such as MCDM, MADM, MCDA, or MCA with each of these as full
form with/without hyphen and acronym (Table 5), in the title, abstract, and/or keywords,
to capture a comprehensive set of relevant articles. For MOO, we used keywords including
multi-objective optimization; tri-objective optimization, or bi-objective optimization with
each of these with/without hyphen and optimization (instead of optimization).

Timeframe: We limited the search to articles published from the years 2000 to 2023
(both inclusive) to reflect recent and relevant advancements.

Subject Area and Document Type: Searches were refined to focus on chemical engi-
neering journals. Document type was limited to journal articles.

Screening: We screened the titles of journals in the chemical engineering subject area
(as categorized by Scopus) and excluded those covering all engineering disciplines or
science. Some examples of excluded journals are Applied Sciences Switzerland, Cogent En-
gineering, International Journal of Molecular Sciences, International Journal of Mechanical
and Production Engineering Research and Development, Defense Science Journal, Process
Biochemistry, Chemistry A European Journal, Journal of Biotechnology, and Journal of
Science and Engineering. This screening was to ensure that each article was related to
MCDM applications in chemical and process engineering.

The Scopus search with the terms for MCDM studies (Table 5) identified 931 articles
published in the period: 2000 to 2023. As shown in Figure 6, applications of MCDM
in chemical engineering have been increasing steadily. In particular, the increase was
significant from 2020, with more than 80 journal articles in a year. There are studies
(including some of our papers) that employed one or more MCDM methods or investigated
the selection of one of the alternatives but did not contain the search terms used for MCDM
studies, in the title, abstract, or keywords. Therefore, these were not part of the 931 articles
found by the search for MCDM studies. As a result, there were more relevant papers not
captured by the present search. For comparison with a closely related area, another search
was performed using the search terms for MOO studies in Table 5, in the same 160+ journals
searched for MCDM studies. This search found a total of 2753 journal articles, which was
thrice the number for MCDM studies. This trend of more studies on MOO compared to
those on MCDM could be seen throughout the search period (Figure 6).
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Table 6 lists 23 journals in the chemical engineering area that published 10 or more
articles on MCDM studies from the year 2000 to 2023. The total number of articles cov-
ered by these 23 journals was 477 or about 50% of the 931 articles found by the MCDM
search. The remaining 50% was from the remaining more than 140 journals that published
one to eight articles during the search period. Almost all journals in Table 6 were within
the scope of chemical engineering. Specifically, the journals with a high number of articles
were Processes (with 64 articles), Journal of Environmental Planning and Management
(with 41 articles), and Chemical Engineering Transactions (with 33 articles).

Table 6. Journals that published 10 or more articles on MCDM from the year 2000 to 2023.

No. Journal Title Number of Articles

1 Processes 64
2 Journal of Environmental Planning and Management 41
3 Chemical Engineering Transactions 33
4 Fuel 26
5 Process Integration and Optimization for Sustainability 26
6 Process Safety and Environmental Protection 24
7 Computers and Chemical Engineering 22
8 International Journal of Sustainable Energy 22
9 Desalination 20
10 Energy Sources Part B: Economics Planning and Policy 20
11 Journal of Loss Prevention in The Process Industries 18
12 Biofuels Bioproducts and Biorefining 17
13 Bioresource Technology 17
14 Chemical Engineering Journal 17
15 Fibers and Polymers 16
16 Industrial and Engineering Chemistry Research 15
17 ACS Sustainable Chemistry and Engineering 14
18 Chemometrics and Intelligent Laboratory Systems 12
19 Computer Aided Chemical Engineering 12
20 Environmental Progress and Sustainable Energy 11
21 Bioresources 10
22 Ceramics International 10
23 Journal Of Colloid and Interface Science 10
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Table 7 recognizes the researchers who published four or more journal articles on
MCDM studies during the search period from 2000 to 2023. The total number of researchers
in this table was 27, and their publications totaled to 155 (out of 931 found by the search for
MCDM studies). At least one paper from each of these active researchers is reviewed in
the next section. In all, the researchers who studied MCDM in chemical engineering came
from more than 80 countries, which shows that MCDM studies in chemical engineering
are widespread throughout the world. The top five countries with a high number of
contributors to MCDM studies in chemical engineering were China, India, Iran, the United
States of America, and Turkey with 181, 106, 76, 73, and 54 articles, respectively. In total,
these articles accounted for 490, or about 53% of 931 found by the Scopus search for
MCDM studies.

Table 7. Researchers who published four or more journal articles on MCDM from the year 2000
to 2023.

Names of Researchers Number of Articles

Boran, F.E., Ren J. 9

Promentilla, M.A.B. 8

Kalita, K.; Stuart, P.R.; Wang, C.N. 7

Aviso, K.B.; Boran, K.; Dong, L.; Feizizadeh, B.; Hasanzadeh, R.; Kokot, S.;
Linkov, I.; Majumdar, A.; Shen, W.; Tan, R.R. 6

Azdast, T.; Farid, S.S.; He, C.; Wang, Z. 5

Gun’ko, V.M.; Moghassem, A.R.; Polatidis, H.; Rangaiah, G.P.;
Shanmugasundar, G.; Todeschini, R.; Yang, A. 4

As described in Section 2 and depicted in Figure 2, the MCDM procedure involves
the steps of normalization, weighting, and ranking, and there are different methods for
each of these steps. Each MCDM method is associated and generally used with a particular
normalization method, but this is not so with the weighting method (i.e., different weighting
method can be selected for use with an MCDM method). To find chemical engineering
studies using common weighting methods, a search for each of the chosen weighting
methods was conducted within the 931 journal articles found on MCDM studies. This
type of search for the entropy, BWM, CRITIC, variance, and standard deviation methods
found 95, 39, 30, 22, and 12, respectively. These results show that the entropy method for
weights is the most popular for MCDM in chemical engineering, followed by the BWM
and CRITIC methods.

Next, to learn about the use of MCDM methods in chemical engineering applications, a
separate search was conducted for each of the methods that were thought to be popular. For
this, settings for search fields, publication year, subject area, document type, and language
were the same as those in Table 5. However, the search terms were different, and these are
listed in Table 8 along with the number of journal articles retrieved by the search for each
MCDM method. Note that these searches for articles on using MCDM methods were not
within the 931 journal articles found on MCDM studies. The reason for this was to capture
those articles used and mention a particular MCDM method in the title, abstract, and
keywords, but did not include the search terms used for MCDM studies (stated in Table 5).

Note that articles that used an MCDM method but did not state that method in the
title, abstract, and keywords were not captured in the search for studies using different
MCDM methods. Hence, there may be more articles that employed an MCDM method
in chemical engineering studies, in addition to the search results in Table 8. According to
this table, the most popular MCDM method used in chemical engineering is AHP, which
occurred in 738 articles. As outlined in the earlier sections, AHP can be used for criteria
weights as well as an MCDM method. Hence, these 738 articles might have used AHP
for criteria weights or ranking the alternatives. AHP is followed by TOPSIS and GRA
with nearly equal numbers of articles (368 and 367, respectively). The fourth most popular
MCDM method in chemical engineering is ANP (with 166 articles). These findings are
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not surprising, since these four methods are some of the earliest methods, which were
proposed about 40 years ago. MCDM methods—PROMETHEE, VIKOR, SAW (or WSM),
Goal Programming, CODAS, and LINMAP—occurred in 55 to 29 articles in chemical
engineering (Table 8). On the other hand, the number of journal articles found for each of
ELCTRE, FUCA, MOORA, COPRAS, MEP/WPM, and MABAC, was less than 20.

Table 8. MCDM methods and the number of journal articles in chemical engineering using them
during the period 2000 to 2023.

No. MCDM Method and Search Terms Used Number of Journal Articles

1 Analytic Hierarchy Process or AHP 738
2 Technique for Order of Preference by Similarity to Ideal Solution or TOPSIS 368
3 Gray Relational Analysis or Grey Relational Analysis or GRA 367
4 Analytic Network Process or ANP 166
5 Preference Ranking Organization Method for Enrichment Evaluation or PROMETHEE 55
6 Viekriterijumsko Kompromisno Rangiranje or VIKOR 46
7 Simple Additive Weighting (SAW) or Weighted Sum Method (WSM) 42
8 Goal Programming 41
9 Combinative Distance-Based Assessment or CODAS 30
10 Linear Programming Technique for Multidimensional Analysis of Preference or LINMAP 29
11 Elimination and Choice Translating Priority or ELECTRE 19
12 Faire Un Choix Adéquat or FUCA 14
13 MOO on the Basis of Ratio Analysis or MOORA 12
14 Complex Proportional Assessment or COPRAS 8

15 Multiplicative Exponent Weighting (MEP) or Weighted Product Model or Weighted Product
Method (WPM) 6

16 Multi-attributive Border Approximation Area Comparison or MABAC 3

As part of this research, a bibliometric review was performed using VOSviewer
software version 1.6.20. This free program can be used to create maps of the authors, their
countries, keywords, etc. The input data file for this software was the Scopus search data,
which was exported in csv format from Scopus. Figure 7 shows the co-authorship map
of different countries. The size of the circle of a country indicates its greater participation
in research on MCDM applications in chemical engineering. The number of links (edges)
of a country with other countries shows the level of cooperation, and the strength of each
cooperation is shown by the thickness of the connecting edges (i.e., a thicker line shows a
stronger link and vice versa). According to Figure 7, researchers from China (14.1% out
of the articles found by the search), India (8.5%), Iran (6.6%), the United States (6.1%),
Turkey (4.3%), United Kingdom (3.7%), and Canada (3.6%) have contributed the most
articles. In terms of the strength of cooperation, China, Saudi Arabia, and Iran had more
link strength (Figure 8a–c).
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The journal articles found on the application of MCDM methods in chemical engi-
neering were further investigated by analyzing the relationship between keywords related
to chemical engineering with those related to MCDM, utilizing the VOSviewer program.
Figure 9 illustrates the co-occurrence of the authors’ keywords in the published work. To
prepare this figure, the minimum number of occurrences of a keyword was set at 5. As
expected, “multi-criteria decision making” and closely related phrases were keywords
in many papers. MCDM methods such as TOPSIS, entropy, and fuzzy AHP can also be
seen in Figure 9, which indicate their frequent occurrence (compared to others) in the
authors’ keywords.

Figure 10 shows the degree of association of four keywords: “sustainability” (Figure 10a),
“life cycle assessment” (Figure 10b), “renewable energies” (Figure 10c), and “desalination”
(Figure 10d), with keywords related to MCDM. The number of links for the sustainability
keyword was 23 and the total link strength (TLS) was 39. These were 18 links and 24 TLS for
the life cycle assessment keyword, 17 links and 20 TLS for the renewable energy keyword,
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and 13 links and 16 TLS for the biorefineries keyword. These numbers indicate the greater
application of MCDM methods in these areas of chemical and process engineering.
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We acknowledge a few limitations in our approach to the literature review and selec-
tion. First, our review was limited to journal articles indexed in the Scopus database, which,
while extensive, may omit relevant studies indexed in other databases. Second, our focus
was specifically on the chemical and process engineering domain; for this, we chose the
subject area of chemical engineering in Scopus and manually excluded some journals cover-
ing all engineering disciplines or science (including chemistry). While this scope and focus
were sufficient to cover more than 160 journals and for a comprehensive review of MCDM
applications in chemical and process engineering, they may not cover all journals in related
areas such as bioprocess engineering, energy, food processing, membrane technology, and
pharmaceutical engineering.

8. Overview of Selected Journal Articles on MCDM Studies

Selected journal articles on MCDM studies in chemical and process engineering are
summarized in chronological order in Table 9. As stated earlier, these articles covered
at least one paper by the active researchers with four or more articles on MCDM, as
listed in Table 7. These articles and five highly cited articles are briefly reviewed in the
following paragraphs.
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Table 9. Summary of the selected journal articles on MCDM studies in chemical engineering.

Reference Application No. of
Criteria

No. of
Alternatives

Weighting
Method(s) MCDM Method(s) Program/

Software

Ni et al. [70]
Ranking the near-infrared
spectrum in the analysis of

potato crisps
4 84 Not stated PROMETHEE

and GAIA
Decision Lab 2000

software

Valipour and
Moghassem [71]

Selecting suitable yarn for Weft
knitting process 7 48 Manual weights PROMETHEE Not stated

Majumdar and Singh [72] Determination of the quality
value of cotton fibers 5 17 Optimal weight

found by GA TOPSIS Not stated

Grisoni et al. [73] Eight datasets of different type
from the literature 3 to 27 7 to 86 Different weighting

methods
Modified Hasse

diagram Not stated

Polatidis et al. [74]
Comparison of ELECTRE III and

PROMETHEE II for a
geothermal application

5 4 Manual weights ELECTRE III and
PROMETHEE II Not stated

Boran [75] Evaluation of power plants in
Turkey 5 5 Manual weights Fuzzy TOPSIS Not stated

Yang et al. [76]
Formulation conditions for

high-concentration monoclonal
antibodies

2 9 Manual weights SAW (WSM) Not stated

Boran [77] Evaluation of renewable energy
resources 12 5 AHP Fuzzy VIKOR Not stated

Jenkins and Farid [78]

Cost-effective bioprocess design
for the manufacture of

allogeneic
CAR-T cell therapies

7 7 Various weights
Additive weighting

technique
(like SAW)

Coding in Visual
Basic

for Application
(VBA)

Ren et al. [79] Life cycle sustainability
assessment under uncertainties 14 5 Interval BWM Interval TODIM Not stated

Rycroft et al. [80] Generic example 4 4 Not stated Not stated Not stated

Ongpeng et al. [81] MCA in energy retrofit of
buildings 5 3 AHP VIKOR Not stated

Bernardo et al. [82] Hydrogen solid-state storage 4 4 Manual weights Fuzzy MCDM Not stated

Hasanzadeh et al. [83] Waste polymeric foam
gasification 3 2 Manual weights TOPSIS Not stated

Liu et al. [84] Sludge valorization process for
value-added products 11 4 Fuzzy BWM Fuzzy

PROMETHEE II Not stated

Wang et al. [85] Sustainable supplier selection
with technology 4.0 evaluation 12 5 Ordinal priority

approach (OPA) MARCOS Not stated

Bele et al. [86] Production of renewable and
sustainable biofuels 4 2 Not stated Not stated

I-BIOREF software
(Version 2.0)

developed by
Natural Resources

Canada

Feizizadeh et al. [87] Forest fire risk modeling 13 Not applicable ANP Not applicable Not applicable

Hasanzadeh et al. [88] Plastic waste gasification 5 7 Manual weights TOPSIS, GRA Not stated

Shanmugasundar et al.
[89] Selection of Industrial Robots

Case I (3)
Case II (5)
Case III (6)

Case I (5)
Case II (7)
Case III (4)

Mean, Standard
deviation, Entropy,
Preference selection

index methods

SAW, TOPSIS,
LINMAP, VICOR,

ELECTRE-III, NFM
Not stated

Sun et al. [90]
Design of side-stream extractive

distillation for separation of
azeotropic mixtures

3 21 obtained by
MOSPSO Entropy method TOPSIS

Coding and
calculations in

MATLAB (2023)

Wang et al. [91] Study of MPC using ML, MOO
and MCDM 3 30 Found by

NSGA-II CRITIC PROBID
Coding and

calculations in
Python

Yang et al. [92] Design of extractive dividing
wall column 3 30 obtained by

MOPSO Not needed GRA
Coding and

calculations in
MATLAB

Ni et al. [70] analyzed the NIR spectra of potato chips (i.e., a complex product) with the
help of PROMETHEE and GAIA (Geometrical Analysis for Interactive Aid). Four similar
types of ‘original flavor’ potato chips from different manufacturers were chosen, and there
were 20 samples for each type. Apart from the collection of the NIR data, the samples were
analyzed for four quality parameters (i.e., fat, moisture, acid, and peroxide values of the
extracted oil by standard methods). The data matrix consisted of 84 potato chips as the
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alternatives and 4 mean NIR spectral objects of the groups (Aavg, Bavg, Cavg, and Davg)
as the criteria. The alternatives were compared according to the PROMETHEE outflow φ

rank order. The results showed that, quantitatively and qualitatively, the spectral objects
tended to separate into the four groups of potato chips but there was some overlapping
of samples.

Valipour and Moghassem [71] also applied PROMETHEE to select suitable drawing
frame variables for 30 Ne rotor spun yarn intended to be used in the weft knitting pro-
cess. The performances of three variables in a drawing frame were evaluated based on
seven quality parameters (criteria) of forty-eight rotor spun yarns using PROMETHEE.
Sensitivity analysis was also performed to assess the stability of the final ranking.

Majumdar and Singh [72] proposed a new algorithm based on the combination of
TOPSIS and genetic algorithm (GA). The proposed method was applied to determine the
quality value of cotton fiber considering two yarn properties, namely, yarn tenacity and
unevenness. The weights of the cotton fiber properties were optimized by GA, whereas
TOPSIS helped to select cotton fiber with the best quality value.

Grisoni et al. [73] proposed a modified version of the Hasse diagram, which is useful
for the partial order ranking of importance for MCDM, to reduce the number of incompara-
bilities and derive the weighted rankings of alternatives (termed as objects in the paper).
They demonstrated the effectiveness of the modified version on eight datasets (of which
four were of chemical and environmental interest, two on bibliometric/journal metrics,
and two on a comparison of classification methods and cities).

Polatidis et al. [74] compared the ELECTRE III and PROMETHEE II methods using
alternative investment scenarios for a particular geothermal field. Five criteria, namely, TOE
(tons of oil equivalent) saved/yr, environmental impact, jobs created, return on investment,
and risk were employed, and four scenarios were considered. The data for these were
taken from the authors’ earlier study. Both the ELECTRE III and PROMETHEE II methods
provided similar results on ranking the four scenarios in this case study.

Boran [75] used fuzzy TOPSIS to evaluate the power plants in Turkey. Fuzzy TOPSIS
was applied due to incomplete information in the evaluation process. Five power plants
(fossil fuels-based, geothermal, wind, hydro, and gas-based power plants) were selected as
alternative power plants. Five criteria: efficiency (%), installation cost (USD/kW), electricity
cost (USD/kWh), carbon dioxide emissions (kgCO2/kWh), and social acceptance were
considered in the evaluation process. Hydro-based power plants were the top choice due
to their low emissions of CO2.

Yang et al. [76] employed MCDM to identify the optimal formulation conditions for
producing high-concentration monoclonal antibodies. In one framework, they used WSM
(SAW) for two criteria, namely viscosity and aggregation scores to rank nine formulation con-
ditions, and also analyzed the effect of weights to find the optimal formulation conditions.

Boran [77] evaluated the renewable energy resources, namely wind, hydro, solar,
geothermal, and biomass, for Turkey using the intuitionistic fuzzy VIKOR method. For the
evaluation, four main criteria—technological, environmental, sociological, and economic,
and twelve sub-criteria—were used; these involved both quantitative and qualitative
criteria. The sensitivity analysis showed that wind power was the first-ranked option
in fourteen out of twenty-four scenarios, and the second-ranked option in nine out of
twenty-four scenarios.

Jenkins and Farid [78] developed a decision tool to evaluate seven bioprocess flow-
sheets for the manufacture of an allogeneic CAR-T cell therapy, from an economic and
operational perspective. The flowsheets contain different bioprocess technologies, namely
T-flasks, gas permeable vessels, rocking motion bioreactors, an integrated processing
platform, magnetic-activated cell sorting platform (MACS) purification, and spinning mem-
brane filtration technology. These were evaluated with seven financial and operational
criteria: cost of goods per dose, fixed capital investment, ease of operation, process con-
trol, validation effort, ease of scale-up, and process containment. MCDM with sensitivity
analysis showed that the flowsheet, consisting of a rocking motion bioreactor, spinning
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filter membrane, and a standalone MACS platform, as the preferred process design for the
criteria considered.

Ren et al. [79] developed a novel MCDM method (namely interval TODIM, an acronym
in Portuguese for interactive and multi-criteria decision making), which can address the
decision-making matrix with interval numbers, to prioritize industrial systems under data
uncertainties. The interval BWM was developed by extending the traditional BWM to
interval conditions. Five alternative industrial process routes (namely pulverized coal,
combined cycle gas turbines, nuclear-pressurized water reactor, offshore wind powder-
based electricity, and solar-photovoltaics) for electricity generation in the UK were studied.
A total of fourteen criteria including four economic criteria (capital cost, operation and
maintenance cost, fuel cost, and total cost), six environmental criteria (global warming
potential, ozone depletion, acidification potential, eutrophication, photochemical smog,
and land occupation), and four societal criteria (social acceptability, employment, human
toxicity potential, and total health impact from radiation) were employed for a life cycle
sustainability assessment of the chosen five routes for electricity generation. The offshore
wind powder-based electricity was found to be the most sustainable; this was followed by
combined cycle gas turbines, nuclear-pressurized water reactor, solar-photovoltaics, and
pulverized-coal in a descending order.

Rycroft et al. [80] reviewed developments in nanomedical engineering from the years
2007 to 2016. Furthermore, they outlined the role of MCDM to promote safety-by-design
principles for developing nanomedicine. For this, a hypothetical case of four alterna-
tives and four criteria covering safety, efficacy, cost of research and development, and
sustainability was used.

Ongpeng et al. [81] evaluated energy retrofit strategies in buildings using environ-
mental, economic, and technical performance criteria. Human health, ecosystem quality,
and resources are the environmental criteria whereas investment cost and energy potential
(energy saved and generated from energy retrofit strategies) are the economic and technical
criteria, respectively. MCDM was carried out through AHP and VIKOR. The feasibility
of net-zero energy buildings was achieved on an existing university building. However,
MCDM showed that stakeholders could give more importance to the investment cost
compared to the technical performance of retrofit strategies.

Bernardo et al. [82] evaluated four nanoporous materials, namely metal organic frame-
works (MOFs), carbonaceous materials, metal hydrides, and complex hydrides using fuzzy
TOPSIS for hydrogen storage. Surface area, capacity, dehydrogenation temperature, and
stability for hydrogen storage were the four selected criteria. The MOFs were the best
alternative due to their relatively high surface area and excellent dehydrogenation temper-
ature, whereas metal hydrides were the worst due to their relatively low surface area and
sorption capacity.

Hasanzadeh et al. [83] studied the gasification of waste polyurethane foam. The
processes were evaluated for the criteria: CO2 emissions, hydrogen, and energy efficien-
cies. The effects of gasification temperature and moisture content in both air and steam
gasification and the equivalence ratio in air gasification and steam to waste foam ratio in
steam gasification were studied. The equivalence ratio is the actual fuel/air ratio to the
stoichiometric fuel/air ratio. MCDM with different weights was investigated. The authors
concluded that gasification with air had better performance compared to steam gasification
in different scenarios.

Liu et al. [84] analyzed four sludge valorization technologies: sludge anaerobic di-
gestion with power generation and heat recovery, sludge incineration with electricity
generation, sludge gasification for syngas and steam production, and supercritical water
gasification for sludge treatment and syngas. These four processes were simulated in
Aspen Plus, and then their sustainability assessment was conducted. Liu et al. used eleven
criteria, which were of four types: environmental (i.e., climate change, acidification poten-
tial, human toxicity and eutrophication); economic (i.e., total capital cost, total operating
cost and production sales); technological (i.e., energy efficiency, technical maturity and
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technology accessibility); and social (i.e., social acceptance). The MCDM showed that
the sludge gasification for syngas and steam production was superior to the other three
alternatives studied.

Wang et al. [85] applied the ordinal priority approach (OPA) weighting method and
fuzzy MARCOS to the selection of a sustainable supplier. Industry 4.0 technologies enable
sustainable manufacturing, and thus sustainable supply chain management by reducing
industrial waste and contaminants. Wang et al. [85] applied the procedure on five manu-
facturers in Vietnam’s leather and footwear industry. The main criteria (with sub-criteria
in brackets) were logistics management (autonomous vehicles and robots, service level,
blockchain, real-time manufacturing analytics system, and smart containerization); produc-
tion and operations management (3D printing, cloud computing, AI and ML, and Internet of
Things); and environmental competency (green product innovation, use of environmentally
friendly technology, and green image). The results showed that green image, green product
innovation, cloud computing, service level, and blockchain were the significant criteria in
evaluating sustainable practices in supply chains from the Industry 4.0 perspective.

Bele et al. [86] compared two pathways: gasification combined with the Fischer–
Tropsch process and hydrothermal liquefaction (HTL) to produce biofuels, considering the
internal rate of return, capital investment, carbon intensity of biorefinery products, and
the total number of jobs created as the criteria. Of the two pathways, HTL was found to be
attractive because of its outperformance from the technical and environmental perspectives.

Feizizadeh et al. [87] focused on the application of artificial intelligence and geoin-
formation techniques to model the forest fire risk. For this, they chose thirteen criteria
with three topographic-related, three related to land surface, five climate properties, and
two anthrophonic-related. Feizizadeh et al. determined the weights for these criteria by the
ANP method, and then used them as independent variables in the multi-layer perceptron
model for forest fire risk.

Hasanzadeh et al. [88] used two agents (air and steam) for gasification of plastic waste
and ranked two different plastic waste feeds (high- and low-density polyethylene, PE)
using five criteria and two MCDM methods: TOPSIS and GRA. The criteria were molar
ratio of hydrogen to carbon monoxide in syngas, lower heating value of syngas, cold gas
efficiency, exergy efficiency, and normalized carbon dioxide emissions. Sensitivity analysis
of ranking with respect to weights was carried out. Both TOPSIS and GRA showed that
low-density PE feed had the best performance in the air gasification process. However, for
steam gasification, TOPSIS and GRA ranked high-density PE and low-density PE as the
best candidates, respectively.

Shanmugasundar et al. [89] employed several MCDM and weighting methods (Table 9)
to select an optimal robot depending on the application. Three different industrial robot
selection problems (three cases) were studied using SAW, TOPSIS, LINMAP, VIKOR,
ELECTRE-III, and NFM. The entropy weighting method appears to be unique among the
methods considered because of its tendency to be skewed in favor of or against certain
criteria. The authors concluded that the MCDM methods seem to greatly rely on the weight
allocation strategy, and so it is crucial for weights to properly reflect the relative importance
of individual criteria without biases.

Sun et al. [90] used MOO and MCDM to design and intensify side-stream extractive
distillation (SSED) for complex ternary azeotropic mixtures. Based on the existing triple-
column extractive distillation (TCED) for a ternary mixture, three improved SSED processes
including two SSEDs with one liquid side-stream (SSED-1 and SSED-2) and one SSED with
a double liquid side-stream (i.e., SSED-3) have been proposed. Pareto-optimal solutions
for the criteria: TAC, CO2 emissions, and process route index (PRI) were obtained using
MOPSO, and then ranked using entropy weights and TOPSIS. Sun et al. concluded that the
introduction of the side-stream for extractive distillation could decrease exergy loss and
increase thermodynamic efficiency. The top ranked SSED was recommended as the best
alternative when simultaneously considering the economy, environment, and safety.
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Wang et al. [91] proposed a comprehensive ML aided model predicted control (MPC)
with MOO and MCA methodology for chemical process control. NSGA-II was used to
generate Pareto-optimal solutions (alternatives); this was followed by CRITIC weighting
and PROBID methods to select one of the optimal solutions. The proposed methodology
was illustrated on a continuously stirred tank reactor. It achieved the intended optimization
for multiple objectives in MPC without compromising the closed-loop stability of the
controlled system.

Yang et al. [92] developed two intensified energy-efficient extractive distillation con-
figurations for separating ethyl acetate and methanol from wastewater. The first one was
an extractive dividing wall column with a side reboiler (EDWC-SR), which combined
four columns into two. The second one was a double EDWC-SR (DEDWC-SR), which inte-
grated four columns into a single unit. Simulation and MOO of the two configurations were
performed using Aspen Plus (Version 12.1) and MOPSO for the economic (total annual cost),
environmental (CO2 emissions), and safety (PRI) criteria. The obtained Pareto-optimal front
with 30 alternatives was analyzed by GRA. Both EDWC-SR and DEDWC-SR had better
economic and environmental performance relative to the base case, but with a slightly
lowered safety performance.

Next, five articles with more than 200 citations are briefly summarized below. As
expected, citations (until the end of the year 2023) of each of the articles found by the
Scopus search varied significantly in the range of 0 to 270. This wide range is due to many
factors such as research activity in the area, nature of the article (e.g., review or regular
paper), publication year, journal impact, and weighting/MCDM methods employed.

The most highly cited article was Moktadir et al. [93] with 270 citations, published in
the Process Safety and Environmental Protection journal. It investigated the challenges
faced by the leather industry in Bangladesh in implementing Industry 4.0. Moktadir et al.
identified 10 challenges (equivalent to criteria in MCDM) for ensuring environmental
protection and control, and then determined their weights by BWM. The challenge, namely
the lack of technological infrastructure, had the largest weight of 0.2284; this was concluded
to be the most crucial challenge.

Feizizadeh and Blaschke [94], which had 227 citations, studied the optimal utilization
of land for dry-farm and irrigated agriculture in a particular region of Iran. They considered
suitability factors (i.e., criteria in MCDM) related to soil, climatic conditions, and water
availability. AHP was used to determine the weights for preparing suitability map layers.
The research findings of Feizizadeh and Blaschke [94] were provided for land use planning
by the authorities.

The article by Carmody et al. [95] was on the application of MCDM methods: PROMETHEE
and GAIA for the performance evaluation of synthesized organo-clays and reference sorbents
for the adsorption of hydrocarbons, which is important for oil spill remediation. This study
attracted 225 citations. Carmody et al. considered thirteen sorbents, of which five were organo-
clay sorbents, and nine were performance criteria. They examined the effect of adding a
criterion one by one on the ranking of thirteen sorbents, initially based on three criteria-related
to hydrocarbon sorption capacity.

Pollock et al. [96] investigated the potential of batch and continuous cell culture
technologies to produce monoclonal antibodies. This article has been cited 215 times. These
researchers considered three bioprocess alternatives and nine performance criteria, which
were grouped into three categories: operational, economic, and environmental feasibility.
The MCDM of this application was performed by WSM.

Polatidis et al. [97], which had 202 citations, developed a framework for selecting an
MCDM method for renewable energy planning (REP) applications. This framework is com-
prehensive and considers the main characteristics of REP (such as environmental benefits,
local impact, spatial and temporal distribution of costs and benefits, and many diverse
stakeholders), the main features of MCDM methods (such as ELECTRE, PROMETHEE,
AHP and SAW), and prerequisites of MCDM methods for application to REP.
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8.1. Discussion of Trends in the Articles Reviewed

Among the articles reviewed (Table 9), the application of MCDM methods in some
studies was to the Pareto-optimal solutions (e.g., Figure 1) found by solving a suitable
MOO problem; in other words, ACM is based on these Pareto-optimal solutions. In many
other applications, alternatives and criteria for ACM seem to have been compiled from
the literature, a survey of the market, or experts (e.g., Table 1). In the 23 articles reviewed
(Table 9), the application of MCDM methods in chemical and process engineering was
mostly in the material selection and process design areas. Various weighting methods were
employed in these papers, but manual weighting and AHP have been used more. Among
the MCDM methods, TOPSIS (in six papers) and PROMETHEE II (in four papers), were
popular in the twenty-three articles reviewed.

Almost all studies in Table 9 employed only one weighting method and only one
MCDM method. The few exceptions were as follows: two or more weighting methods in
Grisoni et al. [73], Jenkins and Farid [78], and Shanmugasundar et al. [89]; and more than
one MCDM method by Ni et al. [70], Polatidis et al. [74], and Shanmugasundar et al. [89].
Specifically, Shamugasundar et al. applied six methods, namely SAW, TOPSIS, LINMAP,
VICOR, ELECTRE III, and NFM for the selection of industrial robots. However, in each of
these papers, there was only one application, and so their findings may not be generalizable.

As summarized in Table 9, MCDM applications reported by researchers and practition-
ers in chemical and process engineering reflect the diversity of the weighting and MCDM
methods chosen and employed. Given this variety, it is quite challenging to say or propose
that only certain MCDM methods should be applied in chemical and process engineering.
Having said that, our previous works [30,55,98] recommend CRITIC and entropy weighting
methods as well as several MCDM methods (TOPSIS, GRA, SAW, CODAS, and MABAC)
based on the simplicity of principle and algorithm, user inputs required, and sensitivity to
changes in ACM.

Finally, due to the ready availability of MCDM methods in open-source programs such
as MS Excel and Python code (Section 6), we expect an increased use of MCDM in chemical
and process engineering in the coming years. Furthermore, we expect researchers to choose
and employ several weighting and/or MCDM methods as well as perform sensitivity
analysis toward weighting/MCDM methods and possible changes in ACM (e.g., as in [98]).

9. Challenges and Opportunities in MCDM

There are many challenges and opportunities in MCDM application; these are re-
lated to the criteria, alternatives, normalization, weights, and the MCDM method used
for ranking the alternatives. All of these can affect the ranking of alternatives and the
recommended (usually, top-ranked) alternatives. In any application, all relevant criteria
should be chosen. Then, all of the alternatives and the values of the chosen criteria for each
alternative will have to be found, which can be from suitable research and surveys, or by
developing and solving the MOO problem with the chosen criteria as multiple objectives.
Data on the criteria values collected from research/surveys are likely to have variability and
uncertainty, which can affect the ranking of the alternatives. On the other hand, solution of
the MOO problem may not find all the Pareto-optimal solutions.

After having the relevant and reliable ACM, steps in MCDM often include normal-
ization, finding the criteria weights and use of one or more MCDM methods (Figure 2).
Although a certain normalization method, if required, is stated in the original paper of an
MCDM method, it may or may not be the best. Many MCDM methods require criteria
weights. Therefore, one must choose one of the many weighting methods or give weights
for criteria; in either case, the best is unknown. Likewise, one must choose one or more
methods from numerous MCDM methods available in the literature. The best MCDM
method for an application or for one type of application is also not known. One main reason
for many of these challenges is that the correct answer (i.e., top-ranked or recommended
alternative) is unknown for a (chemical engineering) application. Additionally, MCDM
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methods may result in the rank reversal phenomenon in some applications due to changes
in ACM [98].

The following strategies can be adopted to overcome (some of) the challenges above-
mentioned. One approach is to engage in deep and holistic thinking when selecting criteria.
Another is to determine the alternatives and their criteria values as reliably as possible to
ensure an accurate and comprehensive ACM. Additionally, trying different normalization,
weighting, and/or MCDM methods for the application is recommended. Another effective
strategy is to study the impact of changes in ACM on the top-ranked alternative(s) identified
by an MCDM method; essentially, perform sensitivity analysis on the top-ranked alter-
native(s) to potential variations in ACM, normalization, weighting, and MCDM method.
After reviewing the results from these tests, selecting the alternative recommended by most
tests (i.e., majority voting) is advised. An effective computer program, such as EMCDM,
outlined in Section 6.1, would be highly conducive and convenient for conducting various
tests in MCDM applications in chemical engineering and other disciplines.

With regard to the sensitivity analysis, Wang et al. [30] studied different normalization,
weighting, and MCDM methods for both mathematical and chemical engineering prob-
lems, and recommended entropy and CRITIC methods for weighting, and GRA, MABAC,
SAW, and TOPSIS. The subsequent study by Nabavi et al. [98] analyzed the effect of three
types of changes in ACM on the top-ranked alternatives by eight popular/recent MCDM
methods. They found that GRA, CODAS with entropy weights, and SAW with entropy or
CRITIC weights were less sensitive to the studied changes in ACM. Baydaş et al. [99] inter-
preted the determinants of sensitivity in MCDM using static reference rankings. Recently,
Więckowski and Sałabun [100] reviewed approaches for sensitivity analysis in MCDM in
various disciplines.

Furthermore, the integration of MCDM with AI and ML represents a promising avenue
for future research in chemical and process engineering. AI and ML techniques can signif-
icantly enhance MCDM applications by automating the processing of complex datasets,
identifying nonlinear relationships among criteria, and refining weighting methods by
identifying the underlying patterns in large ACMs. They can also enable advanced decision
support systems by integrating predictive analytics with conventional MCDM models. This
hybrid approach can be particularly beneficial for applications requiring fast, data-driven
decisions such as real-time process monitoring in manufacturing plants. On the other hand,
MCDM methods can be utilized to choose one of the alternative AI/ML models considering
criteria such as accuracy, interpretability, computational cost, scalability, data requirements,
and generalizability. In short, future research can focus on developing frameworks that
combine MCDM with ML algorithms like neural networks, decision trees, clustering, and
dimensionality reduction techniques to process and analyze multi-dimensional ACMs and
big data more efficiently.

10. Conclusions

In this paper, we reviewed the application of MCDM methods in chemical and process
engineering, providing a comprehensive overview of the existing literature. We outlined
selected studies to cover the normalization technique, weighting method(s), and MCDM
method(s) employed, offering a detailed analysis of their applications in areas such as
process optimization, sustainability assessment, and material selection. Readily available
computer programs (e.g., EMCDM and PyMCDM) were outlined to highlight their util-
ity in facilitating complex decision making across different MCDM approaches, offering
practitioners and researchers with practical tools for handling multi-dimensional criteria.

Our review highlighted the progress made in MCDM applications within chemical
and process engineering. Nonetheless, challenges remain, especially concerning the rank
reversal phenomenon, criteria weighting, and the stability of selected alternatives under
varying conditions. Addressing these issues will require the development of adaptive
frameworks and rigorous sensitivity analyses to ensure robust decision making regardless
of changes in alternatives, criteria, and/or weighting. The insights gained from this review



Processes 2024, 12, 2532 30 of 33

contribute to a deeper understanding of the role of MCDM in advancing decision making
within chemical engineering, while also pointing promising directions for future studies.
The integration of MCDM with AI and ML is one of the areas for further exploration, with
potential applications in ML model selection, real-time process control, and predictive
analytics. Future research should prioritize these hybrid frameworks, which could signifi-
cantly enhance the applicability of MCDM, ultimately broadening the scope and impact of
MCDM in chemical and process engineering.
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