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Abstract: A new immersed boundary method is proposed for the numerical simulation of the melting
of solid particles in its own liquid at a high temperature. The main feature of the new method is
the use of the modified direct-forcing immersed boundary method for the solution of the flow field
and the sharp-interface immersed boundary method for the temperature field. The accuracy of the
proposed method is validated via three problems: the sedimentation of a non-melting particle, the
melting of a fixed particle under mixed thermal convection, and the sedimentation of a melting
particle. The method is then applied to the investigation of the effects of various parameters, the
particle interactions and the particle shape on the particle melting time. A correlation for the melting
time of a circular particle in forced thermal convection is established as a function of the Reynolds,
Prandtl, and Stefan numbers. The melting time of a particle in mixed thermal convection first
increases and then decreases, as the Grashof number increases. The effects of the particle interactions
on the melting time are complicated due to the natural convection between two particles. The
sufficiently strong natural convection can even render the downstream particle melt faster than the
single particle. For the same particle area, the elliptic particle with the aspect ratio being around
1.4 melts most slowly.

Keywords: particle melting; thermal convection; direct numerical simulation; immersed boundary
method; sharp interface method

1. Introduction

Melting phenomenon is commonly encountered in nature and engineering applica-
tions such as in the melting of ice in the ocean, the particle melting in the plasma spraying,
and the unwanted melting of catalyst particles in a fluidized bed. When a solid particle
is immersed in a fluid medium at a temperature higher than the melting temperature of
the solid material Tm, melting takes place. There have been some experimental and nu-
merical studies on the melting of particles. Kranse and Schenk investigated experimentally
the melting of solid benzene spheres in liquid benzene [1], and Schenk and Schenkels
studied the melting of ice spheres in water [2]. Argyropoulos et al. [3,4] examined the
melting time and the heat flux on the surface of melting and rotating spheres of steel and
aluminum immersed in the liquid of the same material, respectively. Hao and Tao [5,6]
investigated the melting and heat transfer characteristics of ice particles in flowing water.
Gan et al. [7] studied numerically the sedimentation of melting solid particles with an arbi-
trary Lagrangian–Eulerian (ALE) finite-element method. In their simulations, the surface of
a melting particle was tracked by Lagrangian points, and the melting rate was determined
from the local heat flux. Melissari and Argyropoulos [8,9] studied both numerically and
experimentally the influences of the various parameters on the melting of an immersed
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sphere in a liquid metal and argued that the sphere melting technique could be used to
measure the velocity of liquid metal. Kumar and Roy [10,11] simulated numerically the
melting of a steel spherical particle in its own liquid with a finite-volume method, and
analyzed the melting rate, the shape of the particle, and the heat transfer characteristic.
The total melting time of particles in thermal convection is of practical interest, but its
parametrical dependence is not well understood. For example, to our knowledge, no works
on the effects of the particle interaction and the particle initial shape on the melting time
have been reported.

The purposes of the present study are twofold: the first is to present a new numerical
method for modeling the melting of solid particles in liquids of the same material in the
presence of thermal convection, and the second is to gain some new insights in the melting
time of particles via the applications of the proposed method. In the previous numerical
simulations of Argyropoulos et al. [3,4] and Kumar and Roy [10,11], the surfaces of melting
particles were determined from the liquid volume fraction, which was modeled as the
function of the mixture temperature or enthalpy. In the present study, we adopted the
same melting model as Gan et al. [7], who tracked the melting surface with Lagrangian
points so that the interface between the solid and liquid phases was kept sharp, and the
melting rate was determined from the local heat flux. Gan et al. [7] used an arbitrary
Lagrangian–Eulerian (ALE) finite-element method [12] to solve the flow and temperature
fields, whereas here we developed a combined immersed-boundary (IB) method to solve
the problems. The IB method was originally proposed by Peskin to simulate the motion of
flexible membranes in the human heart [13]. It is highly efficient for problems with moving
interfaces due to the fact that a non-body-fitted Cartesian grid is used to solve the flow
field and has been extensively studied and applied to various problems [14–23]. In the
present study, we employed a direct-forcing-type IB method for the fluid/particle motion,
and a sharp-interface-type IB method for the fluid/particle heat transfer, in accordance
with the melting model we adopted. The new method can be regarded as an extension of
our previous combined direct-forcing fictitious domain (FD) [24] and sharp-interface IB
method for the conjugate heat transfer between fluids and non-melting particles [25]. The
main modification is that the FD method is replaced with the IB method for the solution
of the flow fields. Although the FD method can be regarded as an IB method in a wide
sense, here, we distinguish between them to emphasize the modification: in our original FD
method, the Lagrangian points are distributed inside the particle boundary to enforce the
rigid-body motion of the fictitious fluids over the particle domain, whereas in the present
direct-forcing IB method, the Lagrangian points are distributed only on the solid/fluid
interface. The reason for the modification is that for the melting problem, the shape of the
particle is changing, and it is a difficult task to distribute the Lagrangian points evenly over
the particle domain. The sharp-interface (SI) IB method [26] was developed to handle the
Poisson equation with jump coefficients across the interface. Its main feature is that the jump
condition on the interface is used to modify the discretization of the differential operators on
the Cartesian grids in the immediate vicinity of the interface, and its advantages is that the
interface is kept sharp and the jump condition on the interface is accurately captured [27].
The sharp-interface IB method has an advantage over the direct-forcing IB (or FD) method
in that the strong discontinuity across the interface could be better captured, and it has a
disadvantage in that the scheme is more complex and less efficient. The SI method has
been applied to the droplet [27,28], dielectrophoresis problems [29], and the heat transfer
between fluids and non-melting particles [25]. We apply it here to the melting problem.

The rest of this paper is organized as follows. In the next section, the numerical method
is described. In Section 3, we verify our code via three problems: the sedimentation of a
non-melting particle, the melting of a fixed particle under mixed thermal convection, and
the sedimentation of a melting particle. As discussed in Section 4, the new method was
employed to investigate the melting time of a single circular particle, two circular particles,
and an elliptic particle, respectively. Concluding remarks are given in the final section.
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2. Numerical Model
2.1. Direct-Forcing IB Method for the Flow Fields

As mentioned earlier, a direct-forcing immersed boundary (IB) method was used to
solve the flow field. Figure 1 is a schematic of the IB method, in which P represents the
particle domain; ∂P, its boundary; Ω, the entire computational domain; and Γ, its boundary.
The spirit of the IB method is that the solid domain is filled with the fictitious fluid and a
pseudo-body force (i.e., Lagragian multiplier) is introduced over the particle boundary to
enforce the no-slip condition there.
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Figure 1. Schematic of the immersed boundary method.

To reasonably simplify the computation, the Boussinesq approximation is used to
deal with the effect of temperature variation in the flow field. The change in temperature
is assumed not to influence the properties of fluid medium, except for the density in the
gravitational term, which has the following form:

ρ f = ρ f0

[
1 − β f

(
Tf − T0

)]
, (1)

where ρ f0 represents the reference density of the fluid at the reference temperature T0, and
β f is the fluid heat expansion coefficient.

The characteristic scales used for the non-dimensionlization scheme are Lc for length,
Uc for velocity, Lc/Uc for time, ρ f 0U2

c for pressure p, and ρ f 0U2
c /Lc for the Lagrange

multiplier λ. Then, the dimensionless governing equations for the flow field and the
particle motion can be written as follows:

∂u
∂t

+ u · ∇u =
∇2u
Re

−∇p − Gr
Re2 T f

g
g
+ λ in Ω (2)

∇ · u = 0 in Ω (3)

u = U + ωs × r on ∂P (4)

ρrV∗
p

dU
dt

= −
∫

∂p
λdx +

d
dt

∫
p

udx + (ρr − 1)V∗
p Fr

g
g

(5)

ρr J∗
dωs

dt
= −

∫
∂p

(r × λ)dx +
d
dt

∫
p
(r × u)dx (6)

Here, u is the fluid velocity. U and ωs are the particle translational and angular
velocities, respectively. r is the position vector with respect to the particle center. ρr
represents the solid–fluid density ratio defined by ρr = ρs/ρ f0 , with ρs being the solid
density. V∗

p is the dimensionless particle volume (or area in two dimensions) defined by
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V∗
p = M/

(
ρsLd

c

)
, with M being the particle mass and d being the dimensionality of the

problem. J∗ is the dimensionless moment of inertia tensor defined by J∗ = J/
(

ρsLd+2
c

)
. Re

denotes the Reynolds number, defined by Re = ρ f 0UcLc/µ, with µ being the fluid viscosity,
and Fr represents the Froude number, defined by Fr = gLc/U2

c . Gr is the Grashof number,
defined by Gr = ρ2

f 0β f L3
c g(T2 − T1)/µ2, where T1 and T2 are two reference temperatures,

and for the melting problem, we let T2 be the initial temperature of the fluid medium T0
and T1 be the melting temperature of the particle Tm. The dimensionless temperature can
then be defined by T = (T − Tm)/(T0 − Tm). Note that we do not assume the Boussinesq
approximation to the fictitious fluid and the solid inside the particle boundary, so that the
buoyant term arising from the temperature variation in Equation (2) should not applied
to the particle domain and is explicitly not included in Equation (5), unlike our previous
FD formulation [25,30]. Our numerical tests show that the two schemes yield roughly the
same results.

A fractional-step time scheme is used to decouple the problem of Equations (2)–(6)
into a fluid flow sub-problem and a particle motion sub-problem as follows:

Fluid-flow sub-problem for u∗ and p:

u∗−un

∆t − ∇2u∗
2Re = −∇p − 1

2 [3(u · ∇u + Gr
Re2 T f

g
g )

n − (u · ∇u + Gr
Re2 T f

g
g )

n−1
] + ∇2un

2Re + λn, (7)

∇ · u∗ = 0. (8)

Particle sub-problem for Un+1, ωn+1
s , un+1, and λn+1:

un+1 − u∗

∆t
= λn+1 − λn, (9)

un+1 = Un+1 + ωn+1
s × r, (10)

ρrV∗
p

Un+1 − Un

∆t
= −

∫
∂p

λndx +

∫
p u∗dx −

∫
p undx

∆t
+ (ρr − 1)V∗

p Fr
g
g

, (11)

ρr J∗
ωn+1

s − ωn
s

∆t
= −

∫
∂p

r × λndx +

∫
p r × u∗dx −

∫
p r × undx

∆t
. (12)

Note that from Equations (5)–(11), we have used the approximation −
∫

∂p λndx +

1
∆t

∫
p u∗dx =

∫
∂p λn+1dx +

1
∆t

∫
p un+1dx, with is derived from Equation (9). A similar

technique was used in the derivation of our direct-forcing FD formulation, and thus, the
above IB and our previous FD formulas for the particle velocities are consistent. We are not
aware of any other IB works in which this technique has been used.

For the particle sub-problem, the particle velocities Un+1 and ωn+1
s are first ob-

tained from Equations (11) and (21), and then the Lagrange multiplier is calculated from
Equations (9) and (10) as

λn+1 =
Un+1 + ωn+1

s × r − u∗

∆t
+ λn. (13)

Finally, the fluid velocity un+1 is updated from Equation (9), which is a step that can
also be skipped since u∗ is a good approximation to un+1, and in the previous direct-
forcing IB method [20], u∗ was directly taken as un+1. The fluid flow sub-problem
of Equations (7) and (8) is solved with a finite-difference projection method on a half-
staggered grid, as in our direct-forcing FD method [24]. The present direct-forcing IB
scheme differs from the previous direct-forcing FD method in that the Lagrange multiplier
is defined on the particle boundary instead of over the particle domain, and the inertial
force and torque of the fictitious fluid are obtained from the direct integration over the
particle domain instead of using the rigid-body motion condition.
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2.2. Sharp-Interface IB Method for the Temperature Field

The dimensionless governing equation for the temperature field is

ρ∗cp
∗(

∂T
∂t

+ u · ∇T) =
1

Pe
∇ ·

(
k∗∇T

)
in Ω. (14)

For the melting problem, one can assume the following boundary condition:

T = Tm on ∂P. (15)

Here, ρ∗, cp
∗, and k∗ are the dimensionless density, heat capacity, and heat conductiv-

ity in the individual medium, with the reference of ρ f0, cp f , and k f , respectively. The sub-
script ‘f ’ represents the fluid medium. From our definition, k∗ is unity in the fluid medium
and equals the solid–fluid heat conductivity ratio kr (defined by kr = ks/k f ) in the par-
ticle domain. Pe denotes the Peclet number defined by Pe = ρ f0cp f UcLc/k f . Note that
Pe = RePr, where Pr is the Prandtl number defined by Pr = µcp f /k f . Tm, is the dimensionless
melting temperature and equals zero from our definition of the dimensionless temperature.

In the present study, we assume that the thermal conductivity of the solid is large, and
thus, the inner temperature of the particle is almost homogeneous and equals the melting
temperature during the melting process. Since we are mainly concerned with the particle
total melting time, we set the initial particle temperature to be the melting temperature for
simplicity. The inner temperature then remains constant.

For the sharp-interface method in two-dimensions, the jump condition for the temper-
ature and the temperature gradients in the coordinate directions on the solid–fluid interface
need to be used instead. [

T
]

I = T+
I − T−

I = 0 on ∂P, (16)[
k∗Tx

]
I =

(
k∗Tx

)+
I −

(
k∗Tx

)−
I = aI(t) on ∂P, (17)[

k∗Ty
]

I =
(
k∗Ty

)+
I −

(
k∗Ty

)−
I = bI(t) on ∂P. (18)

In the above Equations, [ ]I represents a jump across the interface.
We assume that the jump values of the temperature gradients in the normal and

tangential directions are cI and dI, respectively, i.e.,[
k∗Tn

]
I = cI(t);

[
k∗Tt

]
I = dI(t) on ∂P. (19)

Then, aI and bI can be calculated from cI and dI:

aI = cInx + dIny
bI = cIny − dInx

, (20)

where nx and ny are two components of the outward unit normal on the particle boundary.
Since the temperature on the interface is a constant, the temperature gradient along the
tangential direction is zero on each side of the interface, and thus, dI in Equation (20) is zero.
Only cI is unknown a priori at any time step, and iteration is used to circumvent the problem.
We set the temperature on the grids inside the particle boundary to be Tm, and kr = 100,
which ensures that the boundary conditions of Equations (16)–(18) are essentially equivalent
to Equation (15).

A second-order semi-implicit Adam–Bashforth/Crank–Nicolson scheme is employed
to discretize Equation (14) in time:

ρ∗cp
∗( Tn+1−Tn

∆t ) = 1
2

[
∇ ·

(
k∗
Pe∇Tn+1

)
+∇ ·

(
k∗
Pe∇Tn

)]
− 1

2

[
3(u · ∇T)n − (u · ∇T)n−1

]
(21)
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The temperature Equation (21) with the boundary condition of Equations (16)–(18)
can be solved with the sharp-interface method. The reader is referred to [25,29] for the
principle and discretization schemes of the sharp-interface method.

2.3. Melting Model

The rate of melting is determined from the local heat flux on the particle surface [7]:

ρsh f
drn

dt
= −k

∂T
∂n

, (22)

where hf is the latent heat of fusion, and rn is the coordinate of the particle surface along
the local normal n.

The dimensionless form of Equation (22) is

ρr

St
drn

dt
= − 1

RePr
∂T
∂n

, (23)

where St represents the Stefan number, defined by St = cp∆T/h f , and ∂T/∂n represents
the dimensionless temperature gradient, which is actually the local Nusselt number (Nu).

In the melting process, the Lagrangian points on the surface of the particle retract
along the local normal n and become closer to each other. The computation becomes
unstable when two points become too close. The following mergence technique is used to
overcome the problem. We define ds,s+1 as the distance between the consecutive points s
and s + 1. Once ds,s+1 < dmin at any time step, these two points are merged to a new point
s + 1/2, which has the position and Lagrange multiplier as follows:

xs+1/2 = (xs + xs+1)/2, (24)

λs+1/2 = (λs + λs+1)/2. (25)

For the freely moving particle in two dimensions, its area Sp, mass center (xp, yp) and
moment of inertia Jp need to be computed. Since we have the Lagrangian points along
the particle boundary, it is convenient to calculate these quantities using the boundary
integration from the Gaussian law:

Sp =
∫

P
dA =

∫
∂P

1
2
(
xnx + yny

)
dl, (26)

xp =

∫
P xdA
Sp

=

∫
∂P

1
2

x2nxdl

Sp

yp =

∫
P ydA
Sp

=

∫
∂P

1
2

y2nydl

Sp


, (27)

Jp =
∫

P
(xr

2 + yr
2)dA =

∫
∂P

1
3

(
xr

3nx + yr
3ny

)
dl. (28)

Here, (xr, yr) represents the position vector with respect to the particle mass center.

3. Validation of Our Code

The purpose of this section is to verify our numerical method. The following three
test problems are considered: the sedimentation of a non-melting particle, the melting of a
fixed particle under mixed thermal convection, and the sedimentation of a melting particle.

3.1. Sedimentation of a Non-Melting Particle

The accuracy of the previous direct-forcing FD method has been fully validated [24],
and here, we intend to verify the direct-forcing IB code by comparing the results of the
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sedimentation of a non-melting particle in a box to those from the direct-forcing FD method.
The characteristic length is taken as the particle diameter d (which means that d = 1 in the

code) and the characteristic velocity as Uc =
√

πd
2 (ρr − 1)g (Yu and Shao [24]). The size

of the enclosure is 4 × 8. The velocities on the walls are zero. Constant temperatures are
enforced on the bottom and top walls: Tb = 1 and Tt = 0. Side walls are adiabatic. The
physical parameters are ρr = 1.1, kr = 1, cpr = 0.09, Re = 40, Pr = 1, and Gr = 1 × 105. The
mesh size is h = d/16, and the dimensionless time step is ∆t = 0.005. The particle is released
from the position of (2, 6).

Figure 2 shows the fluid and temperature fields obtained using the FD-SI method and
the IB-SI method, respectively. The flow fields are solved with the FD and IB methods,
respectively, and the temperature fields are solved with the SI method for the non-melting
case [25]. We see that two results on the fluid fields outside the particles and the particle
position agree well with each other.
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box, obtained using (a) the FD method and (b) the IB method. The x-axis is the horizontal axis, and
the y-axis is the vertical axis (same for all color maps below). The arrows in the figure represent the
velocity vectors and the color represents the temperature.

3.2. Melting of a Fixed Particle Under Mixed Thermal Convections

The computational domain is a box of 4d × 16d, d being the particle initial diameter.
The uniform flow condition is imposed on the bottom inlet and side walls, and the outflow
condition is imposed on the top outlet. The particle initial diameter and the upward
mainstream velocity are taken as the characteristic length and velocity, respectively. The
particle is fixed, and its center is located at (2, 7.5). The dimensionless particle temperature
is zero, and the dimensionless initial fluid temperature is unity. The temperatures on the
bottom inlet and side walls are unity, and the vanishing heat-flux condition is imposed on
the top outlet. The control parameters are the same as for Gan et al. [7]: Re = 20, ρr = 1,
Pr = 0.7, Ra = 800 (Ra = GrPr), and St = 0.025125.

Figure 3 shows the comparison of our shapes of the melting particle at t = 6.57 and
t = 39.83 to those obtained by Gan et al. [7], and Figure 4 shows the comparison of the
local Nusselt number on the particle surface at t = 6.57. In our simulations, two mesh
sizes (h = d/16 and h = d/32) were used for the grid convergence check. The numbers
of corresponding Lagrangian points on the particle surface were 52 and 100, respectively.
From Figures 3 and 4, our results obtained from two grids are in good agreement with each
other and those of Gan et al. [7]. In the simulations below, the finer mesh was used.
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As mentioned earlier, the consecutive Lagrangian points are merged when they ap-
proach very closely to void the computational instability. The effect of this mergence
technique on the accuracy is examined. We set the critical distance as dmin = 0.5h. Figure 5
shows a comparison of the particle shapes obtained by merging and not merging the points,
respectively. The results are in good agreement, even at t = 64 when the particle area
decreases below 10 percent of its original value and the number of Lagrangian points
reduces to 29. The computation becomes unstable after t = 64 without merging points.

Processes 2024, 12, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 5. Comparison of particle shapes obtained by merging and not merging the Lagrangian 
points. 

3.3. Sedimentation of a Melting Particle 
In the preceding problem, the melting particle is fixed, and now we consider the sed-

imentation of a melting particle. The computational domain is a box of 4 16d d×  . To 
mimic an infinitely long channel, we shift the flow fields and the particle position upward 
one mesh distance once the particle falls below a vertical position that is 6d higher than 
the bottom inlet, so that the computational domain looks like moving with the particle. 

The particle initial diameter d and the velocity ( )1
2c r
dU gπ ρ= −  are taken as the char-

acteristic length and velocity, respectively. The bottom and side walls have constant tem-
peratures. The particle is released from (2, 12). The control parameters are 1.00232r =ρ
, Re = 38.7, Pr = 0.7, Gr = 100, and St = 0.025125. The particle Reynolds number is defined 
by Re Rep pU= . Without the consideration of melting, the parameters above lead to a 

steady Rep of about 21, as with Gan et al. [7]. 
Figure 6 shows the evolutions of the particle mass and Reynolds number. The results 

are in excellent agreement with those of Gan et al. [7]. The particle accelerates at initial 
stage of the sedimentation and then decelerates as it melts and its size is reduced. 

 

Figure 5. Comparison of particle shapes obtained by merging and not merging the Lagrangian points.



Processes 2024, 12, 2533 9 of 16

3.3. Sedimentation of a Melting Particle

In the preceding problem, the melting particle is fixed, and now we consider the
sedimentation of a melting particle. The computational domain is a box of 4d × 16d. To
mimic an infinitely long channel, we shift the flow fields and the particle position upward
one mesh distance once the particle falls below a vertical position that is 6d higher than the
bottom inlet, so that the computational domain looks like moving with the particle. The

particle initial diameter d and the velocity Uc =
√

πd
2 (ρr − 1)g are taken as the characteris-

tic length and velocity, respectively. The bottom and side walls have constant temperatures.
The particle is released from (2, 12). The control parameters are ρr = 1.00232, Re = 38.7,
Pr = 0.7, Gr = 100, and St = 0.025125. The particle Reynolds number is defined by
Rep = Re

∣∣Up
∣∣. Without the consideration of melting, the parameters above lead to a

steady Rep of about 21, as with Gan et al. [7].
Figure 6 shows the evolutions of the particle mass and Reynolds number. The results

are in excellent agreement with those of Gan et al. [7]. The particle accelerates at initial
stage of the sedimentation and then decelerates as it melts and its size is reduced.
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4. Applications of the Method

We are interested in the effects of various parameters on the particle melting time.
The effects of the Reynolds, Prandtl, and Stefan numbers on the melting time of a single
circular particle in forced thermal convection, and the effects of the Grashof number in case
of mixed thermal convection, the effects of the particle interactions, and the effects of initial
particle shape on the melting time were investigated.

4.1. Melting of a Single Circular Particle in Forced Thermal Convection

A particle with d = 1, ρr = 1, and Tp = 0 is fixed at the center of a box of (0, 4)× (0, 16).
The boundary conditions are the same as those in Section 3.2. Without the effect of the natu-
ral convection, the dimensionless melting time of the particle tm is dependent on Re, Pr, and
St. The parameters studied in the range of 40 ≤ Re ≤ 200, 0.1 ≤ Pr ≤ 1, and 0.01 ≤ St ≤ 1,
and the calculated melting times are listed in Table 1. Using the least squares method, we ob-
tain the optimal fitting expression for the melting time: tm = 0.4589Re0.5976Pr0.6561St−0.9332.
The computational results and the fitting line are plotted in Figure 7, and one can see that
the fitting is remarkably good.

We now study the effect of the natural convection on the melting of the particle. The
value of the Grashof number changed from 0 to 6000, while the other parameters are
fixed: Re = 20, Pr = 0.7, and St = 0.025125. The particle melting times at different Grashof
numbers are plotted in Figure 8. The melting time first increases, as Gr increases from
0 to 3500, and then decreases with further increasing Gr. The reason for the delay of the
melting at Gr ≤ 3500 is that the cold fluid around the particle tends to induce downward
natural convection, which weakens the upward forced flow and thereby the heat transfer
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between the particle and the fluid. As shown in Figure 9, the natural and forced convections
have comparable intensity and almost cancel each other at the region around the particle
at Gr = 3500, resulting in the longest melting process. Figure 8 shows that the melting
time decreases, as Gr increases beyond 3500, which is obviously caused by the fact that
the downward natural convection predominates over the upward forced convection for
Gr > 3500 (Figure 9).

Table 1. Particle melting times at the specified Re, Pr, and St in the case of forced thermal convection.

St Re = 40 Re = 80 Re = 120 Re = 160 Re = 200 Pr

0.01 69.9 108.5 139.2 164.5 186 0.1
0.01 145.4 222.9 282.1 329.6 369.9 0.3
0.01 257.1 389.5 486.3 558.7 620.6 0.7
0.01 327.4 493.6 611 694.9 766.7 1
0.02 35.1 54.5 70.2 83.2 94.4 0.1
0.02 73.1 111.9 142.1 166.3 186.7 0.3
0.02 129.1 195.7 244.2 282 311.7 0.7
0.02 164.3 247.9 307.2 349 385.3 1
0.1 7.2 11.4 14.7 17.5 19.9 0.1
0.1 15.2 23.3 29.6 35 39.7 0.3
0.1 26.8 40.6 51 59.7 66.4 0.7
0.1 34.1 51.2 63.7 73.6 81.3 1
0.5 1.41 2.5 3.4 4.1 4.7 0.1
0.5 3.5 5.5 7 8.2 9.3 0.3
0.5 6.3 9.6 12 14 15.7 0.7
0.5 8.1 11.9 14.8 17.3 19.3 1
1 0.72 1.34 1.86 2.27 2.64 0.1
1 1.89 3.1 4.03 4.77 5.41 0.3
1 3.6 5.53 6.91 8.05 9.1 0.7
1 4.63 6.99 8.56 9.96 11.24 1
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are plotted in Figure 8. The melting time first increases, as Gr increases from 0 to 3500, and 
then decreases with further increasing Gr. The reason for the delay of the melting at Gr ≤ 
3500 is that the cold fluid around the particle tends to induce downward natural convec-
tion, which weakens the upward forced flow and thereby the heat transfer between the 
particle and the fluid. As shown in Figure 9, the natural and forced convections have com-
parable intensity and almost cancel each other at the region around the particle at Gr = 
3500, resulting in the longest melting process. Figure 8 shows that the melting time de-
creases, as Gr increases beyond 3500, which is obviously caused by the fact that the down-
ward natural convection predominates over the upward forced convection for Gr > 3500 
(Figure 9). 
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Figure 9. Temperature and flow fields at t = 40: (a) Gr = 1000; (b) Gr = 3500; (c) Gr = 6000. The arrows
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4.2. Melting of Particle Pairs

The computational domain is enlarged to be (0, 4)× (0, 32). One particle is fixed at
(2, 10), and the position of the other particle is varied to examine the effects of the particle

inter-distance, defined by s =
√(

xp1 − xp2
)2

+
(
yp1 − yp2

)2. We set Re = 20, Pr = 0.7,
and St = 0.025125. Gr is set to be 1000 and 4000, corresponding to the forced and natural
convection domination regimes, respectively.

Figure 10 shows the particle melting time as a function of the distance s between the
particle pair at Gr = 1000. Figure 11 shows the temperature and flow fields at t = 40 for
s = 2, 6, 9, and 12. From Figure 10, the particle interaction plays a negative role in the melting
of both particles, which is not surprising given both particles’ behavior as heat sinks and
colder fluid fills the space between two particles. As the inter-distance increases beyond
7, the effect of the downstream (upper) particle on the upstream (lower) particle becomes
negligible. By contrast, the effect of the upstream particle on the downstream particle is
more significant, since the downstream particle is in the long wake of the colder fluid. An
interesting observation is that the melting time of the downstream particle does not decrease
monotonically with the inter-distance; the melting time at s = 9 is larger than those at s = 6
and s = 12, as shown in Figure 10. The reason for this phenomenon is that at s = 6, the colder
fluid between the particle pair induces a relatively strong downward natural convection,
and at s = 12, the downstream particle faces an upward forced convection, whereas at
s = 9, the forced and natural convections cancel each other around the downstream particle
(Figure 11).
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The results on the melting time, and the flow and temperature fields at Gr = 4000 are
shown in Figures 12 and 13, respectively. Because the natural convection dominates the
flow at Gr = 4000, the ‘upstream’ (lower) particle is immersed in the downward moving
colder fluid (Figure 13); thus, its melting time becomes larger compared to the case of a
single particle and decreases with increasing distance between the particles. By contrast,
the melting of the upper particle can even be accelerated when two particles are spaced
neither too close nor too far away, say, 2 ≤ s ≤ 4, as shown in Figure 12. For the moderate
distance between two particles, the downward natural convection in this space becomes
stronger compared to the single-particle case (as indicated by the comparison between
Figure 13b,c), resulting in the accelerated melting of the upper particle.
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4.3. Melting of an Elliptic Particle

The dimension of the computational domain is (0, 16)× (0, 16). An elliptic particle
is fixed at the center. The boundary conditions are the same as the above problem. The
characteristic length is taken as the effective diameter of the particle with the initial area of
Sp, namely, de = 2

√
SP/π. The parameters are Re = 10, Pr = 0.7, St = 0.025125, ρr = 1, and

Gr = 0. Here, we intend to investigate the effects of the particle shape and orientation on
the melting rate. For simplicity, we assume that the particle axis is aligned horizontally or
vertically and define the particle aspect ratio as A = ax/ay, where ax and ay being the length
of the axis in the x and y directions, respectively.

The results on the melting time, and the flow and temperature fields for different
aspect ratios are shown in Figures 14 and 15, respectively. Figure 14 shows that the melting
time is longest for the particle with A ≈ 1.4 and decreases as the particle becomes slenderer.
The observations can be explained with two facts. First, the elliptic particle has a larger
circumference for the heat transfer with the fluid, and thus generally melts faster, compared
to the circular particle with the same area. The heat transfer efficiency is much higher at
the leading and side parts of the particle boundary than at the rear part, as indicated in
the flow and temperature fields in Figure 15. Therefore, the elliptic particle with the same
shape melts faster when its longer axis is aligned with the streamwise direction, and the
particle that melts most slowly is not the circular particle but the elliptic particle of A ≈ 1.4,
whose longer axis is aligned with the cross-stream direction.
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5. Conclusions

We presented a new immersed boundary method for the numerical simulation of the
melting of solid particles in its own liquid. The new method is the combination of the mod-
ified direct-forcing immersed boundary method for the flow field and the sharp-interface
immersed boundary method for the temperature field. The accuracy of the proposed
method was verified via three problems: the sedimentation of a non-melting particle, the
melting of a fixed particle under mixed thermal convection, and the sedimentation of a
melting particle. The method was employed to investigate the effects of various parameters,
the particle interactions, and the particle shape on the particle melting time. The following
main conclusions were drawn:

(1) The melting time of a circular particle in forced thermal convection can be approxi-
mated as tm = 0.4589Re0.5976Pr0.6561St−0.9332.

(2) The melting time of a circular particle in mixed thermal convection first increases and
then decreases as Gr increases, as a result of the competition between the forced and
natural convections.
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(3) The effects of the particle interactions on the melting time are complicated due to the
natural convection between two particles. The sufficiently strong natural convection
can even render the downstream particle melt faster than the single particle.

(4) For the same particle area, the elliptic particle with the aspect ratio being around
1.4 melts most slowly, as its longer axis is aligned with the cross-stream direction.

The contributions of the present study are that we not only developed a new numer-
ical method for simulations of the melting of solid particles in the presence of thermal
convection but also provide new results that significantly enhance the understanding of
the melting rate of particles in thermal convection. Our method may be applied to the
problems on the melting of ice in the ocean, particle melting in plasma spraying, and the
unwanted melting of catalyst particles in a fluidized bed.
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