
Citation: Zhan, H.; Zhang, J.; Lan, Y.;

Zhang, F.; Huang, Q.; Zhou, K.; Wan,

C. Adaptive Enhancement of Thermal

Infrared Images for High-Voltage

Cable Buffer Layer Ablation. Processes

2024, 12, 2543. https://doi.org/

10.3390/pr12112543

Academic Editor: Mohd Azlan

Hussain

Received: 8 October 2024

Revised: 4 November 2024

Accepted: 9 November 2024

Published: 14 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Adaptive Enhancement of Thermal Infrared Images for
High-Voltage Cable Buffer Layer Ablation
Hao Zhan 1,2, Jing Zhang 1,2, Yuhao Lan 3,*, Fan Zhang 4,*, Qinqing Huang 1,2, Kai Zhou 3 and Chengde Wan 1,2

1 State Grid Electric Power Research Institute, Nanjing 211006, China; blues_zh@hotmail.com (H.Z.);
narizhangjing@foxmail.com (J.Z.); huangqq934@foxmail.com (Q.H.); wanchengdee@163.com (C.W.)

2 Wuhan NARI Limited Liability Company of State Grid Electric Power Research Institute,
Wuhan 430074, China

3 College of Electrical Engineering, Sichuan University, Chengdu 610065, China; zhoukai_scu@163.com
4 College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
* Correspondence: lyh000415@163.com (Y.L.); fan.zhang@scu.edu.cn (F.Z.)

Abstract: In recent years, ablation of the buffer layer in high-voltage cables has become a prevalent
issue compromising the reliability of power transmission systems. Given the internal location of these
faults, direct monitoring and assessment are challenging, resulting in numerous undetected ablation
hazards. Previous practice has demonstrated that detecting buffer layer ablation through surface
temperature distribution changes is feasible, offering a convenient, efficient, and non-destructive
approach. However, the variability in heat generation and the subtle temperature differences in
thermal infrared images, compounded by noise interference, can impair the accuracy and timeliness
of fault detection. To overcome these challenges, this paper introduces an adaptive enhancement
method for the thermal infrared imaging of high-voltage cable buffer layer ablation. The method
involves an Average Gradient Weighted Guided Filtering (AGWGF) technique to decompose the
image into background and detail layers, preventing noise amplification during enhancement. The
background layer, containing the primary information, is enhanced using an improved Contrast
Limited Adaptive Histogram Equalization (CLAHE) to accentuate temperature differences. The
detail layer, rich in high-frequency content, undergoes improved Adaptive Bilateral Filtering (ABF)
for noise reduction. The enhanced background and detail layers are then fused and stretched to
produce the final enhanced thermal image. To vividly depict temperature variations in the buffer
layer, pseudo-color processing is applied to generate color-infrared thermal images. The results
indicate that the proposed method’s enhanced images and pseudo-colored infrared thermal images
provide a clearer and more intuitive representation of temperature differences compared to the
original images, with an average increase of 2.17 in information entropy and 8.38 in average gradient.
This enhancement facilitates the detection and assessment of buffer layer ablation faults, enabling the
prompt identification of faults.

Keywords: high-voltage cable; buffer layer; ablation fault; thermal infrared image; image enhancement

1. Introduction

High-voltage cables, as a key equipment for power transmission, play a crucial role
in achieving long-distance, high-efficiency energy distribution and ensuring the stable
operation of modern society. High-voltage cable lines that have been in operation since
2000 have been in service for a considerable period. As the usage time increases, they
are affected by complex environments, leading to potential dangers and faults such as
insulation aging, which gradually become apparent. These issues can cause the cable
structure to be damaged and render it inoperable. Therefore, monitoring and analyzing
potential hazards and faults is of great significance for ensuring the stable and reliable
operation of the cables [1–3].
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Buffer layer ablation has become a frequent high-voltage cable fault in recent years,
causing serious negative impacts on the safe operation of power transmission systems and
attracting widespread attention from both academia and industry [4–6]. For the normal
operation of high-voltage cables, as shown in Figure 1, the buffer layer plays a crucial role
in the cross-sectional diagram, including maintaining good electrical contact between the
insulation shielding layer and the aluminum sheath, uniform electric field distribution,
cushioning mechanical stress, and absorbing moisture. However, it has been observed in
practice that the buffer layer is a common site for faults, with typical examples being buffer
layer ablation faults, mainly occurring in cables after five years of operation. Since these
faults are internal to the cable and difficult to directly monitor and assess, a large number of
ablation hazards cannot be discovered and addressed in a timely manner. Figure 2 shows
the dissection of a cable with a buffer layer ablation accident. White spots can be observed
on the buffer layer, with the presence of white substances on the surface, and corresponding
corrosion pits appear on the aluminum sheath [7]. To gain a deeper understanding of buffer
layer ablation faults, experts and scholars have conducted research on the causes of these
phenomena and the underlying mechanisms from different perspectives.

Figure 1. High-voltage cable longitudinal cross-sectional view.

Figure 2. Buffer layer ablation fault cable dissection diagram.

Based on the results of simulated experiments and the faulted cable, Liu et al. [8]
identified sodium bicarbonate as the primary component of white spots resulting from the
chemical reaction between the aluminum sheath and the water-blocking powder under a
humid condition. Chen et al. [9] investigated the failure characteristics and phenomena
within buffer layers, such as white spots and ablated traces. Their experiments indicated
that water was the primary agent in the formation of white spots and the electrochemical
corrosion of the aluminum sheath. Hui et al. [10] found that moisture and the aluminum
sheath are the critical factors in white-spot formation, with pressure and current acting
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as accelerants. The simulation results by Jiang et al. [11] indicated that poor contact
between the corrugated aluminum sheath and the buffer layer can initiate discharges,
which were identified as a contributing factor to ablation. Song et al. [4] analyzed a
typical ablation failure case and revealed that both the volume resistivity and water content
exceeded the existing standards. Xin et al. [12] concluded that heat aging induced by
circulating currents in the metal sheath could be a contributing factor to the aging ablation.
Zhang et al. [13] found that higher overvoltage frequencies result in increased resistance
heating and elevated temperatures surrounding the white-spot buffer layer, potentially
leading to ablation due to electric heating. Recently, Zhang et al. [5] explored the impact of
buffer layer structural inhomogeneity on ablation failure, revealing that inhomogeneous
fiber protrusions can trigger air gap breakdowns within cables. Tian et al. [6] developed
an integrated analysis framework to elucidate the comprehensive mechanisms of ablation
failure in high-voltage cable buffer layers. The aforementioned work on the causes and
mechanisms of buffer layer ablation faults can provide reference for condition monitoring,
evaluation, and optimization of the buffer layer structure.

Automated defect detection and status evaluation have received widespread attention
in different fields in recent years [14–20]. Scholars have also explored methods for assessing
and monitoring the ablation status of buffer layers in order to detect faults at an earlier
stage. Wu et al. [21] developed a model to calculate voltage distribution, which aids in
analyzing discharge defects within the buffer layer of high-voltage cables. Their model
integrated the influence of air gaps and white spots between the aluminum sheath and
buffer layer on the internal voltage distribution of the cables. The study’s findings indi-
cated that the susceptibility to discharge in the buffer layer can be quantitatively evaluated
based on the characteristics of white-spot defects. Liu et al. [22] investigated the advanced
processing of power cable X-ray digital images and the intelligent identification of buffer
layer defects. They proposed employing a fully convolutional neural network (FCNN) for
the intelligent recognition of defects in the buffer layer of power cables. Huang et al. [23]
employed terahertz time-domain measurements and commercial computed tomography
(CT) to identify ablation defects within the buffer layer. They encountered challenges in
detecting internal defects using terahertz time-domain measurements due to the sheath’s
impermeability to terahertz wave energy. In contrast, commercial CT scans can identify
defects of varying densities within the buffer layer. He et al. [24] conducted research on
the acoustic characteristics of the buffer layer to further explore the potential of acoustic
detection methods. They developed a numerical acoustic model that accounts for the
porous characteristics and structural attributes of the buffer layer. This model facilitated the
determination of the propagation characteristics of acoustic signals resulting from buffer
layer discharges and the assessment of the applicability of ultrasonic detection techniques.
Chen et al. [7] assessed the corrosion rate by quantifying the hydrogen gas release and inves-
tigated the distinct functions of sodium polyacrylate (NaPA) in the corrosion process. Their
findings revealed that the complexation reactions between NaPA and aluminum not only
mitigated corrosion but also enhanced the buffer layer’s electrical resistance. Liu et al. [25]
suggested a method for diagnosing buffer layer ablation faults using frequency domain
impedance spectroscopy coupled with artificial intelligence. They utilized the frequency
domain amplitude spectroscopy data from buffer layer ablation and local aging faults as
datasets for training and validating a neural network model, enabling the identification of
such faults.

Overall, these methods are of great significance for the status assessment of buffer
layers, but they have some limitations. For example, the X-ray detection method requires
multiple adjustments of the detector and the radiation source during the detection, and
X-rays have certain hazards, making it difficult to apply them to large-scale field detection.
The gas analysis method requires drilling into the cable to collect gas and using a chromato-
graph to analyze the gas composition, which is somewhat destructive and operationally
complex. In comparison, the scheme to assess buffer layer ablation faults by detecting
changes in the surface temperature distribution of high-voltage cables has the advantages
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of simple operation and non-destructiveness. Such methods are more in line with the
needs of practical applications and have been studied and applied in other types of power
system fault monitoring [26–28]. However, the core challenge faced by this method is
the varying degree of heat generation caused by buffer layer ablation faults, sometimes
with a low temperature rise, around 1 degree Celsius, leading to an inconspicuous visual
representation of temperature differences on thermal infrared images and interference from
noise, affecting the timeliness and accuracy of ablation status monitoring and assessment.
Therefore, there is an urgent need for an algorithm that can enhance the thermal infrared
images of high-voltage cables to more intuitively reflect temperature differences or changes,
facilitating the effective detection of buffer layer ablation defects. Although there are al-
ready spatial domain image enhancement methods such as histogram equalization and
frequency domain image enhancement methods such as non-subsampled contourlet trans-
form [29–31], the enhancement effect is not ideal for high-voltage cable thermal infrared
images with low contrast and noise interference. How to enhance detail differences while
suppressing noise is the main challenge faced.

In response to the aforementioned issues and considering the characteristics of high-
voltage cable infrared thermal images, this paper proposes an effective adaptive enhance-
ment method for infrared thermal images of buffer layer ablation in high-voltage cables,
enabling the prompt identification of faults. The main contributions are summarized
as follows:

• To avoid amplifying noise during the enhancement process, we propose Average
Gradient Weighted Guided Filtering (AGWGF) for image background and detail
layer decomposition.

• To highlight temperature differences or changes, we propose an improved Contrast
Limited Adaptive Histogram Equalization (CLAHE) for the background layer.

• To suppress noise interference, we propose an improved Adaptive Bilateral Filtering
(ABF) for the detail layer.

• Experiments demonstrate that the enhanced results can more clearly and
intuitively reflect temperature differences, which is beneficial for the monitoring of
ablation faults.

2. Experimental Materials and Test Images

In this study, a section of ZC-YJLW03 64/110 high-voltage cable was used as an
experimental sample, and fault defects were simulated. A voltage regulator was used to
gradually increase the voltage between the aluminum sheath and the outer semi-conductive
layer to 80 V. During this process, an HIKMICRO infrared thermal imager was used to
record a sequence of cable infrared images that reflect temperature changes, which served
as experimental test data. In this experiment, nine images were selected from the sequence
as test images, as shown in Figure 3. It can be observed that the directly collected thermal
infrared images have issues such as unclear detail levels, unobvious visual representation of
temperature differences, and significant imaging noise impact, which are not conducive to
defect detection and assessment. Therefore, it is necessary to enhance the thermal infrared
image to better reflect temperature differences, which will facilitate subsequent ablation
defect detection and assessment. The primary challenge lies in enhancing detail differences
while effectively suppressing noise.
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Figure 3. The images captured by an HIKMICRO infrared thermal imager. From left to right, from
top to bottom, they are respectively referred to as Image 1 to Image 9.

3. Proposed Adaptive Enhancement Algorithm for Thermal Infrared Images

In response to the issues of high-voltage cable buffer layer ablation thermal infrared
images, such as unclear detail hierarchy, unobvious visual representation of temperature
differences, and significant imaging noise impact, this paper proposes an adaptive enhance-
ment method, as shown in Figure 4, for thermal infrared images of high-voltage cable
buffer layer ablation, which is based on background enhancement and detail denoising.
The proposed method mainly includes five processing steps: adaptive image background
and detail layer decomposition based on Average Gradient Weighted Guided Filtering
(AGWGF), image background layer equalization enhancement based on improved Contrast
Limited Adaptive Histogram Equalization (CLAHE), image detail layer denoising and
stretching based on Adaptive Bilateral Filtering (ABF), image background and detail layer
fusion stretching, and pseudo-color processing of the enhanced grayscale infrared images.

For a given grayscale infrared image of a cable, I, as shown in Figure 4, the background
image Ib is first generated through AGWGF, and Ib is subtracted from the original image
I to obtain the detail image Id. For the background image Ib, it is enhanced using the
improved CLAHE to obtain IbCLAHE; for the detail image Id, it is denoised and stretched
using the improved ABF to obtain IdABFS. Then, the enhanced grayscale thermal infrared
image of the high-voltage cable Ie is obtained by fusing and stretching IbCLAHE and IdABFS.
Finally, pseudo-color processing is performed on Ie to generate a pseudo-color thermal
infrared image Ic.
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Figure 4. Flow chart of the proposed adaptive thermal infrared image enhancement method.

3.1. Adaptive Image Background and Detail Layer Decomposition Based on AGWGF

As shown in Figure 4, to avoid amplifying the noise in the enhanced infrared image,
Average Gradient Weighted Guided Filtering (AGWGF) is proposed to separate the infrared
image into background and detail layers and process them in different ways to achieve
detail enhancement and noise suppression.

Guided filtering is an image filtering technique designed to smooth images while
preserving details and edge information [32]. It requires the use of a guidance image for
filtering, and in this paper the input image itself is used as the guidance image. Traditional
guided filtering has parameters such as the filtering radius and intensity that need to be
set manually; improper parameter selection may lead to the occurrence of halo effects [33].
This paper optimizes the regularization parameter and proposes AGWGF, which introduces
the ratio of the current window’s average gradient to the sum of the average gradients of all
windows in the image as the edge-aware weight for the current pixel, effectively avoiding
the halo artifacts in the filtered image.

Specifically, given the input image I and the guidance image p (p = I in this work),
the local linear relationship model between the output image of the guided filtering Ib and
the guidance image p is:

Ibi = ak pi + bk, ∀i ∈ ωk (1)

where Ibi and pi are the pixels at position i in Ib and p, respectively. ak and bk denote the
local coefficients within a square window wk centered at pixel point i. By calculating the
correlation coefficients of the linear function for ak and bk, the following cost function is
optimized within the window:

E(ak, bk) = ∑
i∈ωk

((ak pi + bk − Ii)
2 +

ε

φi
a2

k) (2)

where Ii represents the pixel at position i in the image I. ε serves as the regularization
parameter, which controls the degree of smoothing in the filtering process. ε is set to 600.
φi is given by the following equation:

φi =
1
N

N

∑
j=1

gi + η

gj + η
(3)

where N represents the total number of pixels in the image. η is set to (0.001T)2, where T
represents the dynamic range of the image. gi denotes the average gradient value within
the window centered at pixel i, which is calculated as follows:

gi =
1
n2

n

∑
x=1

n

∑
y=1

√
[
∂I(x, y)

∂x
]
2

+ [
∂I(x, y)

∂y
]
2

(4)
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where n is the side length of the square window wk centered at the pixel i. I(x, y) represents
the pixel value of image I at the coordinates (x, y).

Based on the aforementioned equations, the solutions for ak and bk can be derived
as follows:

ak =

1
|ω| ∑i∈ωk

pi Ii − µk Īk

σ2
k + ε

φi

(5)

bk = Īk − akµk (6)

where |ω| represents the number of pixels within the window ωk; µk and σk
2 are the mean

and variance, respectively, of the guidance image p within the window ωk; and Īk denotes
the mean of the input image I within the window ωk.

Correspondingly, the output image Ibi is represented as:

Ibi = āi Ii + b̄i (7)

where āi and b̄i represent the mean values of all ak and bk, respectively, within the square
window ωk centered at pixel i.

By applying AGWGF to the original image I, the background image Ib is obtained;
subsequently, the detail image Id is obtained by subtracting the background image from the
original image. Here, the background layer Ib reflects the main body of the image, while
the detail layer Id contains more fine structures and noise.

3.2. Image Background Layer Equalization Enhancement Based on Improved CLAHE

Contrast Limited Adaptive Histogram Equalization (CLAHE) enhances image contrast
by stretching the image’s intensity level distribution and is an efficient method for image
enhancement [29]. However, the performance of CLAHE is typically dependent on the
selection of parameters, such as the size of the partitioned regions and the threshold of
contrast limitation. This paper proposes an improvement to CLAHE by obtaining the
threshold of contrast limitation based on the average gradient of image partitions, thereby
achieving adaptive parameter selection when processing different images. The steps for
the improved background layer enhancement algorithm are as follows:

(1) The background image Ib is divided into several equally sized, identically shaped,
and non-overlapping fixed sub-blocks of size m × n.

(2) Calculate the average gradient gi within each image sub-block according to the
following formula:

gi =
1

mn

m

∑
x=1

n

∑
y=1

√
[
∂Ib(x, y)

∂x
]
2

+ [
∂Ib(x, y)

∂y
]
2

(8)

where m and n represent the length and width of the image sub-block, respectively, and
Ib(x, y) denotes the pixel value of the background image at the coordinates (x, y).

(3) The number of pixels in each image sub-block is evenly distributed across each
intensity level, which is denoted as:

Naver =
Nbx Nby

L
(9)

where Nbx and Nby represent the number of pixels in the horizontal and vertical dimensions
of the image sub-block, respectively; L denotes the number of distinct intensity levels
present in the image sub-block i.

(4) The number of pixels associated with each intensity level within an image sub-block
is constrained so as not to exceed the clipping threshold Ci

limit, formulated as:

Ci
limit = Naver + Ni

clip(agi + b)(Nbx Nby − Naver) (10)
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where Ni
clip is the clipping coefficient for the i-th image sub-block, where a and b are

constants. Ni
clip, a, and b are set to 1, 1, and 4, respectively.

(5) For each image sub-block, the grayscale histogram is clipped, and the excess pixel
count that is clipped off is evenly redistributed across all intensity levels. The average
number of pixels redistributed to each intensity level is given by:

Na =
Sclip

L
(11)

where Sclip represents the total number of pixels that have been clipped. After the afore-
mentioned redistribution, any remaining unallocated pixels are evenly distributed among
the intensity levels that are less than Climit, in a cyclic manner, until all remaining pixels
are allocated.

(6) After applying contrast limitation to each image sub-block, histogram equalization
is performed; further, bilinear interpolation is used to mitigate the block effect and enhance
computational speed.

The improved CLAHE method is applied to the background image Ib, resulting in an
enhanced background image IbCLAHE.

3.3. Image Detail Layer Denoising and Stretching Based on ABF

Compared to traditional linear filters, the bilateral filter takes into account both the
spatial distance between pixels and the differences in pixel values, thus better preserving
image edge information and details during the denoising process [34]. To effectively filter
out noise while retaining image details, this paper uses the improved Adaptive Bilateral
Filter (ABF) to process the detail layer. First, the detail image is divided into blocks, and
the average gradient of pixels within each block is calculated to determine the filtering
parameters; then, different bilateral filters with varying parameters are applied to different
blocks of the image for filtering.

Specifically, for a given detail image Id, it is divided into several equally sized, iden-
tically shaped, and non-overlapping m × n image sub-blocks. ABF is performed on each
image sub-block, and the pixel values of the output sub-block image are calculated using
the following formula:

Ii
dABF(u) =

1
W ∑

v∈S
Ii
d(v) · ωi(u, v) (12)

where S represents the local neighborhood centered on the pixel point u; Ii
d(v) denotes the

pixel value of the sub-block Ii
d at the pixel point v; ωi(u, v) is the weight between the pixels

at u and v; and W is the normalization coefficient for the weights. The calculation formula
for ωi(u, v) is as follows:

ωi(u, v) = exp(−∥u − v∥2

2δi
S

2 ) · exp(−
∥∥Ii

d(u)− Ii
d(v)

∥∥2

2δi
r
2 ) (13)

δi
S = aSgi (14)

δi
r = argi (15)

where aS and ar are constants, and they are set to 75; δi
S is the standard deviation of

the spatial Gaussian kernel applied to the i-th sub-block. A larger value of δi
S indicates

that pixels spatially farther apart will also be considered for weight, resulting in a more
pronounced smoothing effect on the image. δi

r is the standard deviation of the Gaussian
kernel applied to the pixel values within the i-th sub-block. δi

r represents the degree of
difference in pixel values. A smaller value of δi

r means that the filter is more sensitive to
differences in pixel values, implying that only pixels with small value differences will be
considered for weight calculation, thereby enriching the detail information in the image. gi
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is the average gradient of the i-th sub-block. After filtering, all sub-blocks are combined to
obtain the denoised image IdABF.

Furthermore, the denoised detail image IdABF is stretched to obtain IdABFS. Specif-
ically, let the minimum and maximum values in image IdABF be denoted by vmin and
vmax, respectively. Correspondingly, the goal of stretching is to adjust the minimum
and maximum values in image IdABFS to αvmin and βvmax, which is achieved by the
following transformation:

IdABFS =
IdABF − vmin

vmax − vmin
(βvmax − αvmin) + αvmin (16)

where α and β are stretching parameters, and they are set to 6 and 3, respectively.
The improved bilateral filter is applied to the detail image Id for denoising, and the

resulting image IdABF is stretched to obtain image IdABFS.

3.4. Image Background and Detail Layer Fusion Stretching

The enhanced background image IbCLAHE and the denoised and stretched detail image
IdABFS are fused to obtain image I f :

I f = IbCLAHE + IdABFS (17)

Furthermore, I f is stretched to obtain the enhanced grayscale infrared image Ie:

Ie =
I f − I f _min

I f _max − I f _min
(R − 1) (18)

where I f _max and I f _min represent the maximum and minimum grayscale values of image
I f , respectively; for an 8-bit image, R is set to 256.

3.5. Pseudo-Color Processing of Grayscale Infrared Images

Finally, pseudo-color processing is applied to the enhanced grayscale infrared image
Ie to produce a pseudo-color image Ic, mapping pixels of different grayscale levels in
the enhanced image to different colors to achieve a better visual effect and highlight the
temperature distribution of the cable, facilitating the identification of heat-generating areas
on the cable from the image. The proposed thermal infrared image enhancement method is
summarized in Algorithm 1.

Algorithm 1 Adaptive Enhancement of Thermal Infrared Images

Require: The grayscale thermal infrared image I.
Ensure: The enhanced grayscale thermal infrared image Ie and the pseudo-color thermal

infrared image Ic.
1: Decompose I to obtain the background layer Ib and the detail layer Id based on AGWGF.

(Equations (1)–(7))
2: Enhance the background layer Ib based on the improved CLAHE to generate IbCLAHE.

(Equations (8)–(11))
3: Enhance the detail layer Id based on the improved ABF to generate IdABFS.

(Equations (12)–(16))
4: Fuse IbCLAHE and IdABFS to generate the enhanced grayscale thermal infrared image Ie.

(Equations (17) and (18))
5: Perform pseudo-color processing on Ie to generate the pseudo-color thermal infrared

image Ic.
6: return Ie and Ic.
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4. Experimental Results and Analysis

In order to verify the effectiveness of the proposed adaptive enhancement method
for high-voltage cable infrared images, the infrared images of the cable recorded by the
HIKMICRO infrared thermal imager shown in Figure 3 are used as test images. The HE
(Histogram Equalization) [35], MSR [36], CLAHE [29], and the method proposed in this
paper are applied to enhance the test images, and a comparison and analysis are made in
conjunction with subjective results and objective metrics. All experiments were conducted
on a computer with an Intel(R) Core(TM) i7-6700K CPU (4.00 GHz) and 16 GB RAM
using Python 3.11.

4.1. Subjective Results Comparison and Analysis

Figures 5–9 display the enhancement results of the infrared images of high-voltage
cable buffer layer ablation. In each set of experimental result figures, the first column from
top to bottom shows the original grayscale thermal infrared images of the high-voltage
cable collected by the infrared thermal imager, as well as the grayscale thermal infrared
images enhanced by HE [35], MSR [36], CLAHE [29], and the method proposed in this
paper; the second column displays the pseudo-color image results corresponding to the
grayscale thermal infrared images shown in the first column.

The results shown in Figures 5–9 indicate that the original grayscale cable images have
low contrast and indistinct details, making it difficult to observe and analyze temperature
differences, which leads to difficulties in assessing the ablation status of the buffer layer.
The images enhanced with HE [35] exhibit excessive contrast, with details not standing out
clearly, and there is a significant amount of noise. Compared to histogram equalization,
both MSR [36] and CLAHE [29] enhance contrast while making details more prominent
and reducing noise. The method proposed in this paper effectively removes noise while
increasing contrast, providing the richest texture details and offering the best visual effect,
allowing for a clearer observation of temperature changes and differences.

Regarding the pseudo-color images, the original cable pseudo-color images have
low contrast, making it hard to distinguish details. In the pseudo-color images enhanced
by the comparative methods, the high-temperature areas of the cable are not prominent,
and the sense of hierarchy is poor. Compared to other algorithms, the pseudo-color
images obtained by the method in this paper have richer texture details, with distinct
temperature distribution levels, and the high-temperature areas of the cable are more
prominent, allowing direct observation of the heat-generating areas and more closely
resembling the temperature distribution in the original images.

4.2. Objective Metrics Comparison and Analysis

To compare the thermal infrared enhancement results more objectively and quantita-
tively, two common image quality assessment metrics including information entropy and
average gradient are selected for comparison and analysis, with the experimental results
shown in Tables 1 and 2.

Specifically, information entropy is a measure of the complexity or uncertainty of
image content. Given an image I, its information entropy is defined as follows:

IE(I) = −
255

∑
i=0

pilog2 pi (19)

where pi denotes the probability of the gray level i occurring in the image I. Information
entropy is often used to assess the complexity or amount of information in an image; the
higher the information entropy, the richer the information content of the image.
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Figure 5. Visual quality comparison. The images in the first column are the original and enhanced
thermal infrared images, and the corresponding pseudo-colored infrared images are shown in the
second column.
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Figure 6. Visual quality comparison. The images in the first column are the original and enhanced
thermal infrared images, and the corresponding pseudo-colored infrared images are shown in the
second column.
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Figure 7. Visual quality comparison. The images in the first column are the original and enhanced
thermal infrared images, and the corresponding pseudo-colored infrared images are shown in the
second column.
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Figure 8. Visual quality comparison. The images in the first column are the original and enhanced
thermal infrared images, and the corresponding pseudo-colored infrared images are shown in the
second column.
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Figure 9. Visual quality comparison. The images in the first column are the original and enhanced
thermal infrared images, and the corresponding pseudo-colored infrared images are shown in the
second column.
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The average gradient refers to the average degree of grayscale change between adjacent
pixels in the image, which is defined as follows:

AG(I) =
1

MN

M

∑
x=1

N

∑
y=1

√
[
∂I(x, y)

∂x
]
2

+ [
∂I(x, y)

∂y
]
2

(20)

where M and N denote the length and width of I, respectively. The larger the average
gradient, the more drastic the grayscale changes in the image, indicating the presence of
more edges or details.

As shown in Table 1, for the nine high-voltage cable buffer layer ablation thermal
infrared images, the enhancement results of the method proposed in this paper have a
significantly higher information entropy compared to the original collected images and
also outperform the results of other enhancement methods such as HE [35], MSR [36], and
CLAHE [29]. This indicates that the enhancement results of the method proposed in this
paper more clearly present the image detail structure, contain richer information, and thus
can more directly and effectively reflect temperature changes and differences.

As demonstrated in Table 2, in terms of average gradient, the enhancement results
of the method proposed in this paper are significantly superior to the original thermal
infrared images as well as MSR [36] and CLAHE [29], highlighting the advantages of the
enhancement outcomes of this method. HE [35] achieves the highest average gradient
value, which can be attributed to the fact that the method does not take noise impact
into consideration, and the enhancement process amplifies the noise, resulting in a notice-
able presence of noise that leads to an increase in gradient values. The proposed method
not only suppresses noise but also more clearly represents temperature changes and dif-
ferences, which is conducive to improving the accuracy of cable condition assessment
and monitoring.

To provide a more comprehensive evaluation of different methods, Table 3 further
presents the processing time of various methods. The proposed method requires approxi-
mately 4.1 s per test image, which is slower than the compared methods. This is primarily
due to the relatively more complex multi-stage framework of the proposed method, as
illustrated in Figure 4. In this framework, the background and detail layers are decomposed
and processed independently to prevent noise amplification during enhancement. The
subjective and objective comparisons above indicate that the images enhanced by our
proposed method display superior quality compared to those processed by competing
methods, thereby validating the effectiveness of our framework.

Table 1. Comparison of information entropy scores between the proposed method and other methods.

Original He [35] MSR [36] CLAHE [29] Proposed

Image 1 3.94 3.92 5.33 5.87 6.58

Image 2 3.92 3.89 5.32 5.84 6.59

Image 3 4.66 4.62 5.74 6.44 6.55

Image 4 4.63 4.57 5.84 6.39 6.47

Image 5 4.15 4.12 5.49 5.98 6.22

Image 6 4.49 4.44 5.80 6.23 6.36

Image 7 4.58 4.54 5.78 6.40 6.76

Image 8 4.53 4.49 5.85 6.25 6.72

Image 9 3.95 3.92 5.35 5.94 6.15

Average 4.32 4.28 5.61 6.15 6.49
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Table 2. Comparison of average gradient scores between the proposed method and other methods.

Original He [35] MSR [36] CLAHE [29] Proposed

Image 1 1.20 22.52 7.88 6.21 9.62

Image 2 1.24 24.01 8.05 6.38 10.05

Image 3 1.55 16.13 9.46 6.15 9.84

Image 4 1.51 16.93 9.30 5.67 9.41

Image 5 1.27 21.22 8.18 6.00 8.79

Image 6 1.55 18.30 9.19 5.31 10.26

Image 7 1.48 17.03 9.09 6.00 10.20

Image 8 1.49 16.94 8.85 5.39 10.03

Image 9 1.35 26.33 8.76 6.83 9.84

Average 1.40 19.93 8.75 5.99 9.78

Table 3. Comparison of running time between the proposed method and other methods.

He [35] MSR [36] CLAHE [29] Proposed

Running Time (s) 0.6 0.8 0.6 4.1

5. Conclusions

This paper proposes a thermal infrared image enhancement method for implementing
temperature-based monitoring and assessment of high-voltage cable buffer layer ablation.
The summary is as follows:

(1) High-voltage cable buffer layer ablation faults are associated with heat generation,
and the method of monitoring and assessing the ablation status by combining infrared ther-
mal imaging temperature measurement has the advantages of being convenient, efficient,
and non-destructive.

(2) Test results indicate that the thermal infrared images of buffer layer ablation directly
collected by infrared thermal imagers have issues with unobvious visual representation
of temperature differences and interference from noise, which need to be improved by
combining image enhancement techniques.

(3) Experimental results show that the proposed adaptive enhancement and pseudo-
color processing method for thermal infrared images of high-voltage cable buffer layer
ablation can effectively enhance image detail structure and suppress noise, more intuitively
and clearly reflecting temperature changes and differences.

(4) Although the proposed method achieves excellent enhancement performance, it
has certain limitations in terms of processing speed, and we will explore ways to improve
processing efficiency in our future research.
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