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Abstract: The cyclic hardening characteristics of soil hold significant importance for understanding
its performance, and the evolution of the deformation modulus serves as a crucial indicator of
the hardening properties. Deformations can be classified into elastic and plastic deformations and
expressed in terms of modulus; however, their roles in the cyclic hardening process remain unclear.
In this study, the elastic and plastic moduli were separated using the hyperbolic evolutionary model,
which characterized the evolutionary properties of both to reflect the cyclic hardening process. A
series of cyclic triaxial shear tests was conducted utilizing ISO sand and emery as test materials. A
hyperbolic evolution model relating the equivalent modulus to the number of cycles was established,
and the effect of various test conditions on the elastic modulus is discussed. The results indicate that:
(1) the relationship between the equivalent modulus and the number of cycles is hyperbolic; and
(2) the parameters k and b of the hyperbolic evolution model correspond to the elastic and plastic
moduli, allowing for the separation of the evolution of both from that of the deformation modulus.
The hyperbolic evolution model of the equivalent modulus proposed in this paper offers new insight
into the cyclic hardening properties of sand.

Keywords: equivalent modulus; hyperbolic evolution model; elastoplastic separation; cyclic triaxial
test

1. Introduction

Cyclic loads represent a common type of loading, such as traffic loads, which act
on transportation infrastructure, and wave loads, which act on piles [1,2]. The cyclic
loading imposed on a structure is transferred to the soil through the foundation, resulting
in soil strength degradation and fatigue, thereby compromising the safety and life cycle of
the structure [3–5]. Granular material (soil) demonstrates a gradual hardening behavior
under cyclic loading, primarily manifested in the increasing steepness of the stress–strain
hysteresis loop; that is, the deformation modulus progressively increases with the number
of cycles [6–8]. Consequently, understanding the cyclic hardening behavior of soil and
quantifying evolution of the deformation modulus are essential for safeguarding the service
performance of geotechnical structures.

Several studies have been conducted on the evolutionary behavior of the deformation
modulus of soil under cyclic loading, and various elastic–plastic theoretical models have
been established [9–12]. A common feature among them is that elastic strain occurs within
a small strain range inside the yield surface, whereby cyclic loading within this region pro-
duces only elastic strain. Indeed, the deformation of soil represents elastic–plastic coupling
behavior, and taking the elastic–plastic coupling effect into account enhances the predictive
capability of the soil constitutive model [13,14]. The total deformation modulus of the soil
comprises the coupling of the elastic and plastic moduli, which can be partially decoupled
into the elastic modulus Eelastic and the plastic modulus Eplastic [15]. Neglecting plastic

Processes 2024, 12, 2550. https://doi.org/10.3390/pr12112550 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12112550
https://doi.org/10.3390/pr12112550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr12112550
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12112550?type=check_update&version=2


Processes 2024, 12, 2550 2 of 16

deformation within the yield surface and assuming that only elastic deformation occurs
inside it may compromise the accuracy of subsequent plasticity parameter measurements.
Hence, to more realistically depict the cyclic hardening behavior of sand, attention should
be directed towards the evolution of the elastic and plastic moduli throughout the cyclic
process following the decoupling of the total deformation modulus.

At present, the evolutionary behavior of the soil elastic modulus under stress cycling
remains unclear. For the sake of convenience, Pradhan and Tatsuoka [16] assumed that elas-
ticity remains constant under cyclic loading; however, this assumption lacks a theoretical
basis and experimental evidence. Karg and Haegeman [17] conducted cyclic triaxial tests
and observed that the elastic properties of the soil remained nearly constant during cyclic
loading within a narrow strain range. Nonetheless, most of these conclusions emphasize
the elastic detection of soil in a narrow strain range. In reality, the relatively large stress
increments generated in granular material during unloading can surpass the transient
elastic limit of soil [18,19], failing to fully characterize the continuous elastic behavior of
the soil. Zeng and Shao [6] proposed a novel method for determining the elastic modulus
of soils over a large strain range, which was further validated by Xia et al. [8,20]. They
pointed out that the elastic response of sand in a stable state under cyclic loading can
serve as an evaluation of the true elastic properties of granular soil in cyclic unloading
triaxial tests with large stress amplitudes. Nevertheless, the data exhibit considerable
volatility in response to changes in elastic properties due to stress history, and do not
provide definitive conclusions.

Regarding the evolution of the plastic modulus, there are relatively fewer studies based
on experimental data, and most begin from plasticity theory. To describe the hysteretic
response of soil in cyclic loading, various plasticity assumptions such as yield function,
plastic potential surface, and hardening theory have been introduced to accommodate
the loading–unloading process by continuously adjusting the state of the yield surface.
One of the most widely used theories is the multiple yield surface plasticity theory [21,22],
upon which numerous models have been developed. For instance, Mroz and Norris [23,24]
established a multi-yield surface model that captures the softening phenomenon of soil,
and the current relative position of the yield surface is used to reflect the change of the
plastic modulus. However, specific criteria for determining this parameter are not provided,
and the multiple yield surface model is computationally complex, limiting its practical
application. To solve this issue, Dafalias et al. [10] simplified the model to a double-yield-
surface approach, retaining only two yield surfaces, one functioning as the bounding surface
and the other as the loading surface, with each surface governed by its own independent
equations. However, in practice, there are instances where the model-predicted axial strain
accumulation exceeds the actual measured value [25]. Subsequently, Dafalias et al. [26]
established a bounding surface model by compressing the loading surface to a point
based on the two-sided model, which further simplified the model. Due to its significant
simplification in mathematical operations, it has been extensively applied in practical
engineering. Nonetheless, the evolution of the plastic modulus continues to be derived
through assumptions. In summary, this type of theory often requires the establishment
of formulas for the calculation of the plastic modulus by means of the dimensions and
positions of the yield and boundary surfaces, the evolution of which is pre-assumed and
simplified. Therefore, the determination of model parameters often requires assumptions
through the trial-and-error method, and the effectiveness in reflecting the evolution of the
real plastic behavior of the soil body needs to be improved.

An analysis of the potential cyclic evolutionary behavior of plasticity based on the
generalized plasticity theory also exists [27]: its most important feature is that the model
does not directly specify the yield surface or the plastic potential surface, but rather provides
a formula for the plastic modulus. Pastor [28] applied the generalized plasticity theory to
describe the stress–strain behavior of sand and clay under cyclic loading. To explain the
cyclic hysteresis phenomenon more accurately, he introduced a discrete memory factor to
adjust the plastic modulus. Heidarzadeh and Oliaei [29] proposed a novel approach to
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defining the generalized plastic modulus applicable to sand through the introduction of
bounding surface theory. Though in the generalized plasticity theory, the plastic modulus is
directly calculated using a mathematical formula, which simplifies the modeling process, it
also introduces challenges such as numerous parameters and unclear physical significance.
Moreover, the formula for the plastic modulus is also based on pre-assumptions, and the
plastic modulus is likely to deviate from the true value in engineering applications.

To address the shortcomings of the above studies, this paper defines the equivalent
modulus from the experimental point of view from the evolution of the total deformation
modulus to reflect the cyclic hardening process. Utilizing a full-surface deformation digital
image measurement system, a series of large-stress-amplitude triaxial cyclic loading tests
was conducted on ISO sand and emery. The stress–strain behavior of sand during cyclic
triaxial tests and the evolution of the equivalent modulus with respect to the number of
cycles are analyzed. Additionally, a hyperbolic model relating the equivalent modulus to
the number of cycles is established, and the physical significance of two key parameters
in the model is examined. The model not only provides an accurate description of the
equivalent modulus during the test but also separates the elastic and plastic components
of the cyclic process. Moreover, the model does not necessitate the introduction of plastic
assumptions, such as plastic potential surface or hardening law, thereby offering new
insights into the evolution of the deformation modulus of sandy soil under cyclic loading
with large stress amplitudes.

2. Materials and Methods

The test platform consists of a triaxial testing machine equipped with a full-surface-
deformation digital image measurement system (DIMS) developed by Shao et al. [30,31],
as shown in Figure 1. The error of the axial and radial strain of DIMS was 10−5. Unlike
the white latex rubber membrane used in traditional triaxial tests, the platform uses a
black latex rubber membrane with 8 rows and 8 columns of 7 mm × 7 mm white squares
uniformly distributed on the outer surface, as shown in Figure 2. The dorsal image of the
rubber membrane is captured by the camera after being reflected off the left- and right-
plane mirrors, resulting in a total of 240 recognizable effective corner points in Figure 2b.
The corner points of each white square serve as feature points for image measurement and
recognition, and are identified and tracked using a sub-pixel corner recognition algorithm.
A CMOS camera captures the deformation process of the specimen, monitors its surface
displacement in real time by identifying characteristic points on the rubber membrane’s
surface in the image, and calculates the surface deformation based on geometric equations
and isoparametric transformations using the finite element method.

Processes 2024, 12, x FOR PEER REVIEW 3 of 16 
 

 

adjust the plastic modulus. Heidarzadeh and Oliaei [29] proposed a novel approach to 
defining the generalized plastic modulus applicable to sand through the introduction of 
bounding surface theory. Though in the generalized plasticity theory, the plastic modulus is 
directly calculated using a mathematical formula, which simplifies the modeling process, it 
also introduces challenges such as numerous parameters and unclear physical significance. 
Moreover, the formula for the plastic modulus is also based on pre-assumptions, and the plas-
tic modulus is likely to deviate from the true value in engineering applications. 

To address the shortcomings of the above studies, this paper defines the equivalent 
modulus from the experimental point of view from the evolution of the total deformation 
modulus to reflect the cyclic hardening process. Utilizing a full-surface deformation digi-
tal image measurement system, a series of large-stress-amplitude triaxial cyclic loading 
tests was conducted on ISO sand and emery. The stress–strain behavior of sand during 
cyclic triaxial tests and the evolution of the equivalent modulus with respect to the num-
ber of cycles are analyzed. Additionally, a hyperbolic model relating the equivalent mod-
ulus to the number of cycles is established, and the physical significance of two key pa-
rameters in the model is examined. The model not only provides an accurate description 
of the equivalent modulus during the test but also separates the elastic and plastic com-
ponents of the cyclic process. Moreover, the model does not necessitate the introduction 
of plastic assumptions, such as plastic potential surface or hardening law, thereby offering 
new insights into the evolution of the deformation modulus of sandy soil under cyclic 
loading with large stress amplitudes. 

2. Materials and Methods 
The test platform consists of a triaxial testing machine equipped with a full-surface-

deformation digital image measurement system (DIMS) developed by Shao et al. [30,31], 
as shown in Figure 1. The error of the axial and radial strain of DIMS was 10−5. Unlike the 
white latex rubber membrane used in traditional triaxial tests, the platform uses a black 
latex rubber membrane with 8 rows and 8 columns of 7 mm × 7 mm white squares uni-
formly distributed on the outer surface, as shown in Figure 2. The dorsal image of the 
rubber membrane is captured by the camera after being reflected off the left- and right-plane 
mirrors, resulting in a total of 240 recognizable effective corner points in Figure 2b. The corner 
points of each white square serve as feature points for image measurement and recognition, 
and are identified and tracked using a sub-pixel corner recognition algorithm. A CMOS cam-
era captures the deformation process of the specimen, monitors its surface displacement in 
real time by identifying characteristic points on the rubber membrane’s surface in the image, 
and calculates the surface deformation based on geometric equations and isoparametric trans-
formations using the finite element method. 

  
Figure 1. Composition of the whole-surface-deformation measurement system: (a) triaxial appa-
ratus; (b) digital image measurement system. Figure 1. Composition of the whole-surface-deformation measurement system: (a) triaxial apparatus;

(b) digital image measurement system.



Processes 2024, 12, 2550 4 of 16Processes 2024, 12, x FOR PEER REVIEW 4 of 16 
 

 

  
Figure 2. (a) Corner identification of the sample; (b) pixel coordinates of corner points (unit: pixel). 

The test materials consisted of ISO sand (SS) and emery (ES). Their grading curves 
are shown in Figure 3. The materials were dried and formed into standard cylindrical 
specimens with diameter Φ = 39.1 mm and height H = 80 mm. The constant loading and 
unloading rate was set to 0.1 mm/min. The time history of deviatoric stress and stress path 
are shown in Figure 4. Table 1 lists the test program. 

 
Figure 3. Physical indices of experiment material. 

 
Figure 4. (a) Deviatoric stress versus time; (b) stress path in p–q space. 
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The test materials consisted of ISO sand (SS) and emery (ES). Their grading curves
are shown in Figure 3. The materials were dried and formed into standard cylindrical
specimens with diameter Φ = 39.1 mm and height H = 80 mm. The constant loading and
unloading rate was set to 0.1 mm/min. The time history of deviatoric stress and stress path
are shown in Figure 4. Table 1 lists the test program.
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Table 1. Program of triaxial loading–unloading testing.

Test
Number

Dry Density ρd Relative Density Dr Initial Void Ratio e0 Confining Pressure σ3 Maximum Deviator Stress qmax
g/cm3 % - kPa kPa

SSC121 1.682 30 0.546 200 300
SSC211 1.754 50 0.482 100 300
SSC221 1.754 50 0.482 200 300
SSC222 1.754 50 0.482 200 400
SSC223 1.754 50 0.482 200 500
SSC231 1.754 50 0.482 300 300
SSC251 1.754 50 0.482 400 300
SSC321 1.792 60 0.451 200 300
SSC421 1.874 80 0.387 200 300
ESC121 1.836 30 1.032 200 300
ESC211 1.898 50 0.965 100 300
ESC221 1.898 50 0.965 200 300
ESC222 1.898 50 0.965 200 400
ESC223 1.898 50 0.965 200 500
ESC231 1.898 50 0.965 300 300
ESC251 1.898 50 0.965 400 300
ESC321 1.931 60 0.932 200 300
ESC421 2.000 80 0.865 200 300

3. Results

The typical stress–strain curves of the specimens in the cyclic triaxial tests are shown in
Figure 5. The results indicated that axial strain increased with the number of cycles, though
the growth rate diminished, as evidenced by a gradual and densely packed distribution of
the curves. The results also revealed that the specimen underwent substantial strain during
the first cycle, contrasting sharply with the minor strain increments in subsequent cycles.
This indicates that the deformation characteristics of the specimen in the first cycle differed
from those in the other cyclic phases, aligning with the analyses of Xiong [32], Tong [33],
and Buckovalas [34] et al. For instance, consider tests SSC223 and ESC223. The relationship
between axial strain and time is illustrated in Figure 6, indicating that as the test proceeds,
axial strain increases during loading, decreases during unloading, and results in plastic
cumulative strain at the end of each cycle. Moreover, as the test progresses, the axial strain
continues to increase, but its growth curve becomes increasingly flat. A comparison of
stress–strain curves for different cycles is shown in Figure 7. The shape of the stress–strain
curve of the cycle changes significantly, with the cycle interval decreasing until a stable and
unchanging hysteresis loop emerges. The cyclic loading stress–strain curve nearly returns
to the origin after reaching the steady state, suggesting that no further irrecoverable strain
occurs within the cycle.
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4. Discussion
4.1. Hyperbolic Law Between Equivalent Modulus and Number of Cycles

Drawing from the stress–strain curves obtained from the triaxial cyclic loading and
unloading tests, the equivalent modulus was introduced to quantify the deformation
characteristics of the loading and unloading phases within each cycle. The ratio of the
deviatoric stress increment to the corresponding axial strain increment during the loading
and unloading phases was defined as the loading and unloading equivalent modulus in
the cycle, as shown in Equation (1) and Figure 8:

EN =
∆q
∆ε

(1)

where EN is the loading (or unloading) equivalent modulus in the Nth cycle; ∆q is the
deviatoric stress increment within the loading (or unloading) stage in the Nth cycle; and ∆ε
is the axial strain increment within the corresponding stage. In Figure 8, E1

load and E1
unload

are the secant moduli for the first loading and the first unloading, respectively. Point A is
the end of the loading phase, and point B is the end of the unloading phase.
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In the constant-amplitude cyclic loading and unloading tests, the increment in axial
strain in each cycle diminished with an increasing number of cycles, as evidenced by
the continuous rise in the equivalent modulus during loading and unloading. Using test
SSC223 as an example for analysis, Figure 9 shows that the loading equivalent modulus
at the onset of the test was considerably smaller than the unloading equivalent modulus
for the same cycle, as evidenced by the rapid accumulation of axial strain. However, the
unloading equivalent modulus always fluctuated within a narrow range. This is because
the deformation caused by loading is significantly greater than the rebound deformation
caused by unloading in the same period. Continuous compaction of the sample resulted
in significant accumulation of deformation. However, by the later part of the test, the
two moduli converged, and the axial strain increased slowly until no more plastic strain
was produced. At this point, only elastic strains were generated. This indicates that the
equivalent modulus can be equated to the elastic modulus after the specimen reaches a
steady state.
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In addition, it can be clearly seen that the equivalent modulus at the first loading is
significantly smaller than the other moments, showing a completely different deforma-
tion characteristic. Thus, the first loading equivalent modulus was not considered when
performing the fitting. The deformation during initial loading was easily obtained from
the monotonic loading curve. In addition to the first loading, the loading and unloading
equivalent moduli showed an approximate hyperbolic relationship with the number of
cycles (see Equation (2)), which can be expressed in linear form through coordinate trans-
formation (see Equation (3) and Figure 10). The double-curve fitting parameters for the
cyclic loading tests under different test conditions are shown in Table 2, and the fit (R2) was
greater than 0.97 for both ISO sand and emery:

EN =
N

k · N + b
(2)

N
EN = k · N + b (3)

where N is the number of cycles corresponding to the loading (or unloading) equivalent
modulus, and k and b are the fitting parameters of the hyperbolic relationship during
loading (or unloading).
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Table 2. Fitting results of hyperbolic model.

Test Number
Loading Fitting Parameters Unloading Fitting Parameters

kload bload R2 kunload bunload R2

SSC121 3.46 × 10−6 4.85 × 10−6 0.990 3.47 × 10−6 1.69 × 10−6 0.992
SSC211 4.76 × 10−6 1.28 × 10−5 0.999 4.76 × 10−6 5.03 × 10−6 0.999
SSC221 3.23 × 10−6 3.76 × 10−6 0.997 3.22 × 10−6 1.51 × 10−6 0.997
SSC222 3.05 × 10−6 5.14 × 10−6 0.998 3.04 × 10−6 1.54 × 10−6 0.998
SSC223 2.74 × 10−6 1.99 × 10−6 0.997 2.75 × 10−6 8.58 × 10−7 0.997
SSC231 2.38 × 10−6 2.71 × 10−6 0.996 2.38 × 10−6 9.73 × 10−7 0.996
SSC251 1.96 × 10−6 9.14 × 10−7 0.982 1.97 × 10−6 4.12 × 10−7 0.983
SSC321 2.96 × 10−6 4.85 × 10−6 0.998 2.95 × 10−6 1.69 × 10−6 0.998
SSC421 2.56 × 10−6 3.00 × 10−6 0.979 2.54 × 10−6 9.79 × 10−7 0.975
ESC121 2.33 × 10−6 2.79 × 10−6 0.999 2.31 × 10−6 7.64 × 10−7 0.998
ESC211 2.49 × 10−6 1.24 × 10−5 0.995 2.47 × 10−6 1.47 × 10−6 0.984
ESC221 2.10 × 10−6 4.18 × 10−6 0.995 2.09 × 10−6 8.73 × 10−7 0.995
ESC222 2.07 × 10−6 4.79 × 10−6 0.997 2.07 × 10−6 8.85 × 10−7 0.996
ESC223 1.92 × 10−6 3.97 × 10−6 0.997 1.92 × 10−6 6.96 × 10−7 0.997
ESC231 1.73 × 10−6 2.90 × 10−6 0.998 1.74 × 10−6 7.10 × 10−7 0.999
ESC251 1.47 × 10−6 2.06 × 10−6 0.996 1.47 × 10−6 5.34 × 10−7 0.996
ESC321 1.95 × 10−6 3.60 × 10−6 0.998 1.96 × 10−6 9.19 × 10−7 0.998
ESC421 1.72 × 10−6 2.98 × 10−6 0.995 1.72 × 10−6 5.79 × 10−7 0.994

4.2. Elastic and Plastic Modulus Separation

When employing the hyperbolic relationship to characterize the connection between
the loading and unloading equivalent moduli and the number of cycles, different fitting
parameters, i.e., kload, bload, kunload, and bunload, were used to distinguish between different
materials and test conditions. Combined with the classical elastic–plastic theory, the
physical significance of the above parameters can be clarified for the separation of elastic
and plastic deformation.

In Equation (2), when the number of cycles N tends to infinity, the loading equivalent
modulus EN→∞

load tends to a constant value 1/kload, i.e.,

EN→∞
load =

N
kload · N + bload

∣∣∣∣
N→∞

=
1

kload
(4)

Similarly, the unloading equivalent modulus EN→∞
unload also tends to a constant value of

1/kunload, i.e.,

EN→∞
unload =

N
kunload · N + bunload

∣∣∣∣
N→∞

=
1

kunload
(5)

Comparing the double-curve fitting parameters kload and kunload of each group of tests
in Table 2, the absolute value of the relative error of both is less than 1.5%. The relative
error distribution is shown in Figure 11. Considering the effect of test error, it can be
assumed that the loading and unloading fitting parameter k is the same in the same group
of tests, i.e.,

kload = kunload (6)

Combining Equations (4)–(6), we have:

EN→∞
load = EN→∞

unload (7)

Equation (7) shows that after an infinite number of cyclic loadings, the ultimate loading
equivalent modulus and the ultimate unloading equivalent modulus of the specimen
converge to the same value. By combining with the definition of equivalent modulus
by Equation (1), it becomes apparent that the axial strain generated during the loading
process of the specimen will be fully recovered in the unloading process, without any
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residual strain. This is consistent with the experimental results of the previous analysis.
The ultimate loading and unloading equivalent modulus is the elastic modulus Eelastic (see
Equation (8)), indicating that the physical significance of the parameter k in the hyperbolic
model is the inverse of the elastic modulus.

Eelastic = EN→∞
load = EN→∞

unload =
1

kload
=

1
kunload

(8)
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The modulus of elasticity of a specimen reaching a steady state remains constant
during cyclic loading, which has been demonstrated [20], so the following inferences can
be made. According to Equations (3) and (8), it can be seen that in the Nth loading cycle,
the equivalent moduli of loading and unloading can be expressed as Equations (9) and (10).

1
EN

load
=

1
Eelastic +

bload
N

(9)

1
EN

unload
=

1
Eelastic +

bunload
N

(10)

The classical theory of elasticity and plasticity assumes that the specimen produces
both elastic and plastic strains under loading. Analyzing the strain increment loading in
the Nth cycle, we have:

∆εN
load = ∆εelastic

load + ∆ε
plastic
load (11)

where ∆εN
load load is the total strain generated in the Nth loading stage, and ∆εelastic

load and

∆ε
plastic
load are the elastic and plastic strain portions, respectively.

Since both elastic and plastic strains are generated under the same stress, the plastic
modulus is defined in the same way as the equivalent modulus and the elastic modulus.
See Equations (12) and (13).

Eelastic =
∆q

∆εelastic
load

(12)

Eplastic
load =

∆q

∆ε
plastic
load

(13)

where Eplastic
load is the plastic equivalent modulus during the Nth loading.
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Substitute Equations (12), (13), and (1) into Equation (11), and we have:

1
EN

load
=

1
Eelastic +

1

Eplastic
load

(14)

Similarly, Equation (15) describes how the unloading modulus can be obtained.

1
EN

unload
=

1
Eelastic +

1

Eplastic
unload

(15)

Comparing Equations (9), (10), (14), and (15), it can be seen that the physical signifi-
cance of the hyperbolic model parameter b is N times the reciprocal of the Nth loading and
unloading plastic equivalent modulus (see Equations (16) and (17)) which are not usually
the same (see Table 2).

bload =
N

Eplastic
load

(16)

bunload =
N

Eplastic
unload

(17)

In summary, the physical meaning of the parameters in the hyperbolic model can be
clarified. The elastic modulus is the inverse of the parameter k, and the plastic modulus for
the Nth loading and unloading is the inverse of b times N. The elastic and plastic parts of
the specimen deformation can be separated.

4.3. Preliminary Validation of Independent Data Sets

In order to verify the validity of the model, this paper utilized the data of Zeng
et al. [6] to conduct a preliminary test of the model. The trial number selected for this
paper was SP131. The model parameters were k = 3.91 × 10−6, bload = 5.96 × 10−6;
bunload = 4.42 × 10−6. Comparison of modeled calculations with actual measured axial
cumulative strains is shown in Figure 12.
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4.4. Expression of the Modulus of Elasticity

Separation of elastic and plastic deformations based on the hyperbolic model can be
used to obtain the elastic modulus and plastic modulus, respectively, which is beneficial for
establishing an elastic–plastic constitutive model. From the above analysis, we can obtain
Equation (8) for the elastic modulus at a steady state. By subtracting the elastic strain from
the total strain, we can derive the plastic deformation; thus, in this paper, we only present
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the formulation for the elastic modulus. The void ratio, confining pressure, and deviatoric
stress amplitude were employed as control variables in the test.

After the specimen entered the elastic state, the increase in stress further increased
the degree of densification, thus affecting the modulus of elasticity. Figure 13 shows the
dependence of the elastic modulus on bias stress amplitude for ISO and emery under
the same confining pressure. Figure 14 shows the dependence of the elastic modulus on
confining pressure for the same magnitude of bias stress. The results show that the elastic
modulus of the specimen increased linearly with increasing axial stress, but the increase
in elastic modulus due to increased confining pressure was more rapid. Soil samples
being an aggregate of loose particles, the confining pressure played an important role in
maintaining the compactness between the soil particles and hence had a greater effect on
the modulus of elasticity. This phenomenon was also found in the studies of Monismit [35]
and Hick et al. [36].
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Considering the combined effects of axial stress and confining pressures, the depen-
dence of the elastic modulus on the stress state can be directly characterized by the average
principal stress p. The variation in the elastic modulus with respect to p/pa is illustrated in
Figure 15. In Figure 15, it is evident that the elastic modulus increases gradually with the
increase in the average principal stress.
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The fitting relationship can be expressed by Equation (18):

Eelastic = A · p
pa

+ B (18)

where A and B are the fitting parameters and pa is the standard atmospheric pressure.
In addition to the stress state, this study also considered the effect of the void ratio

on the elastic modulus. The relationship between the elastic modulus and the void ratio
is illustrated in Figure 16. The results indicated that the elastic modulus of the specimen
increased gradually from the loose state to the dense state. During the testing process, the
internal pore structure of the soil sample was continuously damaged while the compactness
was constantly increased. After undergoing an infinite number of cycles to achieve the ideal
elastic state, soil samples with different void ratios reached the maximum compactness
at that specific density. the void ratio function utilized in this study is that proposed by
Hardin et al. [37].

f (e) =
(2.17 − e)2

1 + e
(19)
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Numerous test results have demonstrated its broad applicability to cohesionless
soils [38,39]. The fitting relationship can be expressed by Equation (20). Figure 16 shows
the strong applicability of this empirical formula to the sand selected for this study:

Eelastic = pa · C · f (e) (20)
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where C is the fitting parameter.
In summary, both the stress state and the void ratio influenced the elastic modulus of

the specimen. Consideration of these two effects in combination yields an empirical model
for the total elastic modulus:

Eelastic = pa · f (e) · (m · p
pa

+ n) (21)

where m and n are the new fitting parameters.

5. Conclusions

In this study, a series of triaxial cyclic loading tests was conducted on two typical
sands. Utilizing the full-surface-deformation measurement system, the overall deformation
behavior of the soil samples was analyzed. A hyperbolic model describing the relationship
between the equivalent modulus during loading/unloading and the number of cycles was
presented, along with the specific physical meanings of the model parameters. According
to the hyperbolic model, the elastic strain was able to be differentiated from the total
strain. Through comparative testing, the effects of void ratio, confining pressure, and
deviatoric stress amplitude on the elastic modulus were analyzed, leading to the following
summarized conclusions.

(1) Under constant cyclic loading, the soil sample gradually tended to deform to a steady
state as the test proceeded. In the steady state, the deformation of the specimen was
fully recoverable and the sandy soil exhibited elastic properties.

(2) Both loading and unloading equivalent moduli exhibited highly correlated hyperbolic
relationships with the number of cycles. The parameter k represents the reciprocals of
the elastic modulus, and b represents the plastic modulus multiplied by the Nth cycle.
The elastic modulus remained constant throughout all stages of the test, allowing for
the separation of the elastic and plastic components of the total strain. This facilitated
the establishment of the elastic and plastic constitutive relationship, the analysis of the
evolution of elastic–plastic deformation, and a more intuitive reflection of the cyclic
hardening behavior of the soil.

(3) The effect of axial stress on the modulus of elasticity was smaller than confining
pressure. Considering the combined effects of axial and confining pressures, the stress
state of the specimen can be represented by the average principal stress p, with the
elastic modulus increasing linearly relative to p. Besides the stress state, the void ratio
also had an effect on the elastic modulus.

The research in this paper contributes to further understanding of the elastic–plastic
deformation law of sand. The hyperbolic model on the one hand clarifies the elastic
deformation part of the cyclic loading process and facilitates the targeted establishment
of elastic and plastic constitutive relationships, and on the other hand, it can be used to
calculate the loading and unloading strain increment of sandy soils in cyclic loading to
analyze the elastic–plastic deformation evolution. However, more and different types of
test data are also necessary to validate the applicability of the method. More influencing
factors as well as consideration of the stress state will also be the focus of future work.
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