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Abstract: This study introduces an innovative method for detecting risks in transmission line insula-
tors by developing an optimized variant of YOLOv5, named Insulator-YOLO. The model addresses
key challenges in small-defect detection, complex backgrounds, and computational efficiency. By
incorporating GhostNetV2 in the backbone to streamline feature extraction and introducing SE and
CBAM attention mechanisms, the model enhances its focus on critical features. The Bibi-directional
Feature feature Pyramid pyramid Network network (BiFPN) is applied to enhance multi-scale feature
fusion, and the integration of CIoU and NWD loss functions optimizes bounding box regression,
achieving higher accuracy. Additionally, focal loss mitigates the imbalance between positive and
negative samples, leading to more accurate and robust defect detection. Extensive evaluations
demonstrate that Insulator-YOLO significantly improves detection accuracy and efficiency in real-
world power line insulator defects, providing a reliable solution for maintaining the integrity of
transmission systems.

Keywords: computer vision; risk identification; electricity transmission line insulator; deep neural
network; YOLOv5

1. Introduction

With the ongoing expansion of the power system [1] and with transmission line in-
sulators being a core component in high-voltage circuits, the reliability of transmission
linethese insulators is closely linked to the operational safety of transmission lines. Insula-
tors not only assume the role of supporting the power conductor but also need to effectively
isolate the voltage and prevent current leakage. However, extended exposure to outdoor
conditions renders insulators susceptible to environmental factors and external influences,
such as pollution, climate change, mechanical stress, and other factors, which will lead
to cracks, dirt, or other defects on the insulator surface. Once these defects occur, they
will substantially increase the risk of flashover, breakdown, etc., which may eventually
lead to serious power accidents. In addition, because large-span overhead transmission
lines are in an environment with complex terrain and changing climate, traditional manual
inspection [2] requires operators to patrol on foot and measure manually with instruments.
This inspection method not only has low efficiency and high risk factors but also has low ac-
curacy and high cost of inspection results, which makes it difficult to meet the requirements
of daily monitoring and inspection.

With technological advancements, UAVs have become an affordable solution for
inspecting power line systems [3], making vision-based insulator defect detection a main-
stream method. UAV inspections cover extensive transmission line areas, significantly
improving efficiency compared to traditional, error-prone visual assessments by inspectors.
Computer vision (CV) techniques enhance target detection and image recognition, enabling
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automated analysis and identification of inspection data [4]. These technologies provide
power grid personnel with advanced tools for processing large datasets, accurately identi-
fying faults, and reducing error rates [5]. Overall, CV significantly improves inspection
efficiency and plays a crucial role in ensuring grid safety and stability.

Nowadays, deep learning models have been widely applied in various CV fields. Deep
learning-based defect detection algorithms can generally be categorized into three main
types. The first type consists of two-stage algorithms that combine detection frameworks
with high-precision classifiers, such as R-FCN [6] and Faster faster R-CNN [7]. Although
these methods achieve high accuracy, the complexity of their advanced network architec-
ture leads to reduced processing speeds, limiting their suitability for real-time detection.
For example, an improved faster R-CNN model was applied to railroad cotter pin defect
detection in [8], achieving a mean accuracy (mAP) of 97.87%, but only 18.89 frames per
second in detection speed. The second category comprises transformer-based approaches
that have recently gained attention [9], incorporating attention mechanisms into defect
detection. For example, De-Jun Cheng et al. [10] proposed the adaptive global dynamic
detection transformer (AGD-DETR) framework, which effectively solves the problem of
detecting low-contrast, multiscale casting defects by means of data augmentation, feature
refinement, and global dynamic detection methods. The literature [11] proposes an im-
proved Swin transformer model that enhances the multiscale feature capture capability
by replacing the traditional shift window with a shunted large–small window mecha-
nism. The simultaneous introduction of the local connectivity module further enhances
the boundary interaction between markers, resulting in significant performance improve-
ment on the bearing defect detection task. However, the computational complexity and
memory occupation of the transformer model are high, especially when dealing with long
sequences, and the self-attention mechanism has a time complexity of O(n2), which restricts
its application on resource-constrained devices. The third category encompasses single-
stage algorithms grounded in regression models, exemplified by the single-shot detector
(SSD) [12] and YOLO [13–16]. These models provide expedited inference and enhanced
practicality, rendering them particularly suitable for real-time defect detection. For example,
Wang et al. [17] presented the YOLO-RLC model by introducing a large kernel backbone
and a bi-directional weighted feature fusion network, which significantly enhances both the
precision and speed of defect identification in printed circuit boards under complex back-
grounds. Tao et al. [18] integrated the YOLO framework with traditional image processing
techniques for detecting gaps in switches under complex conditions. Kumar et al. [19] com-
pared detection methods like R-CNN, SSD, and YOLO, revealing that the YOLO network
demonstrated superior speed and accuracy. The evolution of object detection frameworks
has led to models like YOLOv5 and YOLOv8. YOLOv5 features an efficient architecture
for real-time inference, making it ideal for applications requiring rapid decision-making.
Its simpler structure enhances training speed and minimizes overfitting, especially for
datasets with limited labeled examples. Additionally, its user-friendly implementation
and robust documentation facilitate quick deployment in real-world scenarios. In contrast,
YOLOv8 offers a more complex architecture aimed at improving accuracy and adaptability
across various tasks. However, this complexity can lead to longer inference times and
higher computational demands, limiting its use in resource-constrained environments.
While YOLOv8 enhances accuracy and robustness with state-of-the-art features, its higher
resource requirements may not be feasible in all contexts. Given these considerations, we
chose YOLOv5 for our study on insulator fault detection. Its proven efficiency, reliable
performance, ease of use, and suitability for real-time applications align perfectly with our
objectives, enabling effective fault detection while optimizing resource utilization.

However, in the small-objective task of insulator defect detection [20], YOLOv5 still
has some limitations: (1) Insulator defects tend to be small in area and easily confused with
the background, leading to insufficient detection accuracy. (2) For resource-limited devices,
such as UAVs or embedded systems, meeting real-time requirements is challenging due to
the computational complexity and inference speed associated with the model. (3) In defect
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detection tasks, the imbalance between positive and negative samples results in high false
positives and missed detections.

We have optimized the YOLOv5 model for insulator defect detection in power trans-
mission lines, emphasizing higher detection precision, improved computational speed,
and enhanced performance on small-scale targets. The upgraded model, Insulator-YOLO,
offers several major advancements:

1. Backbone network optimization to reduce computational complexity: This paper
replaces the original CSPDarknet53 structure with GhostNetV2 to minimize redundant
computations and improve inference speed. Additionally, the SE module is integrated
to enhance inter-channel feature adaptivity, thereby improving the network’s ability
to capture important features.

2. To boost small-target detection, the CBAM attention mechanism is incorporated
into the backbone network. This improves detection in complex backgrounds by
enhancing the model’s focus on relevant feature channels and spatial regions, leading
to the more precise identification of insulator defects.

3. Improved feature fusion network: The BiFPN is utilized to enhance multiscale feature
fusion, allowing the model to capture small defects more effectively through top-down
and bottom-up fusion paths. This method proves especially beneficial in multiscale
detection scenarios.

4. To enhance the robustness of small-target detection, a new loss function combining
NWD and focal loss is introduced. By improving bounding box regression and classi-
fication loss, the model’s accuracy and robustness for small targets are significantly
enhanced, especially in imbalanced positive and negative sample situations. This
effectively reduces false detections and missed detections.

2. Proposed Method
2.1. Image Preprocessing of Electricity Transmission Line Insulators

We propose a novel image enhancement technique that integrates non-local means
(NLM) filtering and Laplacian sharpening to effectively reduce noise while preserving
important image details. The NLM filtering is applied to the input image I to obtain a
denoised output I′(p) for each pixel p as follows:

I
′(p) =

1
Z(p)∑q∈Ω I(q) · w(p, q), (1)

where Ω denotes the search window, and the weight w(p, q) is computed based on the
similarity between the pixel neighborhoods Bp and Bq,

w(p, q) = e−
∥I(Bp)−I(Bq)∥2

h2 , (2)

here h is a parameter that controls the sensitivity of similarity measurement. The normal-
ization factor Z(p) is calculated as follows:

Z(p) = ∑q∈Ω w(p, q) (3)

Subsequently, to enhance the image edges and details, we apply the Laplacian opera-
tor L(x, y), which is expressed as follows:

L(x, y) =
∂2 I′(x, y)

∂x2 +
∂2 I′(x, y)

∂y2 (4)

The Laplacian can also be represented by the convolution of the image with the
Laplacian kernel I:

L(p) = I′ ∗ Laplacian_Kernel (5)
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where the Laplacian kernel is given by

Laplacian_Kernel =

 0 −1 0
−1 4 −1
0 −1 0

 (6)

The sharpening process utilizes the Laplacian to adjust the pixel values, resulting in
the enhanced image I′′(p),

I′′(p) = I′(p) + k · L(p), (7)

where k is a parameter that controls the degree of sharpening. The final output can be
expressed in terms of the gradient magnitude,

G(p) =
√

Gx(p)2 + Gy(p)2, (8)

where Gx and Gy represent the gradients calculated in the horizontal and vertical directions.
This combined approach not only effectively reduces noise but also enhances the clarity
and quality of the image, making it more suitable for further analysis and applications.

2.2. Original YOLOv5 Model

The YOLO series has undergone four major updates. YOLOv5 retains the core struc-
ture of the YOLO series and is composed of three main components [21]. The model is
primarily composed of three parts: backbone, neck, and head. The backbone integrates
CBS, C3_X, and SPPF structures, with CBS responsible for reducing image dimensions
while preserving essential information. C3_X enhances feature extraction capabilities and
reduces computational complexity by adding convolutional layers and optimizing network
depth. SPPF (spatial pyramid pooling) enhances the feature extraction capabilities and
reduces the computational complexity through the neck and consists of the C3_X_F struc-
ture and the FPN + PAN architecture, in which the FPN [22] (feature pyramid network)
better conveys high-level information through top-down upsampling connections but may
lead to blurring of the underlying details. PAN [23] (path aggregation network) reinforces
the underlying features through bottom-up paths and representation of features, which
compensates for the lack of detail recovery in FPN. The FPN + PAN network structure can
be seen in Figure 1. The output layer utilizes the CIoU_Loss function to optimize bounding
box regression by considering both the angle and center distance of the boxes. Additionally,
non-maximal suppression (NMS) eliminates overlapping redundant boxes, ensuring that
detection results remain accurate and stable. This overall architecture equips YOLOv5 with
efficient detection performance, making it especially suitable for detecting insulator defects
in transmission lines. Figure 2 illustrates the architecture of the YOLOv5 network.
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2.3. Insulator-YOLO Model

To enhance YOLOv5’s performance in detecting transmission line insulator faults,
this paper presents the Insulator-YOLO model, which optimizes the network structure
specifically for this task. Firstly, GhostNet v2 [24] replaces the original CSPDarknet53,
decreasing computational complexity and parameter quantity using efficient Ghost mod-
ules and depthwise separable convolutions, while preserving strong feature extraction
capabilities. Secondly, the SE module [25] and CBAM [26] are incorporated to enhance
feature map representation across channel and spatial dimensions, respectively, improv-
ing the recognition of small objects and complex backgrounds. For feature fusion, the
BiFPN is employed to optimize multiscale feature integration through bidirectional flow,
thereby enhancing small-object detection accuracy. Finally, the accuracy of bounding box
regression is improved by combining the CIoU (complete intersection over union) and
NWD (normalized Wasserstein distance) [27] loss functions, and focal loss is introduced to
address the imbalance between positive and negative samples, further enhancing detection
performance. These improvements to Insulator-YOLO jointly enhance the performance of
the network in detecting insulator defects in complex environments and enable it to show
higher detection accuracy and efficiency in practical applications. The framework of the
Insulator-YOLO model network is shown in Figure 3.

2.3.1. Optimization of YOLOv5 Backbone Network Based on Ghost-SE Module

In YOLOv5, the backbone module takes on the task of feature extraction, and although
the original CSPDarknet53 structure can effectively extract multiscale features, its convolu-
tional computation is large. To enhance computational efficiency and improve the inference
speed of the model, as well as its performance in applications on resource-constrained de-
vices, we introduce two improvements to the backbone of YOLOv5: replacing the original
CSP module with GhostNetV2 and introducing the SE module to improve the inter-channel
feature adaptivity. The convolution operation in CSPDarknet53 is shown in Formula (9),

O(CSP) = ∑L
l=1 Hl × Wl × Cl × Cin,l × K2

l , (9)
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here Hl , Wl indicate the height and width of the feature map at layer l; Cl denotes the
output channels, and Cin,l represents the input channels; and Kl is the convolution kernel
size, and l stands for the total number of convolution layers.
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To reduce the redundant computation in convolutional operation, this paper adopts
the GhostNetV2 structure to replace the CSP module. Figure 4 shows the GhostNetV2
bottleneck module. The core idea of GhostNetV2 is to reduce unnecessary computation by
generating features in two steps. Compared with the traditional convolution operation,
GhostNetV2 extracts the primary features using a limited number of standard convolutions
and subsequently produces additional ‘ghost features’ through a lightweight linear opera-
tion, effectively minimizing computational load. The computation process of GhostNetV2
is as follows:
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Step 1: Master feature generation. A small number of core features are generated by
standard convolution F1, whose computational complexity is as follows:

F1 = Conv(X; W1), O(F1) = H × W × C1 × Cin × K2
1, (10)

among them, C1 ≪ Cout (the number of feature channels produced in the initial step is
reduced).

Step 2: Ghost feature generation on the basis of generating the main features, addi-
tional ghost features are generated using a lightweight linear transformation F2, whose
computational complexity is as follows:

F2 = LinearTransform(F1; W2), O(F2) = H × W × (Cout − C1)× K2
2, (11)

where (Cout − C1) denotes the number of additional channels generated by the lightweight
operation.

The complexity of GhostNetV2 is shown in Formula (13):

F = F1 ∪ F2 (12)

O(GNetV2) = H × W × C1 × Cin × K2
1 + H × W × (Cout − C1)× K2

2 (13)

Through this two-step feature generation mechanism, GhostNetV2 effectively de-
creases the computational complexity and parameter size compared to the original CSP
module, particularly during deep feature extraction. This enhancement accelerates the
network inference speed by reducing redundant feature computations.

Although GhostNetV2 reduces the computational effort by generating features in
two steps, it is still fixed in the channel selection of features. To strengthen the network’s
attention to key channel characteristics, the SE module is integrated into the feature extrac-
tion process. Figure 5 shows the SE module. The SE module improves network feature
expression by dynamically assigning weights to each channel. It comprises two main
components: squeeze and excitation.
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Firstly, the input feature map F ∈ RH×W×C is obtained. Global average pooling
is performed to generate a global description vector for each channel z ∈ RC, which is
computed by the following formula:

zc =
1

H × W ∑H
i=1 ∑W

j=1 F(i, j, c), (14)
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where zc is the global average of the first c global mean of the individual channels.
Then, after passing through two fully connected layers and nonlinear activation

functions, the weights for each channel are learned, calculated as follows:

s = σ(W2 · ReLU(W1 · z)), (15)

where s ∈ RC represents the weights of each channel; the W1 and W2 denote the weight
matrices of the fully connected layer, respectively, and σ denotes the sigmoid activation
function.

Lastly, the weight vector s is applied channel wise to the original feature map to derive
the weighted output feature map,

F
′
(i, j, c) = F(i, j, c)× sc (16)

Thus, with the introduction of the SE module, the network can selectively prioritize es-
sential feature channels during extraction, thus further enhancing the feature representation
capability and detection accuracy.

The YOLOv5 feature extraction module after combining GhostNetV2 and SE not only
greatly reduces the computation amount but also improves the ability of adaptive attention
to features through SE module. Finally, the computational complexity is as follows:

O(Ghost-SE) = ∑L
l=1

(
Hl × Wl × C1,l × Cin,l × K2

1 + Hl × Wl ×
(
Cout,l

)
× K2

2 +O(SE) , (17)

among them, O(SE) is the additional computational effort of the SE module, mainly for
global pooling and fully connected operations.

2.3.2. CBAM Attention Mechanism

Insulator defect signals typically occupy a limited number of pixels, categorizing them
as a small-object detection task, and are easily affected by factors such as background inter-
ference. To overcome YOLOv5’s challenges in detecting small objects and to improve the
network’s focus on targets of interest, this study introduces the CBAM attention mechanism
following the last Ghost-SE module. Figure 6 shows the CBAM module’s structure. CBAM
enhances the network’s capability to detect multiscale and deformed targets by selectively
weighting different feature maps across channel and spatial dimensions. It integrates the
channel attention module (CAM) and the spatial attention module (SAM), thereby enhanc-
ing accuracy in detecting small defects. The mechanism first selects important channel
information in the feature map through CAM and then further focuses on important spatial
regions of the feature map through SAM.
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Given the input feature map F ∈ RC×H×W , the CBAM module obtains a one-dimensional
channel attention graph by sequential inference MC ∈ RC×1×1 and constructs spatial
attention maps in two dimensions MS ∈ R1×H×W .
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Channel attention generates two different global description vectors by applying global
average pooling and global maximum pooling to the input feature map zavg, zmax ∈ RC.
These feature vectors undergo processing via a shared fully connected layer, followed by
applying a sigmoid activation function to generate the channel attention map,

MC = σ
(

MLP
(
zavg

)
+ MLP(zmax)

)
(18)

where MC is the channel attentional weight and σ denotes the sigmoid function, and MLP
stands for multilayer perceptual machine.

Next, the channel attention map MC is mapped onto the input feature map F on each
channel of the input feature map to obtain the channel-weighted feature map F

′
:

F
′
= MC(F)⊗ F (19)

where ⊗ represents the element-wise multiplication operation.
Spatial attention is then generated by performing global average pooling and global

maximum pooling on the F
′

performing global average pooling and global maximum pool-
ing over channel dimensions to produce two spatial attention feature maps Fspatial

avg , Fspatial
max ∈

R1×H×W . The spatial attention maps are then generated by the convolution operation MS :

MS = σ
(

Conv7×7

([
Fspatial

avg , Fspatial
max

]))
, (20)

The spatial attention maps MS are employed on the channel-weighted feature map F
′

onto the final output feature map F′′ :

F′′ = MS

(
F
′)⊗ F

′
, (21)

The final output feature map F′′ is a channel- and spatially weighted feature map that
contains more information that is useful for the defect detection task than the original fea-
ture map F. The integration of CBAM enhances the network’s sensitivity to the scale, shape,
and location of targets, thereby greatly enhancing small-object detection performance.

2.3.3. Bidirectional Eigenpyramid Networks

In transmission line insulator fault detection, the detection accuracy for small defects
puts higher requirements on feature fusion. Since insulator defects may appear at different
scales and different locations, effective multiscale feature fusion is the key to improving
the detection accuracy. Traditionally, YOLOv5 uses FPN and PAN for multiscale feature
fusion, but these methods suffer from the problem of level-specific information loss during
the fusion process, especially when dealing with small targets, detailed features are easily
lost. To solve this problem, this paper introduces a bidirectional feature pyramid network
in the neck module of YOLOv5 to enhance multiscale feature fusion, especially in insulator
defect detection, to better capture small defect features.

The core idea of the BiFPN [28] is to realize the bidirectional fusion of multiscale fea-
tures through top-down and bottom-up bidirectional paths. The feature fusion operation in
each path is realized by weighted convolution operation, and different weights are assigned
to the features of different scales in the fusion process. Compared with the traditional FPN,
BiFPN adds a flexible feature fusion mechanism to make features interoperable between
different levels as shown in Figure 7.

Let the feature layers generated by the network be {P3,P4,P5}, where P3 denotes shal-
low feature maps with high spatial resolution and P5 denotes deep feature maps containing
more semantic information. In the top-down path, the deep feature maps are convolu-
tionally upsampled and fused with the shallow feature maps. Let the convolution kernel
be Ki,j, and the input feature map be Pi. In bottom-up path, shallow feature maps are fused
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with deeper feature maps by convolutional downsampling process. The downsampling
operation can be implemented by pooling layers or convolution as follows:

Ptd
i = α1 · Conv

(
Pi, Ki,j

)
+ α2 · Up

(
Conv

(
Pi+1, Ki+1,j

))
, i = 3, 4, (22)

Pbu
i = β1 · Conv

(
Pi, Ki,j

)
+ β2 · Down

(
Conv

(
Pi−1, Ki−1,j

))
, i = 4, 5, (23)

where Conv(P, K) denotes the use of the convolution kernel K on the feature map P to per-
form a convolution operation, Up(·) denotes the upsampling operation, and α1 and α2 are
the learned weighting parameters, and α1 + α2 = 1, which is used to balance the fusion of
features at different scales.
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The output feature map Pout
i can be expressed as follows:

Pout
i = γ1 · Ptd

i + γ2 · Pbu
i , i = 3, 4, 5, (24)

of these, the γ1 and γ2 are the fusion weights, respectively, and are used to control the
influence of bidirectional paths on the final feature output.

2.3.4. Improved Loss Function

In the transmission line insulator fault detection task, insulator defects usually have a
small area and are easily confused with the background. This necessitates a more precise
bounding box regression and classification from the target detection network. The original
loss function of YOLOv5, although capable of handling most of the detection tasks, shows
certain limitations in small-object detection, especially when the defective area accounts
for a small proportion of the image. To address this issue, we improved the loss function
of YOLOv5 by introducing NWD (normalized Wasserstein distance) and focal loss, and
combined the existing CIoU (complete intersection over union) loss function. This approach
aims to improve detection accuracy for small defects and mitigate the imbalance between
positive and negative samples.

The original loss function of YOLOv5 comprises three components: bounding box
regression loss Lbox, confidence loss Lobj, and classification loss Lcls. Among them, the
bounding box regression loss adopts the CIoU loss, which not only considers the inter-
section over union (IoU) but also introduces the consistency of the distance from the
center point and the aspect ratio. This enhances the accuracy of bounding box shape and
position regression:

LCIoU = 1 − IoU +
ρ2(b, bgt

)
c2 + αv, (25)
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where the b and bgt denote the centroids of the prediction and real frames, respectively;
and ρ

(
b, bgt

)
represents the Euclidean distance between the center points; and c denotes the

diagonal length of the minimum enclosing rectangle of the prediction frame and the real
frame. Parameter v is used to measure the consistency of the aspect ratio of the predicted
box, and the real box is defined as follows:

v =
4

π2

(
arctan

wgt

hgt
− arctan

w
h

)2
, (26)

where wgt, hgt represent the real box’s width and height, and w, h denote the predicted
box’s dimensions. The parameter α is a balancing factor. Although CloU loss performs
well in most target detection tasks, it falls short when dealing with small objects. When the
loU of the prediction frame to the real frame is small (e.g., when detecting small objects),
CloU converges slowly to the bounding box, especially when the IoU is close to 0, which
makes it difficult to provide effective gradient updates. This issue is especially evident in
the defect detection of transmission line insulators, highlighting the need for a new loss
function to address the limitations of CloU.

To enhance the detection of small objects, we introduce the NWD loss. NWD has better
robustness for small-object detection by using the Wasserstein distance to measure the
similarity between the prediction frame and the real frame, which is especially suitable for
dealing with targets of different scales. The Wasserstein distance first models the predictor
frame and the real frame as a two-dimensional Gaussian distribution Na and Nb; the mean
of each distribution is the center point of the bounding box, and the variance is the width
and height of the box. It is defined as follows:

W2
2 (Na,Nb) = ∥ ca − cb ∥2 +

(wa

2
− wb

2

)2
+

(
ha

2
− hb

2

)2
, (27)

where ca =
(
cxa, cya

)
and cb =

(
cxb, cyb

)
denote the coordinates of the centers of the

predicted and real frames, respectively. The Wasserstein distance provides a more precise
measure of similarity between predicted and real boxes. However, as a distance metric, it
cannot be directly applied to quantify the similarity of bounding boxes; the NWD loss is
normalized and defined as follows:

NWD(Na,Nb) = exp
(
− 1

C

√
W2

2 (Na,Nb)

)
, (28)

here C is a dataset-specific constant. The NWD loss is ultimately defined as follows:

LNWD = 1 − NWD(Na,Nb) (29)

The NWD loss measures the geometric similarity of the predicted frame to the real one
via the Wasserstein distance metric, showing better sensitivity especially for small targets.

To further enhance the regression accuracy of YOLOv5 in small-defect detection, we
combined CloU and NWD [29] to form a new bounding box regression loss function.
CloU can better handle larger targets and ensure that the centroid and aspect ratio of the
predicted box and the real box are consistent as much as possible, whereas NWD is able
to enhance the robustness of the detection of small objects. The combined loss function is
defined as follows:

Lbox = αLCIoU + (1 − α)LNWD, (30)

where α is a weight parameter to adjust the share of CloU and NWD in the bounding box
regression loss. This combination enables the network to adapt its regression strategy for
targets of varying scales, enhancing the detection accuracy of small targets.

In the insulator risk detection task, the number of positive and negative samples is
often severely imbalanced due to the small and sparse defect region. The traditional BCE
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(binary cross entropy) loss function is easily interfered with by negative samples, which
leads to insufficient attention to the positive samples during the model training process, thus
affecting the detection accuracy. For this reason, this paper introduces the focal loss [30],
which is used to replace the confidence loss and classification loss in YOLOv5. Lobj and
classification loss Lcls, which is defined as follows:

LFocal(pt) = −αt(1 − pt)
γlog(pt), (31)

where αt is the balancing factor for positive and negative samples, and γ is a parameter
that regulates the weights of difficult samples, and pt denotes the predicted probability
of correct classification. By decreasing the weight of simple background samples, focal
loss encourages the network to focus more on challenging foreground targets, thereby
enhancing the model’s detection of small objects.

Ultimately, the improved YOLOv5 loss function consists of a bounding box regression
loss Lbox, confidence loss Lobj, and classification loss Lcls which are composed of confidence
and classification losses using focal loss for optimization with the following formulas:

Ltotal = Lbox + LFocal

(
Lobj + Lcls

)
(32)

By introducing NWD and focal loss, the improved loss function can effectively enhance
the ability of the model to detect small objects and reduce the false detection phenomenon
caused by the positive and negative sample imbalance problem.

3. Experiments
3.1. Introduction to Data

We used the SFID insulator self-explosion defect dataset, which contains two cate-
gories: normal insulators and self-explosion defect insulators. For this study, we extracted
10,000 high-resolution images from the dataset, covering a variety of complex outdoor
scenes. These scenes include different weather conditions (e.g., sunny or cloudy) and
complex backgrounds (e.g., trees, utility poles, and buildings), which provide an important
testing environment for the robustness of the model in real applications. Figure 8 shows
data examples of insulator self-detonation defects.
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The dataset uses the YOLO format for image annotations, in which each label includes
five parameters: category number, normalized center coordinates, and width and height of
the target box. For comprehensive model training, validation, and testing, the dataset is
divided into 70% training, 15% validation, and 15% test sets. This results in 7000 images for
training, and 1500 images each for validation and testing. Such a distribution enables the
comprehensive evaluation of the model’s performance across different stages. Figure 8 for
self-exploding insulators. The data labels are shown in Table 1.

Table 1. Sample data label.

Serial Number Labels Bounding Box

005368
0 0.465278, 0.604745, 0.727431, 0.153935
1 0.741753, 0.613426, 0.058160, 0.041667

005958
0 0.424479, 0.684606, 0.607639, 0.408565
1 0.236545, 0.564815, 0.054688, 0.057870

006586
0 0.516493, 0.432292, 0.680556, 0.228009
1 0.753472, 0.358796, 0.059028, 0.057870

fogged_006787 0 0.293981, 0.527778, 0.425926, 0.602431
1 0.418981, 0.710069, 0.062500, 0.052083

3.2. Parameterization

This experiment was conducted on a compute node equipped with high-performance
GPUs, including NVIDIA Tesla V100 32GB GPUs, Intel Xeon Gold 6226R CPUs, 512GB
RAM. The deep learning framework is PyTorch 1.8 with CUDA version 11.2. cuDNN
and NVIDIA Apex are used for mixed-precision training to accelerate the training and
optimization process. Meanwhile, the training process uses distributed data parallelism to
improve the training efficiency. The configuration of model parameters is shown in Table 2.

Table 2. Model hyperparameter settings.

Parameter Name Parameter Value

Optimizer SGD
Initial learning rate 0.01

Momentum 0.937
Weight decay 0.0005

Batch size 16
Training round 300
Loss function CIoU + focal loss

Data enhancement Random crop, zoom, flip

In the experiments, a comprehensive set of evaluation metrics was utilized to assess
the model’s training effectiveness. This set includes traditional performance metrics such as
mean average precision (mAP), accuracy, and recall rate. It also features metrics reflecting
model complexity and computational efficiency, including giga floating-point operations
(GFLOPs), which indicates resource demands, model parameters, and frames per second
(FPS) for evaluating inference speed. Table 3 shows the confusion matrix. The specific
formulas for these metrics are provided below:

Precision =
TP

TP + FP
(33)

Recall =
TP

TP + FN
(34)

AP =

1∫
0

P(R)dR (35)



Processes 2024, 12, 2552 14 of 19

mAP =
∑C

i=1 AP
C

(36)

Table 3. Confusion matrix.

Actual Prediction

TP positive positive
TN negative negative
FP positive negative
FN negative positive

3.3. Ablation Experiments

To comprehensively evaluate the effectiveness of the Insulator-YOLO, we conducted
ablation experiments to systematically evaluate the impact of each component on model
performance. All models were trained under identical hardware and software conditions
to ensure consistent and comparable results.

The experiments include the following groups: firstly, we adopt the original YOLOv5
model as the baseline and observe its detection performance on standard datasets. Second,
for the baseline model, we introduce GhostNetV2 as the backbone network (GhostNet)
and analyze its impact on detection accuracy and computational efficiency. Then, based
on the GhostNetV2, we add the SE module (GhostNet + SE) to evaluate its enhancement
on feature adaptive capability. Then, the CBAM attention mechanism (GhostNet + SE
+ CBAM) is further introduced to explore its improvement on the model’s small-target
detection performance. Finally, the BiFPN structure (GhostNet + SE + CBAM + BiFPN)
is used to analyze the enhancement effect of multiscale feature fusion on the detection
performance.

The experimental results are assessed using metrics including mAP, P, R, and F1, as
detailed in Table 4. The data demonstrate that the incremental introduction of each module
notably enhances the overall model performance, particularly following the incorporation
of CBAM and BiFPN. Notably, the introduction of CBAM and BiFPN significantly improves
detection accuracy and the ability to detect small targets.

Table 4. Ablation experiment of Insulator-YOLO.

Model Configuration mAP (%) P (%) R (%) F1 (%)

Original YOLOv5 78.50 76.21 80.1 78.15
GhostNetV2 82.83 79.24 82.31 80.69

GhostNetV2 + SE 83.51 81.32 84.24 82.71
GhostNetV2 + SE + CBAM 87.15 83.00 86.01 84.50

Insulator-YOLO 89.65 87.92 90.11 86.02

From the results, it is observed that the mAP of the baseline model was 78.5%, while
the introduction of GhostNetV2 improved the model performance to 82.83%. By incremen-
tally introducing the SE and CBAM, the mAP further increased to 87.15%. Finally, with
the adoption of the BiFPN structure, the model reached 89.65% in mAP, indicating that
multiscale feature fusion significantly improves the detection ability of the model. These
results validate the important role of each module in improving the insulator fault detection
performance.

3.4. Comparative Experiments

We conducted comparisons with multiple popular object detection methods. The
comparison algorithms include faster R-CNN, RetinaNet, SSD, EfficientDet, CenterNet,
YOLOv5, YOLOv7, and YOLOv8. The selected algorithms cover two-stage detection
models, single-stage detection models, and high-efficiency models, which can provide
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a comprehensive benchmark reference for this study. Figures 9 and 10 demonstrate the
higher convergence speed and training accuracy of the algorithmic models.
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Each model was evaluated based on key performance metrics: precision (P%), recall
(R%), mean average precision (mAP%), frames per second (FPS), model weight (MB),
GFLOPs (G), and inference time (ms). Table 5 shows the performance of the different models
in the test dataset and introduces YOLOv8-I, which implements similar enhancements as
those in Insulator-YOLO.

The results indicate that the Insulator-YOLO model outperformed all other compared
models in precision, recall, and mAP. Specifically, compared to the original YOLOv5,
Insulator-YOLO improved the precision rate from 84.19% to 87.92%, the recall rate from
88.02% to 90.11%, and the mAP from 86.45% to 89.65%. These enhancements underscore
the effectiveness of the modified YOLOv5 model in accurately detecting faulty targets,
particularly in complex scenarios involving intricate backgrounds and small objects. Such
improvements ensure higher accuracy and reliability in real-world applications. When
comparing Insulator-YOLO to YOLOv8, while YOLOv8 achieved a slightly higher FPS of
72.56, Insulator-YOLO showed advantages in both precision and recall, with increases of
1.18% and 0.88%, respectively. Additionally, Insulator-YOLO’s mAP improved by 1.20%.
This indicates that Insulator-YOLO optimizes the detection capabilities for fault targets



Processes 2024, 12, 2552 16 of 19

without significantly increasing the computational overhead, making it particularly suitable
for high-precision tasks in insulator fault detection. The introduction of YOLOv8-I, which
implements similar modifications as Insulator-YOLO, highlights a decrease in performance
relative to YOLOv8. YOLOv8-I achieved a precision of 86.00% and a recall of 88.50%,
both lower than those of the original YOLOv8, suggesting that the improvements may not
have effectively enhanced its overall detection capability. The mAP for YOLOv8-I stood
at 87.75%, further illustrating that, while some advancements were made, they did not
match the effectiveness of Insulator-YOLO. In contrast, traditional two-stage detection
algorithms like faster R-CNN exhibit significant limitations in both accuracy and real-time
performance. With an mAP of only 75.30% and an FPS of 5.20, faster R-CNN struggled to
meet the demands of practical applications requiring real-time detection. Similarly, while
SSD demonstrated a higher FPS of 59.67, its accuracy (73.82%) and mAP (76.47%) fell short
compared to the YOLO series models, especially Insulator-YOLO.

Table 5. Correlation algorithm comparison.

Model P% R% mAP (%) FPS Weight (MB) GFLOPs (G) Inference Time (ms)

Faster R-CNN 72.53 78.04 75.30 5.20 130.00 180.12 192.31
RetinaNet 74.23 80.51 77.84 14.93 140.00 120.21 66.85

SSD 73.82 79.50 76.47 59.67 87.00 56.10 16.74
EfficientDet 75.95 80.02 78.91 33.41 21.50 25.37 29.94
CenterNet 77.21 80.98 79.53 30.24 43.00 33.66 33.12
YOLOv5 84.19 88.02 86.45 60.13 38.00 20.00 16.64
YOLOv7 85.63 88.91 87.32 66.24 50.20 25.25 15.11
YOLOv8 86.74 89.23 88.45 72.56 52.30 27.37 13.78

YOLOv8-I 86.00 88.50 87.75 70.00 52.50 30.00 14.29
Insulator-YOLO 87.92 90.11 89.65 61.24 38.50 24.60 16.34

Overall, the Insulator-YOLO model achieved an optimal balance between detection
accuracy and recall capability, making it particularly suitable for scenarios that demand
high-precision identification and real-time processing, such as insulator fault detection.
Although the FPS was not as good as that of YOLOv8, it maintained better real-time and
model lightweight characteristics while guaranteeing accuracy, which provides strong
support for practical applications. The visualization results are shown in Figure 11.
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4. Conclusions

This paper proposes the Insulator-YOLO model for insulator fault detection. The
integration of GhostNetV2 as the backbone network decreases computational complexity
while improving inference speed. The SE module improves the model’s adaptive feature
extraction capabilities and refines channel attention allocation. Additionally, the CBAM
attention mechanism enhances focus on key regions in both channel and spatial dimensions,
significantly boosting small-target detection accuracy. The BiFPN is applied to enhance
multiscale feature fusion, and the integration of CIoU and NWD loss functions optimizes
bounding box regression, achieving higher accuracy. Additionally, focal loss mitigates the
imbalance between positive and negative samples, leading to more accurate and robust
defect detection.

The Insulator-YOLO model surpassed other popular models, such as faster R-CNN,
RetinaNet, SSD, EfficientDet, CenterNet, YOLOv7, and YOLOv8, in precision, recall, and
mAP. These findings validate the model’s effectiveness for insulator fault detection tasks,
particularly in small-target and complex background scenarios, while maintaining high
accuracy, real-time performance, and computational efficiency.

This study not only proposes an efficient fault detection model but also provides
technical support for automated detection in transmission line inspection. Future research
can further extend the dataset to cover more fault types and environmental conditions
and integrate a more prospective deep learning architecture into the model to improve
the classification ability of fault types. With these improvements, the model is expected to
gain wider generalization in practical applications and solve more complex problems in
power systems.
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Nomenclature

YOLOv5 You only look once version 5
GhostNetV2 GhostNet version 2
SE Squeeze and excitation
CBAM Convolutional block attention module
BiFPN Bi-directional feature pyramid network
CIoU Complete intersection over union
NWD Normalized Wasserstein distance
UAV Unmanned aerial vehicle
CV Computer vision
mAP Mean average precision
CBS Convolutional block with squeeze and excitation
SPPF Spatial pyramid pooling
FPN Feature pyramid network
PAN Path aggregation network
NMS Non-maximum suppression
CAM Class activation map
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SAM Spatial attention module
PANet Path aggregation network
GFLOPs Giga floating-point operations
FPS Frames per second
C3_X C3 block with additional convolutional layers
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