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Abstract: Screw pumps’ faulty working conditions affect the stability of oil production. At project
sites, different sensors are used simultaneously to collect multi-dimensional signals; the data fault
labels and location are not clear, and how to comprehensively use multi-source information in
effective fault feature extraction has become an urgent issue. Existing diagnostic methods use a single
signal or part of a signal and do not fully utilize the acquired signal, which makes it difficult to
achieve the required accuracy of diagnostic results. This paper focuses on the model-driven approach
to extract multi-source fault features of screw pumps. Firstly, it constructs a fault data model (FDM)
by analyzing the fault mechanism of the screw pump. Secondly, it uses the FDM to select an effective
data set. Thirdly, it constructs a multi-dimensional fault feature extraction model (MDFEM) to extract
featured signal features and data features, for which we also comprehensively used multi-source
signals in effective fault feature extraction, while other traditional methods only use one or two
signals. Finally, after feature selection, unsupervised fault diagnosis was achieved by using the
k-means method. After experimental verification, the method can comprehensively use multi-source
information to construct an effective data set and extract multi-dimensional, effective fault features
for screw pump fault diagnosis.

Keywords: feature extraction; model-driven; multi-source information; screw pump; fault diagnosis

1. Introduction

The screw pump has become one of the widely used oil lifting methods due to the
advantages of small size of system equipment, easy maintenance and management, smooth
liquid flow, and high pumping efficiency. With the development of oilfield exploration,
the lifting height is increasing. The working conditions of the screw pump are affected by
various factors when it works in a complex environment, and the faults, such as rod and
pipe breakage, pump leakage, sand jamming, and waxing of tubing, occur from time to
time [1,2], which seriously restricts the production efficiency of the oil wells. Therefore,
screw pump fault diagnosis is of great significance. The traditional screw pump fault
diagnosis methods require a lot of expert experience, and using single current or torque
and other signals for diagnosis is ineffective.

In recent years, scholars from various countries have conducted extensive research on
the fault diagnosis of screw pumps. Aiming at the screw pump fault diagnosis problems of
inefficiency and lack of precision, one proposal to improve the wavelet packet transform is
by introducing the idea of power spectrum refinement combined with cuckoo search (CS)
to optimize the diagnosis method of the back propagation (BP) neural network [3]. Based
on the statistical process control, extended discriminant criterion, and the multi-parameter
rule, the field fault diagnosis model of electric submersible screw pump unit is constructed,
and a multi-parameter process control fault diagnosis method is proposed [4]. A supervised
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neural network was established using Bayes classification decision theory to build a PNN
model for fault classification of a certain type of screw pump [5]. Scholars proposed that
the current method and holding pressure method can be used to comprehensively diagnose
the pumping condition of screw pump wells, combined with production, liquid level,
and other parameters to synthesize the research and judgment, in order to accurately
determine the specific operation of downhole pumps [6]. One study selected rod torque
and axial force as parameters for comparing working condition status, stating that using a
diagnosis model to calculate the reasonable area of two parameters and comparing them
with the actual test data can diagnose the various situations, determine whether there is a
fault and analyzing failure [7]. Another paper proposed an unsupervised fault diagnosis
methodology to leverage readily available dynamometer cards (DCs) to diagnose collected
unlabeled MPCs, and a mathematical model of the SRPS was presented to convert actual
DCs to MPCs [8]. Ren Weijian proposed using a wavelet packet to filter and eliminate
noise from an active power signal and decomposed fault signal, then they used an Elman
neural network to identify the decomposed fault feature [9]. Wavelet packet theory was
used to decompose and reconstruct the active power signal of a submersible screw pump,
extracted the main fault information contained in the power signal, and constructed the
fault feature vector of a submersible screw pump combined with parameters such as output,
oil pressure, casing pressure, and dynamic liquid level [10]. A thesis aimed to accurately
and efficiently identify the fault forms of a submersible screw pump, and proposed a fault
diagnosis method of the submersible screw pump based on random forest. An HDFS
storage system and MapReduce processing system were established based on the Hadoop
big data processing platform [11]. Xu Jun developed a screw pump condition-monitoring
system based on dual micro-controllers, which uses real-time drive electrical parameters to
calculate the rod torque and speed and to make a comparative analysis, and achieved the
fault diagnosis of the screw pump [12]. Min Li established a screw pump fault diagnosis
expert system based on fuzzy neural network. The test results showed that the diagnosis
of this fault diagnosis expert system is operable, and the fuzzy neural network is reliable,
which enriched the diagnosis method of the screw pump well [13]. Xue Jianquan proposed
a screw pump diagnosis method based on the BP neural network and expert system, and
developed the fault diagnosis software with Basic and Matlab nnet toolbox, and the test
results of the well plant data proved the feasibility of the diagnosis method [14]. Qu
Wentao used the node system method to establish a relationship model between active
power and pump energy consumption and analyzed the influence of different faults on the
screw operating performance [15]. Chen Shiwen calculated and analyzed the force of the
screw pump and rod and proposed the method of dividing the fault feature into different
thresholds and diagnosing screw pump working conditions by means of the support vector
machine algorithm [16]. Zheng Chunfeng studied the system and operation performance
of an electric submersible screw pump, analyzed the correspondence between operation
parameters and fault types, and used a BP neural network to diagnose faults of electric
submersible screw pump [17].

However, the project site data are multi-dimensional signals collected simultaneously
by multiple sensors, including current, voltage, power, torque, rotation speed, load, oil
pressure, and casing pressure, and the data type is complex, and the collection period
is long. Additionally, the fault label of the data is not clear, and the position of the fault
information in the whole signal data is not clear as well, which will lead to a low diagnostic
accuracy if using this kind of signal data to carry out the fault diagnosis. Traditional
screw pump fault diagnosis methods rely on a large number of expert experiences, and
diagnosis accuracy using a single signal is low [18,19]. The current method is affected by
the combination of all parts of the system [20]; the torque method has an error between the
calculated result and the actual torque; the fluid production method does not directly reflect
the type of fault; the pressure method involves holding the wellhead to a higher pressure,
which must be used on specific conditions. In the field of fault diagnosis, multi-source
information technology comprehensively collects equipment fault state information by
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using multiple sensors, taps the coupled complementary information between multi-source
sensor data, takes multi-dimensional feature fusion analysis as a way to greatly improve
the reliability and accuracy of fault diagnosis, and overcomes the shortcomings such as
limited fault information contained in a single segmentation and large uncertainty [21–26].

The main contributions of the paper are described as follows:

(1) The fault data model (FDM) is proposed and applied to select an effective data set
from the original data with no fault labels and unclear fault locations.

(2) A multi-dimensional fault feature extraction model (MDFEM) is proposed and applied
to extract featured signal feature and data feature from multi-source information.

Therefore, this paper proposes a multi-source fault feature extraction method for a
screw pump based on model-driven data. The chapters of the paper are as follows: Section 2
analyzes the screw pump fault mechanism and constructs the FDM; Section 3 uses the FDM
to select the fault data and construct an effective data set, then constructs a MDFEM, and
extracts multi-dimensional fault features; Section 4 verifies the validity and accuracy of the
proposed method; and Section 5 is the conclusion.

2. Fault Model Construction
2.1. Methodological Framework

The flow of the multi-source fault feature extraction method for a screw pump based on
model-driven data is shown in Figure 1. The process is described as follows: (1) analyzing
the fault mechanism and establishing the current, load, rotational speed, and oil pressure
fault mechanism; (2) revealing the mechanism characterization and establishing the FDM;
(3) analyzing the original data and carrying out data pre-processing, including data clean-
ing, normalization, and slice enhancement; (4) using the FDM to select fault data and
constructing an effective data set; (5) studying the multi-dimensional feature extraction
method, extracting signal and data features, and obtaining effective multi-dimensional
features; (6) using the k-means unsupervised clustering method to carry out experimental
validation to realize the diagnosis of screw pump faults.
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2.2. Fault Mechanism Model

(1) Current Fault Model

The current method is the quantitative long-time measurement of parameters such as
operating current, voltage, and power of the drive motor using specialized instruments.
The motor input current is deduced based on the motor output power:

I1 =

√
N2

1
N2

e
×

(
I2
N − I2

0
)
+ I2

0 =

√
M2

gn2
g

95492 × η2
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×
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N − I2

0
)
+ I2

0 (1)

where I1 is the motor input current, A; Ne is the power under a rated load, kW; IN is the
stator current of the motor under a rated load, A; I0 is the no-load current of the motor, A.
N1 is the output shaft power of the motor, kW; Mg is the driving torque of the rod, N·m; ng
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is the rotational speed of the rod, r/min; and ηt is the total transmission efficiency of the
motor, %.

After analysis, the relationship between electrical parameters and torque can be ob-
tained as shown below:

I2
1 ∝ M2

g (2)

The analysis shows that the square of the motor input current is proportional to the
square of the rod torque.

According to Equation (2), it can be deduced that when the current drops to the
no-load current, which means the rod torque drops to the no-load torque, the oil rod or
oil pipe may break off; when the current is smaller than the lower limit of the reasonable
range and higher than the lower limit of the limit range, the pump may leak or the oil pipe
may leak; when the current fluctuates in the upper limit of the limit range, the oil pipe
may be waxed; when the current increases to the outside of the limit range, the stator may
be dissolved or the parameters may be high; when the current is smaller than the lower
limit of the reasonable range and fluctuates, the stator may be waxed. When the current
fluctuates, the stator may be degumming.

(2) Load Fault Model

The axial load F on the screw pump rod can be expressed by the following formula:

F = F1 + F2 − F3 − F4 (3)

where F1 is the rod’s own gravity, N; F2 is the axial load generated by the pressure difference
between the inlet and outlet of the pump, N; F3 is the friction force between the well fluid
and the rod when it flows upward in the pipe, N; and F4 is the upward buoyancy force that
the rod receives in the well fluid, N.

The gravity of the pumping rod can be expressed by the following equation:

F1 = GL (4)

where G is the linear density of the rod, N/m; L is the total length of the pumping rod, m.
The axial load generated by the pressure difference between the inlet and outlet of the

pump can be expressed by the following equation:

F2 =
(

πR2 + 16eR
)

∆p (5)

where e is the eccentric moment of the screw pump, m; R is the rotor radius of the screw
pump, m; ∆p is the differential pressure between the inlet and outlet of the pump, MPa.

The friction force between the well fluid and the rod can be expressed by the following
equation:

F3 = 2πµlelν∆L (6)

where el =
m2−1

(m2+1) ln m−(m2−1) , m = dt
dr

, ∆L is the length of the section, m; µl is the average
viscosity of the well fluid, mPa·s; ν is the average flow speed of the well fluid in the section,
m/s.

The buoyancy of the rod generated by well fluid can be expressed by the following
equation:

F4 = ρl gπ

(
d
2

)2
L (7)

where g is the acceleration of gravity, N/kg; ρl is the density of the fluid in the wellbore,
kg/m3.

After analyzing, it can be obtained that when F2 decreases, it means the liquid in the
screw pump decreases; when F3 increases, it means the oil velocity increases, i.e., the oil
production increases. According to Equations (3)–(7), we can conclude that when F is zero,
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there may be a rod break; when F is reduced, there may be an oil pipe leakage, a broken oil
pipe, or pump leakage, etc.; when F is increased, there may be waxing of the oil pipe or
high parameters.

(3) Rotation Speed Fault Model

The rotate speed of a screw pump is closely related to the oil production, as shown in
the following equation:

Q = 1440 × 4nEDT (8)

where Q is the theoretical oil production, m3/d; n is the rotor speed, r/min; E is the
eccentricity of the rotor, m; D is the truncated circle diameter of the rotor, m; T is the stator
lead, m.

The actual oil production of a screw pump can be expressed by the following equation:

Q′ = Qηv = ηv1440 × 4EDTn (9)

where ηv is the volumetric efficiency of the screw pump; Q′ is the actual oil production,
m3/d.

It can be seen that after the structural parameters E, D, and T of the screw pump are
determined, the oil production is only related to the rotational speed n and the volumetric
efficiency ηv, and the rotational speed needs to be increased in order to achieve higher oil
production.

Increasing the rotational speed of the screw pump can improve oil production, but
extremely high rotational speed will lead to an increase in the centrifugal force of the rod,
which will cause vibration and decrease the oil lifting height. At the same time, high speed
rotation will also accelerate the wear of stator rubber.

After analyzing, it can be concluded from Equation (9) that when n is zero, the pump
may be jammed; when n is reduced, the rod and pipe may show biased wear, or the oil
pipe may be waxed, etc.; when n increases, there may be an oil rod break, oil pipe breakage,
oil pipe leakage, or pump leakage, and so on.

(4) Oil Pressure Fault Model

Letting the oil pressure be P at the moment of starting pumping t, the relationship
between pressure and volume is:

βmVt∆P = Vp∆t (10)

where βm is the compression coefficient of the gas–liquid mixture in the oil pipe; ∆t is
the amount of time change, s; ∆P is the amount of pressure change, MPa; and Vt is the
pumping volume flow rate m3/s.

When pipe leakage occurs, the relationship between the leakage flow rate and the
pressure difference between the inside and outside of the oil pipe at the leaking place is:

Vle = εφA
√

2gh (11)

where Vle is the leakage flow rate, m3/s; ε is the shrinkage coefficient of the leakage section
due to the inertia of the liquid; φ is the flow coefficient associated with the liquid; A is the
size of the cross-sectional area at the orifice of the liquid leakage, m2; g is the acceleration of
gravity, m/s2; h is the difference in liquid pressure between the inside of the tubing at the
location of the leakage and the outside of the tubing, m.

Since the leakage flow rate Vle is a function of pressure P, and increases nonlinearly
with P, the relationship between pressure and time is broken when leakage occurs, resulting
in a slower rate of pressure increase.

2.3. Fault Data Model

After the mechanism analysis, a FDM can be established to reveal the mechanism
characterization from various aspects, as shown in Figure 2.
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The screw pump FDM uses the mechanism analysis of the screw pump and historical
data to hierarchically reveal the mechanistic characterization of the faults, such as pump
jamming, stator swelling, and pipe waxing, to classify faults and obtain the corresponding
fault labels.

3. Effective Data and Feature
3.1. Data Preprocessing

By analyzing the actual working data for pump wells of an oil field in Xinjiang
province, China, it can be concluded that the actual signals are collected by a variety
of sensors simultaneously, the data types are complex, and the collection cycle is long,
with a collection length of about 1150 sampling points. The signals start from about the
100th sampling point, showing a gradual upward trend, and continue to about the 300th
sampling point, and fault data are concentrated in the area between about the 100th and
500th sampling points; the abnormal data of the oil pressure signals are also found in the
area between about the 100th and 400th sampling points. From the above analysis, it can
be seen that most of the signal fault data are concentrated in a small range, and do not
cover the entire signal collection length. If the original data are used for fault diagnosis, the
diagnostic accuracy will be adversely affected.

(1) Data cleaning

Voltage and current signals contain noise because of the non-stationarity of the system;
and pressure and load signals contain random fluctuation caused by the oil pump and
environment. This may lead to inaccurate features because some features are sensitive to
small fluctuations, while others are the opposite.

The actual data collected from the sensors contain abnormal values. The 3σ method is
considered according to the data characteristics.

The 3σ method default is that data obey normal distribution, the probability of data
distributed within the interval (µ− 3σ, µ+ 3σ) is 99.73%, and data distributed outside the
interval is considered outlier data. In this section, the sliding window method is used for
outlier determination. The standard deviation of the data within the sliding window is
calculated as follows:

aνg =
x1 + x2 + x3 + · · ·+ xl

l
(12)

σ =

√√√√1
l

l

∑
i=1

xi − aνg2 (13)

where aνg is the mean value of each parameter within the sliding window; σ is the standard
deviation of the group of data.
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According to Equations (12) and (13), if the distance between a data value and the aνg
is greater than 3σ, the data will be rounded off, and the rounded data will be filled in using
the mean of the neighbouring numbers.

(2) Data normalization

There are different unit dimension features that cannot provide an evaluation in such
a multidimensional system. The purpose of normalization is to make data be limited
to a certain range (e.g., [0, 1] or [−1, 1]), thus eliminating the adverse effects caused by
singular sample data. As the sample data does not involve distance measures or covariance
calculation, and the data does not meet the normal distribution, the maximum–minimum
normalization (min-max normalization) can be used, and the linear function will convert
the original data to the range of [0 1]. The equation is as follows:

x′ =
x − min(x)

max(x)− min(x)
(14)

where x′ is the data after normalization; x is the data before normalization.

(3) Data slicing enhancements

Using the proposed FDM, the collected signals with unequal lengths are cut into signal
segments with a length of 500 sampling points. Data slicing can reduce the data volume
of a piece of input signal and improve the model computation efficiency; and the data
segments containing fault information can be intercepted, so that the fault information
features are more obvious, which is conducive to improving the accuracy of the results.

Due to the limited number of actual fault data samples at the site, the data set needs
to be enhanced in order to increase the generalization ability of the model. Since the
collected samples involving fault data are generally longer than the required input signal,
the data enhancement method proposed in this paper is the sliding window sampling
(SWS) method. Sliding window sampling takes a time window of the same size as the
standard sample, with a step size smaller than the standard sample. The sampling method
is shown in Figure 3. The blue irregular curve represents the timing signal. The green
rectangular box represents the time window with a width of “sample length”. After the first
window captures the signal fragment, it moves a distance of “sliding step” to the right and
become the second window. And so on, after moving to the right for n − 1 “sliding steps”,
the nth time window is obtained. In this way, a total of n signal segments are obtained. The
data set after data enhancement contains a total of 13,000 samples.

Processes 2024, 12, 2571 7 of 17 
 

 

𝜎 = ඩ1𝑙   
ୀଵ ሺ𝑥 − 𝑎𝜈𝑔ሻଶ (13)

where 𝑎𝜈𝑔  is the mean value of each parameter within the sliding window; 𝜎  is the 
standard deviation of the group of data. 

According to Equations (12) and (13), if the distance between a data value and the 𝑎𝜈𝑔 is greater than 3𝜎, the data will be rounded off, and the rounded data will be filled 
in using the mean of the neighbouring numbers. 
(2) Data normalization 

There are different unit dimension features that cannot provide an evaluation in such 
a multidimensional system. The purpose of normalization is to make data be limited to a 
certain range (e.g., [0, 1] or [−1, 1]), thus eliminating the adverse effects caused by singular 
sample data. As the sample data does not involve distance measures or covariance 
calculation, and the data does not meet the normal distribution, the maximum–minimum 
normalization (min-max normalization) can be used, and the linear function will convert 
the original data to the range of [0 1]. The equation is as follows: 𝑥′ = 𝑥 − minሺ𝑥ሻmaxሺ𝑥ሻ − minሺ𝑥ሻ (14)

where 𝑥′ is the data after normalization; 𝑥 is the data before normalization. 
(3) Data slicing enhancements 

Using the proposed FDM, the collected signals with unequal lengths are cut into 
signal segments with a length of 500 sampling points. Data slicing can reduce the data 
volume of a piece of input signal and improve the model computation efficiency; and the 
data segments containing fault information can be intercepted, so that the fault 
information features are more obvious, which is conducive to improving the accuracy of 
the results. 

Due to the limited number of actual fault data samples at the site, the data set needs 
to be enhanced in order to increase the generalization ability of the model. Since the 
collected samples involving fault data are generally longer than the required input signal, 
the data enhancement method proposed in this paper is the sliding window sampling 
(SWS) method. Sliding window sampling takes a time window of the same size as the 
standard sample, with a step size smaller than the standard sample. The sampling method 
is shown in Figure 3. The blue irregular curve represents the timing signal. The green 
rectangular box represents the time window with a width of “sample length”. After the 
first window captures the signal fragment, it moves a distance of “sliding step” to the right 
and become the second window. And so on, after moving to the right for n − 1 “sliding 
steps”, the nth time window is obtained. In this way, a total of n signal segments are 
obtained. The data set after data enhancement contains a total of 13,000 samples. 

 
Figure 3. Slide sampling method. 

3.2. Effective Data Set 
After data pre-processing, the effective data set can be constructed by using FDM to 

select data containing fault information from original signals. 

Figure 3. Slide sampling method.

3.2. Effective Data Set

After data pre-processing, the effective data set can be constructed by using FDM to
select data containing fault information from original signals.

The FDM provides rules and principles for selecting effective data from a long-period
signal. FDM describes the change modality of current, load, rotate speed, oil pressure, etc.
on the fault working conditions, including average value, fluctuation, increase or decrease,
and so on. Taking oil pipe waxing as an example, when it happens, the current exceeds
the maximum limit and wildly fluctuates; the load increases from a low limit to a nearly
maximum limit, and wildly fluctuates; the rotate speed steadily stays below the normal
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range and larger than the minimum limit; the oil pressure increases stably, with small
fluctuations.

It is important for the improvement of the accuracy and efficiency of the screw pump
fault diagnosis. Table 1 shows some fault data.

Table 1. Some fault data.
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3.3. Multidimensional Fault Feature Extraction

According to the fluctuation of the featured signal we can extract data features that
reflect the changes in the featured signal, that is, reflecting the changes in the production
data, and then we can judge the fault types.

3.3.1. Extraction of Signal Feature

Since the collected original signals contain 17-dimensional signals such as voltage,
current, power, load, torque, and oil pressure, which are a large amount of data and have
considerable redundancy, the 17-dimensional data will be analyzed by correlation.
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The Pearson correlation coefficient method is defined as the covariance product of two
continuously distributed parameters x and y divided by their standard deviation, as in the
following equation:

ρx,y =
cov(x, y)

σxσy
(15)

where σx σy is the standard deviation of variables x and y, respectively, and cov(x, y)
denotes the covariance of the two variables. The covariance formula is provided in the
following equation:

cov(x, y) =
∑n

i=1(xi − x)(yi − y)
n − 1

(16)

The correlation coefficient reflects the strength and direction of correlation between
variables. Table 2 shows the general pattern of correlation coefficients and strength of
correlation [27–30].

Table 2. Correlation table.

Relevance Negative Value Positive Value

Irrelevant −0.09~0.00 0.00~0.09
Low relevance −0.50~0.10 0.10~0.50
High relevance −0.80~−0.50 0.50~0.80

Significant relevance −0.90~−10 0.9~1

A heat map of correlation coefficients using data from the normal operating conditions
of well number z70-01-3060601 in a certain oil field is shown in Figure 4. According to
the correlation coefficient, it can be seen that the voltage, current, and power correlation is
higher than 0.91, and the correlation of current and torque is 0.95, so the voltage, power,
and torque signals are discarded; the correlation of current and load is 0.20; the correlation
of current and oil pressure is 0.49; and the correlation of load and speed is 0.44. In the case
that voltage, power, torque, and oil pressure are discarded, the correlation of current, load,
speed, and oil pressure is the lowest, that is, 3.48. It can be concluded that the 4-dimensional
signals of current, load, speed, and oil pressure can be used as the signal feature.
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3.3.2. Extraction Data Feature

Statistical features can comprehensively describe the original signal state from different
perspectives, which can quantitatively reflect the degree of signal dispersion, change, and
asymmetry, and play an important role in fault diagnosis research.

Based on the fault mechanistic analysis, we chose the mean, variance, and peak-to-peak
value (as shown in Table 3) as data features:

Table 3. Characteristics of statistics.

Feature Name Formula

Mean x = 1
Ns

∑Ns
i=1 x(i)

Variance 1
Ns−1 ∑Ns

i=1(x(i)− x)2

Peak-to-peak value max(x(i))− min(x(i))

(1) The mean monitors the signal center trend, which can be the most intuitive represen-
tation of the signal changes. For example, an extremely low load mean value could
mean oil rod break off; an extremely high value could mean pump jamming.

(2) The variance monitors the distribution trend of the signal around the mean value,
which can help us better understand the fluctuation of the parameters and trend
changes. For example, a high variance could mean waxing of oil pipes.

(3) The peak-to-peak value can be used to describe the magnitude of change of a parame-
ter over a period of time, and can better reflect the fluctuation of the parameter. For
example, a high peak-to-peak could mean stator degumming.

The effective features extracted by the multidimensional feature extraction model are
shown in Table 4.

Table 4. Effective characteristics.

Current Load Rotate Speed Oil Pressure

Mean Cm Lm Sm Pm
Variance Cv Lv Sv Pv

Peak-to-peak value Cp Lp Sp Pp

4. Experiments

We chose 10 common types of faults, shown in Table 5, and we set the number of
clusters to 10.

Table 5. Common types of faults.

Fault
Number Type of Fault Reason

0 Oil rod break-off Excessive torque/tension
1 Oil pipe leakage Oil pipe corrosion
2 Oil pipe break-off Anti-rotation anchor damage
3 Waxing of oil pipe High wax content in oil wells
4 Stator swelling Liquid-absorbing, expanding
5 Stator Degumming Low bonding strength
6 Pump leakage Stator wear and aging
7 Pump jamming Excessive surplus
8 High parameters Displacement is greater than the fluid supply capacity
9 Low parameters Insufficient liquid supply capacity

(1) Comparative experiment I

In order to verify the effectiveness of the effective feature, comparison experiments
are conducted using the extracted features (Feature Set-1, Table 6) and remaining features
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(Feature Set-2, Table 7) except for the extracted features, respectively. First, the dimensions
of the two feature sets are reduced to 2 dimensions using principal component analysis
(PCA), and then the K-means algorithm is used to cluster.

Table 6. Feature Set-1.

Value Features
Signal Features

Current Load Rotate Speed Oil Pressure

Mean Cm Lm Sm Pm
Variance Cv Lv Sv Pv

Peak-to-peak
value Cp Lp Sp Pp

Table 7. Feature Set-2.

Value Features
Signal Features

Current Load Rotate Speed Oil Pressure

Kurtosis Ck Lk Sk Pk
Impulse Ci Li Si Pi

K-means is computationally efficient, especially when the number of clusters and
dimensions are not too large. This makes it suitable for large datasets. The output of
K-means, i.e., the cluster centroids, is straightforward to interpret. Each centroid represents
the average of all points in that cluster, which can help explain the result of each cluster.

The clustering results are shown in Figure 5. It shows that using the Feature Set-1, the
data can be effectively classified into 10 classes. Points clustered into one category represent
data for one type of fault. The smaller the intra-class distance and the larger the inter-class
distance, the better the clustering is, and accordingly, the clearer the distinction among
different faults. Different colors correspond to different types of faults. The pump leakage
(green cluster) and the oil pipe leakage (light-blue cluster) are similar, so they are closer in
the clustering results. However, using Feature Set-2, the data can be classified into only
5 classes, and the intra-class spacing is large and the inter-class spacing is small, so that the
clustering results are not effective. Therefore, it can be concluded that the effective features
can be extracted using the proposed multidimensional feature extraction model.
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results of Feature Set-2.

The Calinski–Harabasz Index (CHI) measures how good the clustering is by the ratio
of interclass scatter to intraclass scatter. A higher CHI represents better clustering, as it
means that there is more variability between classes as well as more compactness within



Processes 2024, 12, 2571 12 of 17

classes. Figure 6 shows the CHI of different feature sets with the number of clusters ranging
from 4 to 10. It can be seen that Feature Set-1 determined the right cluster number, which
means Feature Set-1 is effective for fault diagnosis.
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In order to further verify the validity of the model, we reran k-means with 8 different
initial random seeds, SVM with 8 different ε-SVR values, and (DBSCAN) with 8 different
bandwidths and summarized the results with the test results of K-means, and the average
of accuracy and root-mean-square error (RMSE) for different datasets after clustering are
shown in Figure 7 and Table 8. It can be seen that, for Feature Set-1, all three methods have
high average accuracy and low RMSE for diagnosis results. Therefore, using FDM and
MDFEM, we can select effective fault data and extract effective fault features, which have
high-quality clustering performance for fault diagnosis.
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Table 8. The average of accuracy and RMSE for different datasets.

Datasets
K-Means SVM DBSCAN

Average of
Accuracy (%) RMSE Average of

Accuracy (%) RMSE Average of
Accuracy (%) RMSE

Feature Set-1 95.3 0.002 91.2 0.012 92.6 0.005
Feature Set-2 75.7 0.091 64.5 0.156 71.9 0.076
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(2) Comparative experiment II

In order to verify the validity of multi-source signals, this section uses a single signal
to extract features for experiments. The mean, variance, and peak-to-peak value of current,
load, rotational speed, and oil pressure are extracted, respectively, constituting Feature Set-3
to Feature Set-6 (Tables 9–12), and then the dimensions of the four feature sets are reduced
to 2 dimensions using principal component analysis (PCA); then clustering analysis is
carried out using the K-means algorithm, and the clustering results are shown in Figure 8.

Table 9. Feature Set-3.

Value Features Current

Mean Cm
Variance Cv

Peak-to-peak value Cp

Table 10. Feature Set-4.

Value Features Load

Mean Lm
Variance Lv

Peak-to-peak value Lp

Table 11. Feature Set-5.

Value Features Rotate Speed

Mean Sm
Variance Sv

Peak-to-peak value Sp

Table 12. Feature Set-6.

Value Features Oil Pressure

Mean Pm
Variance Pv

Peak-to-peak value Pp

Different colors correspond to different types of faults. It shows that the data can only
be classified into 4 classes using current or rotational speed signals, respectively, and the
intraclass spacing is large, the interclass spacing is small; using a load or oil pressure signal
can only divide the data into 3 classes and 2 classes, respectively, and the clustering is not
effective. Therefore, it can be concluded that the clustering effect of the features extracted
by using a single signal is not effective, and there is a considerable gap with the clustering
effect of the effective features extracted in this paper.

Figure 9 shows the CHI of different feature sets with the number of clusters ranging
from 4 to 10. We already set the number of clusters to 10. It can be seen that none of
these 4 datasets determined the right cluster number, which means using a single signal to
extract fault features has low quality for diagnosis.
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The averages of accuracy and RMSE for different datasets after clustering using
different methods are shown in Figure 10 and Table 13. It can be seen that when we use
a single signal to select an effective fault and extract fault features for diagnosis, we will
get a low average of accuracy and a high RMSE, which means we will get a low quality of
fault diagnosis.
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Table 13. The average of accuracy and RMSE for different datasets.

Datasets
K-Means SVM DBSCAN

Average of
Accuracy (%) RMSE Average of

Accuracy (%) RMSE Average of
Accuracy (%) RMSE

Feature Set-3 74.3 0.123 68.3 0.097 72.6 0.135
Feature Set-4 71.8 0.098 64.5 0.165 71.9 0.145
Feature Set-5 69.5 0.134 70.2 0.126 68.5 0.140
Feature Set-6 75.6 0.153 71.8 0.103 64.3 0.147

5. Conclusions

This paper proposed a model-driven approach to extract multi-source fault features
of a screw pump. Firstly, the screw pump fault mechanism model and the FDM were
constructed; then the original multi-dimensional data were cleaned, normalized, sliced,
and enhanced, and the FDM was used for data selection to establish an effective data
set; then the multi-dimensional fault feature extraction model (MDFEM) was constructed
to extract the 4-dimensional featured signal and the 3-dimensional data feature, and the
12-dimensional effective fault features were extracted; finally, experiments were carried out
to verify the effectiveness and accuracy of the proposed method.

We draw the following conclusions: (1) By analyzing the different fault mechanisms
of the screw pump, the FDM can be constructed to select the effective data and solve the
problem of unclear fault labels and locations; (2) By using MDFEM, we can determine that
the 4-dimensional featured signals of the original multi-source signals, such as current, load,
rotational speed, and oil pressure, are fault-related, and the 3-dimensional statistic feature
of the mean, variance, and peak-to-peak are fault-related; (3) The method proposed in this
paper can be used to extract 12-dimensional effective fault features and can achieve a multi-
source informational fault diagnosis of a screw pump. After experimental verification,
the proposed method can comprehensively use the multi-source information collected at
the project site and can accurately and efficiently identify the types of screw pump faults,
which has high application value. Due to the limited fault sample data collected in this
paper, the next step is to obtain more comprehensive fault sample data as much as possible
to improve the accuracy of the method.
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