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Abstract: The market share of blade batteries is rising rapidly due to their high energy density, efficient
space utilization, and low cost. Nevertheless, effective cooling solutions for blade batteries are crucial
to ensure the safe operation of electric vehicles, especially in extreme high-temperature environments.
This paper numerically investigates the effects of a cooling plate and the blade battery parameters on
maximum battery temperature, maximum temperature difference, and cooling water pressure drop.
Additionally, the energy efficiency of these solutions under various cooling demands is analyzed.
The numerical results show that increasing the channel number and changing the flow direction
does not significantly improve the cooling performance of the cooling plate. Moreover, the effect of
cooling water temperature on the maximum temperature difference in blade batteries is negligible.
Furthermore, increasing the cooling water mass flow rate and the rotational speed of the cooling fan
is preferred when Tmax − Ta > 6 K, while reducing the cooling water temperature is more energy-
efficient when Tmax − Ta < 6 K. These results are expected to offer theoretical guidance and data
support for designing cooling systems for blade batteries in extreme high-temperature environments.

Keywords: cooling plate; thermal management; blade battery; energy efficiency analysis

1. Introduction

New energy vehicles are classified into hybrid electric vehicles and pure electric vehi-
cles, with demand primarily concentrated in China, America, and the European Union [1].
In 2023, global sales of new energy vehicles exceeded 13 million units, representing 16%
of the total market share [2]. In China alone, sales surpassed 9.6 million units, capturing
a 31.6% market share [3]. Power batteries, the core components of new energy vehicles,
supply the electrical energy necessary for driving. Their performance directly impacts
key factors such as vehicle range, driving experience, and safety [4,5]. Lithium-ion power
batteries are currently categorized by shape into cylindrical, prismatic, and pouch bat-
teries [6,7]. For instance, the 18,650 battery, a cylindrical type, is widely used in Tesla
vehicles [8]. To improve battery safety, space utilization, and lifespan, BYD introduced
the blade battery (a blade-shaped prismatic battery) in 2020 and incorporated it into the
production vehicles [9,10].

It is worth noting that all types of batteries generate a significant amount of heat
during operation. If not dissipated promptly, the temperature of the battery can rise rapidly,
leading to reduced performance and a shortened lifespan in mild cases, or thermal runaway
in severe cases, potentially resulting in fires or explosions [11,12]. The optimal operating
temperature for batteries typically ranges between 20 ◦C and 50 ◦C, with the maximum
internal temperature difference not exceeding 5 ◦C [13–15]. Scorching weather, particularly
temperatures above 35 ◦C, significantly increases the risk of thermal runaway. In China,
such high temperatures can persist for over 45 days each summer, impacting approximately
900 million people [16,17]. Therefore, effective thermal management of lithium-ion power
batteries is crucial for ensuring the safe operation of electric vehicles.
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Thermal management technologies for power batteries are categorized into air cooling,
phase change material (PCM) cooling, liquid cooling, and PCM/liquid hybrid cooling [18,19].
With the rapid increase in power battery capacity and charge/discharge rates, liquid
cooling has become the preferred method for meeting heat dissipation requirements [20].
Water cooling plates are often integrated with the battery in a sandwich structure, with
thickness reduced to less than 2 mm to conserve space [21]. Enhancing the performance of
cooling plates primarily involves increasing the flow rate, lowering water temperature, and
optimizing the cooling plate structure [22]. Owing to the significant variability in battery
structures, current research mainly focuses on optimizing cooling plate designs to achieve
effective thermal management [18,23]. Specifically, cooling plate improvement consists of
two aspects, cooling channel structure optimization and cold plate structure optimization.

In terms of cooling channel structure optimization, current research primarily focuses
on optimizing cross-sectional shapes (e.g., circular, rectangular, trapezoidal [24]), channel
height, and channel width. For instance, Zhang et al. [25] studied the effect of channel
shapes on the cooling performance of cooling plates under a constant cross-sectional area.
They verified that the trapezoid channel presents the best cooling performance at the
same flow rate, while the circular channel results in the maximum pressure drop. Tong
et al. [26] demonstrated that increasing the channel height from 0.5 mm to 2 mm can reduce
the temperature difference between the prismatic batteries, especially at high discharge
rates. However, the effect on the average battery temperature becomes negligible when
the thickness exceeds 2 mm. In their study of channel width, Qian et al. [27] found that
the pressure drop of the cooling plate decreased by 55% when the channel width increased
from 3 mm to 6 mm. Thus, a flow channel with a wide inlet and narrow outlet helps balance
cooling performance and pressure drop [28,29]. Notably, increasing the cross-sectional area
of the channel while maintaining the same coolant flow rate increases coolant flow, which
inevitably increases pumping power. Additionally, the difficulty and cost of fabricating
channels with different shapes vary significantly. Therefore, the trade-off between cooling
performance, manufacturing cost, and pumping power must be considered when designing
the cooling plate.

In terms of cold plate structure optimization, current research primarily focuses on
optimizing flow channels (e.g., straight, serpentine, U-bend, pumpkin, spiral, hexagonal),
channel number, coolant flow direction, and topology structure [30]. For instance, Monika
et al. [31] demonstrated that serpentine and hexagonal channels exhibit a good cooling
performance, significantly reducing the maximum temperature and temperature difference
of the prismatic battery, despite their high pressure drop. In contrast, the pumpkin-shaped
channel effectively reduces pressure drop and pumping power. Similarly, González-Morán
et al. [32] and Chen et al. [33] found that serpentine channels outperform straight channels
in cooling but result in a higher pressure drop. It is well known that balancing the pressure
drop and the cooling performance is challenging, yet few studies focus on comparing
the cooling performance of different channels under the same pressure drop conditions.
Chen et al. [34] and Ding et al. [35] proved that appropriately increasing the number of
channels improves cooling plate performance. Additionally, optimizing the water flow
direction in straight channels can further reduce the maximum temperature and tempera-
ture difference of the prismatic battery [35]. Similarly, topology optimization can enhance
the cooling performance of pre-designed channels. For instance, Chen et al. [36] found
that switching from conventional rectangular channels to topology-optimized structures
reduced the maximum temperature and temperature difference of the prismatic battery by
0.27% and 19.5%, respectively. However, the high manufacturing cost limits the application
of topology-optimized cold plates in power battery thermal management.

It is important to note that the geometric parameters of blade batteries differ sig-
nificantly from those of traditional prismatic batteries. Specifically, the length of blade
batteries can be up to five times that of prismatic batteries, while their width is only half as
much. This implies that the thermal entry length effect during the cooling process of blade
batteries can be neglected, potentially rendering current cold plate optimization schemes
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unsuitable. Unfortunately, most research on cold plate structure optimization focuses on
prismatic batteries, with few studies addressing blade batteries [9,24,30]. Moreover, the
existing studies mainly set the cooling water temperature as 15–25 ◦C, with little focus
on cooling batteries under extreme high-temperature environments. In this work, some
solutions are proposed to effectively cool the blade batteries in extreme high-temperature
environments. The effects of the cooling plate and the blade battery parameters on maxi-
mum battery temperature, maximum temperature difference, and cooling water pressure
drop are numerically investigated. Additionally, the energy efficiency of these solutions
under varying cooling demands is analyzed. These results are expected to offer theoretical
guidance and data support for designing cooling systems for blade batteries in extreme
high-temperature environments.

2. Materials and Methods
2.1. Physical Model

The physical model is shown in Figure 1. The battery system comprises a battery and
a cooling plate. Specifically, blade batteries were selected as a commercial model with a
capacity of 138 Ah. The nominal voltage and dimensions of the blade batteries are 3.2 V and
960 mm × 90 mm × 12 mm, respectively. To improve cooling performance, an aluminum
cooling plate is placed between two adjacent batteries. Specifically, the boundary dimension
of the cooling plate is set as 960 mm × 90 mm × 1.5 mm. The cold plate shell thickness is
0.25 mm, and the cross-sectional dimensions of the cooling channel are 89.5 mm × 1.0 mm.
Additionally, 0.05 mm thick silicone grease is used to reduce the contact thermal resistance
between the cooling plate and the blade battery.
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2.2. Governing Equations and Physical Parameters

To simplify the calculation and simulation process, the following assumptions are
made: (1) The internal materials of the blade battery are isotropic, uniformly distributed,
and generate heat evenly. (2) Radiation heat transfer is neglected. (3) The cooling water flow
in the channel is incompressible. (4) The physical properties of the blade battery’s internal
materials are temperature-independent. (5) The temperature difference between cooling
water and air temperature is ignored. In addition, the maximum value of Reynolds number
is 406 in this paper (Remax = 406 < 2300), that is, the cooling water follows a laminar flow in
the cooling plate. In summary, the continuity, mass, and energy conservation equations for
the cooling water are expressed as follows [12,22]:

∂

∂τ

(
ρw

→
v
→
v
)
= −∇p (1)
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= 0 (2)

∂
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(
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)
+∇

(
ρwcpwTw

→
v
)
= −∇(λw∇Tw) (3)

Moreover, the energy conservation equations for the cooling plate and battery are expressed
as follows [12,22]:

cpcρc
∂Tc

∂τ
= −λc∇(∇Tc) (4)

cpbρb
∂Tb
∂τ

= −λb∇(∇Tb) +
Q
V

(5)

where Q represents the heat generation power of the blade battery; V is the volume of the
blade battery; T is the temperature (K); cp is the specific heat capacity; λ is the thermal

conductivity; ρ is the density; τ is the time; p is the pressure;
→
ν is the velocity vector of

cooling water; and the subscript w, c, and b represent cooling water, cooling plate, and
battery, respectively. In addition, the physical parameters of the cooling water, cooling
plate, blade battery, and silicone grease are shown in Table 1.

Table 1. Physical parameters of the model.

Parameters cp (J·kg−1·K−1) ρ (kg·m−3) λ (W·m−1·K−1)

Cooling water 4218 998.2 0.6
Cooling plate 871 2719 202.4
Blade battery 1108 2450 3.9

Silicone grease - - 2.5 [37]

2.3. Boundary Conditions

In this model, the cooling water inlet is set as a velocity inlet, and the outlet is defined
as a standard atmospheric pressure outlet. A coupled boundary is defined at the interface
between the cooling plate and the battery, and a fluid–structure interaction boundary is
applied at the interface between the cooling plate and the water. The battery’s outer wall
is defined as an adiabatic no-slip boundary. Moreover, the battery is set as a uniformly
distributed internal heat source. To ensure computational accuracy, the SIMPLE algorithm
is utilized to couple the iteration of the pressure and velocity fields, while the discretized
equations employ a second-order upwind scheme. Convergence is considered achieved
when the residuals drop to 10−4.

2.4. Model Validation

In this study, ANSYS FLUENT 2020R2 was employed to simulate the cooling process
of blade batteries. The ICEM method was utilized to mesh the blade battery model.
Initially, the blade battery model was constructed using SpaceClaim 2020 R2, comprising
multiple blade batteries clamped between cooling plates. Each cooling plate cools half
of the battery cells on either side. To simplify the computations and reduce simulation
time, the model of multiple batteries and liquid cooling channels was simplified. The
simplified model consists of one cooling plate and two half-cell units. Adiabatic boundary
conditions were applied to the model surface to represent a symmetrical battery model, as
shown in Figure 1d. The symmetrical blade model was subsequently imported into ICEM
CFD 2020 R2. The time step was set as 0.2 s with a total of 3600 steps. Furthermore, the
maximum temperature within the blade battery (Tmax) and the pressure drop (∆p) at the
end of the discharging process were chosen to verify grid independence. Figure 2a shows
the evolutions of Tmax and ∆p for different grid numbers. It can be observed that Tmax
and ∆p increase progressively as the grid number rises from 0.72 to 2.65 million. Beyond
this point, further increases in the grid number have no significant effect on Tmax and ∆p.
Therefore, to balance convergence speed and computational accuracy, a grid number of
2.65 million was selected for this work.
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Before performing the calculations, an experimental case of a single-phase micro-
channel heat sink, provided by Xu et al. [38], was selected to validate the model’s per-
formance in terms of flow and heat transfer. The comparison between simulation and
experimental results is presented in Figure 2b, demonstrating the evolution of Tmax during
the discharging process. The simulation results show good agreement with the experimen-
tal data, with a maximum error of 0.82%.

3. Results and Discussion
3.1. Effect of Channel Number on Cooling Performance

The cooling performance of the cooling plate generally improves with an increase
in the number of channels. To further investigate the influence of channel number on
the cooling performance of blade batteries, the discharge rate, cooling water temperature,
and mass flow rate were set at 4C (q = 160 kW·m−3), Tw = 298.15 K, and M = 8 g·s−1,
respectively. Figure 3a illustrates the temperature distribution of the blade battery cooled
by a single-channel cooling plate (N = 1). It is evident that the battery temperature increases
along the flow direction, with the temperature near the outlet position rising gradually
during the discharge process. In contrast, the increase in battery temperature near the
inlet position can be considered negligible. Eventually, the temperature distribution within
the blade battery stabilizes at τ > 240 s. Additionally, the maximum temperature (Tmax)
and the maximum temperature difference (∆Tmax) are presented in Figure 3b to facilitate a
more comprehensive analysis of the temperature distribution within the blade battery. The
results indicate that Tmax and ∆Tmax increase to 304.26 K and 5.86 K, respectively, during
the discharge process. Notably, the ∆Tmax exceeds the acceptable limits, posing a risk to the
safe operation of the blade batteries.

To enhance the cooling performance of the cooling plate, we increased the channel
number. Figure 4 illustrates the effects of channel number (N) on Tmax, ∆Tmax, and the
pressure drop of the cooling water between the inlet and outlet (∆p) at τ = 420 s. The results
show that both Tmax and ∆Tmax increase by 0.04 K as the channel number rises from N = 1
to N = 9. Furthermore, ∆p increases by approximately 5.3% with the increase in channel
number. In channels with narrow widths, augmenting the channel number has a limited
impact on the heat transfer area, but it significantly reduces the cross-sectional flow area for
the cooling water, resulting in an increased flow velocity and pressure drop. The convective
heat transfer coefficient of laminar flow is independent of the cooling water’s flow velocity.
By contrast, it increases with a higher length-to-width ratio of the rectangular flow section
but decreases with an increase in hydraulic diameter. Specifically, as the channel number
increased from 1 to 9, the hydraulic diameter decreased from 1.98 mm to 1.82 mm, while
the length-to-width ratio decreased from 90 to 10. Additionally, the total heat transfer area
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rose by approximately 6.6% with the increase in channel number from 1 to 9. Nevertheless,
the cooling performance improvement was negligible as the channel number increased
from 1 to 9. This suggests that reducing the cooling plate thickness may be a more effective
approach to enhancing cooling performance.
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3.2. Effect of Flow Direction on Cooling Performance

Previous research proved that changing the flow direction from parallel flow to counter
flow is another effective way to improve the cooling performance of the cooling plate. There-
fore, we chose three cases (N = 5, 6, and 7, as shown in Figure 5a) to verify their suitability
on cooling blade batteries. Moreover, the discharging rate, cooling water temperaturte, and
mass flow rate are still set as 4C (q = 160 kW·m−3), Tw = 298.15 K, M = 8 g·s−1, respectively.
Figure 5b shows the temperature distribution of the blade battery under various flow
directions. One can see that the Tmax is present at the central position of the blade battery
under a counter flow direction. Moreover, the temperature distribution becomes uneven in
the width direction. What is even worse, the counter flow increases the Tmax and ∆Tmax,
and their values increase gradually with an increase in the channel number. Specifically,
Figure 5c,d proves that the Tmax and ∆Tmax increases about 4.21 K and 2.02 K, respectively,
after changing the flow direction and increasing the channel number. In the cases of counter
flow, both ends of the blade battery are mainly cooled by the water in the inlet channels,
making the cooling water present a peak value at the central position of the blade battery. In
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conclusion, the counter flow not only fails to improve the cooling effect of the cold plate on
the blade battery but also increases the manufacturing cost of the cooling water circulation
system. Therefore, the cooling plate of N = 1 is the preferred plan followed to balance the
cooling performance of the blade batteries and the manufacturing cost.
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Previous research [35,39,40] has demonstrated that altering the flow direction from
parallel to counter flow is an effective method for enhancing the cooling performance
of cooling plates. Accordingly, we selected three cases (N = 5, 6, and 7, as illustrated
in Figure 5a) to assess their suitability for cooling blade batteries. The discharge rate,
cooling water temperature, and mass flow rate were maintained at 4C (q = 160 kW·m−3),
Tw = 298.15 K, M = 8 g·s−1, respectively. Figure 5b presents the temperature distribution of
the blade battery under various flow directions. Notably, Tmax is positioned centrally within
the blade battery under counter flow conditions. Moreover, the temperature distribution
exhibits unevenness across the width. Additionally, counter flow increases Tmax and ∆Tmax,
with both values rising progressively with the channel number. Specifically, Figure 5c,d
indicate that Tmax and ∆Tmax increase by approximately 4.21 K and 2.02 K, respectively,
following the change in flow direction and channel number increment. In counter flow
scenarios, the ends of the blade battery are primarily cooled by the water in the inlet
channels, resulting in a peak temperature at the center of the battery. In conclusion, counter
flow not only fails to enhance the cooling performance of the cold plate on the blade battery
but also raises the manufacturing cost of the cooling water circulation system. Therefore,
a cooling plate configuration of N = 1 is the preferred solution to balance the cooling
performance and the manufacturing cost for blade batteries.

3.3. Effect of Discharging Rate on Cooling Performance

The discharging rates of blade batteries vary significantly across different application
scenarios. To investigate the cooling performance at various discharging rates (2C~5C,
q = 80~200 kW·m−3), the cooling water temperature and mass flow rate were maintained
at Tw = 298.15 K and M = 14 g·s−1, respectively. The effects of the discharging rate on
Tmax, ∆Tmax, and the cooling water temperature difference between the inlet and outlet
(∆Tw) are presented in Figure 6. It is evident that Tmax increases linearly from 300.15 K to
303.15 K as the discharging rate rises from 2C to 5C. Similarly, ∆Tmax increases linearly from
1.89 K to 4.73 K. Notably, ∆Tw also rises from 1.42 K to 3.54 K, attributed to the increase
in the heat generation rate with higher discharging rates. The influence of temperature
variation on physical parameters can be neglected as the discharging rate increases from
2C to 5C, indicating that the convective heat transfer coefficient remains unaffected by
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discharge rate changes. Applying Newton’s law of cooling and the principle of energy
conservation yields the equation q = hA∆T = cpM∆Tw, demonstrating that Tmax, ∆Tmax and
∆Tw are proportional to the discharging rate. Therefore, to maintain the safe operation of
the blade battery at higher discharge rates, enhancing the cooling performance is essential,
which can be achieved by either increasing the coolant flow rate or decreasing the cooling
water temperature.
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difference (b), and cooling water temperature difference between inlet and outlet (c) in a steady state
(N = 1, τ = 420 s).

3.4. Effect of Cooling Water Mass Flow Rate on Cooling Performance

To investigate the cooling performance at various cooling water mass flow rates, the
cooling water temperature and discharging rate were maintained at Tw = 298.15 K and
5C, respectively. The effects of mass flow rate on ∆Tw, Tmax, and ∆Tmax are presented in
Figure 7a. It is observed that Tmax, ∆Tmax and ∆Tw all decrease about 2 K when the M
increases from 8 g·s−1 to 12 g·s−1. By contrast, they only decrease by about 1 K when the M
further increases to 16 g·s−1. This indicates that the improvement in cooling performance
diminishes as the mass flow rate of the cooling water increases. Generally, increasing
the cooling water mass flow rate enhances the convective heat transfer coefficient (h) and
reduces the ∆Tw. However, for the cases considered in this study, h remains constant due to
the laminar flow condition and negligible thermal entry length effect. Consequently, Tmax,
∆Tmax, and ∆Tw are all proportional to M−1, as depicted in Figure 7b. It is important to
note that an increase in the mass flow rate inevitably leads to a rise in the pressure drop.
Figure 7c proves that the ∆p linearly increases with mass flow rate, specifically, by 128 Pa
for every 1 g·s−1 increase. Moreover, the pump power is proportional to both ∆p and M.
That means, the pump power increases by about 1.25 and 3.01 times when the M increases
from 8 g·s−1 to 12 g·s−1 and 16 g·s−1, respectively. In conclusion, as the cooling water flow
rate increases, the improvements in cooling performance diminish rapidly, while the pump
power consumption escalates significantly. Therefore, varying the cooling water mass flow
rate alone is not an adequate solution for cooling blade batteries.
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3.5. Effect of Cooling Water Temperature on Cooling Performance

The temperature of the cooling water is governed by the ambient temperature, which
plays a crucial role in enhancing the cooling performance of the cooling plate, particularly
under extreme high-temperature conditions. To comprehensively investigate the effect of
the cooling water temperature (Tw = 293.15~308.15 K) on cooling performance, the mass
flow rate of the cooling water and the discharging rate were maintained at M = 14 g·s−1

and 5C, respectively. Figure 8 illustrates the distribution of Tmax, ∆Tmax, and ∆Tw under
various cooling water temperatures. It is evident that Tmax increases linearly with rising
cooling water temperature, with a 1 K increase in Tmax for each 1 K rise in cooling water
temperature. In contrast, both ∆Tmax and ∆Tw remain unaffected by changes in cooling
water temperature. This indicates that variations in physical parameters can be ignored
when cooling water temperature increases from 293.15 K to 308.15 K. Thus, the convective
heat transfer coefficient can be considered constant. In conclusion, Tmax can be reduced by
either increasing the cooling water mass flow rate or decreasing the discharging rate and
cooling water temperature. However, ∆Tmax is solely influenced by the discharging rate
and cooling water mass flow rate.
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It is important to note that the heat generated by blade batteries will eventually
dissipate into the environment, regardless of the cooling method used. This means that the
cooling water temperature will always be at least 3 K higher than the ambient temperature
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(Ta) [41], which poses significant challenges for thermal management of blade batteries
under extreme conditions (5C, Tw ≥ 308.15 K), particularly for batteries with a lower
maximum temperature threshold (313.15 K ≤ Tmax ≤ 318.15 K). Under such extreme
conditions, merely increasing the cooling water mass flow rate and the rotational speed of
the cooling fan may not be sufficient to meet the cooling requirements of blade batteries.
To address the challenges posed by global warming and facilitate the adoption of electric
vehicles in tropical desert regions, it is imperative to explore new methods for enhancing
cooling performance. Potential solutions include lowering the cooling water temperature
using air conditioning or thermoelectric cooling.

3.6. Cooling Performance Prediction and Energy Efficiency Analysis

Before analyzing the energy efficiency of various cooling methods, it is crucial to make
an accurate prediction of the cooling plate’s performance. Based on the comprehensive
analysis in Sections 3.1–3.5, correlations between the battery’s maximum temperature
(Tmax), maximum temperature difference (∆Tmax), and cooling water pressure drop (∆p)
were established by fitting simulated data as follows:

Tmax = 1.084T0.984
w M−0.0134q0.0117 (6)

∆Tmax = 0.184M−0.778q (7)

∆p = 128.35M − 5.572 (8)

As depicted in Figure 9, the correlations (Equations (6)–(8)) align well with the simu-
lated data, with R-squared values (R2) of 0.997, 1.0 and 1.0, respectively.
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Under typical extreme conditions (Ta = 308.18 K, 5C, Q = 207.36 W) and various
cooling demands (313.15 K ≤ Tmax ≤ 318.15 K, ∆Tmax ≤ 5 K, ∆Twb = Tmax − Tw ≥ 1 K), the
relationship between Tw and M is deduced and shown in Figure 10. The cooling method
that increases the cooling water mass flow rate and the rotational speed of the cooling fan is
defined as Mode 1, whereas lowering the cooling water temperature using air conditioning
or thermoelectric cooling is defined as Mode 2. The total power of the cooling system (P)
includes both pumping power and cooling power, expressed as:

P =
M

ρwηp
∆p +

qV
η

(9)

η =

{
0.72(Tw − Ta) Mode 1
3.5 Mode 2

(10)



Processes 2024, 12, 2578 11 of 14

where η is the energy efficiency ratio and ηp = 0.5 represents the pump efficiency. Previous
studies [42–45] have shown that the energy efficiency ratio of the cooling fan can be
simplified to η = 0.72(Tw − Ta). Moreover, the energy efficiency ratio of vehicle power
conditioners ranges from 2 to 5 [46,47]. By comparison, the energy efficiency ratio of
thermoelectric cooling rarely exceeds 1 in extreme high-temperature environments [48].
Therefore, η = 3.5 is selected to represent Mode 2.
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Four cases were chosen to analyze the energy efficiency of various cooling modes, and
the detailed parameters are shown in Table 2. It can be seen that P = 96.2 W is required
under Mode 1 to maintain Tmax = 313.15 K. In contrast, P decreases to 36.2 W when Tmax
rises to 318.15 K. It is noteworthy that P = 59.3 W in Mode 2 is independent of Tmax, meaning
that Mode 2 is recommended for blade batteries with a lower maximum temperature (e.g.,
Tmax = 313.15 K), whereas Mode 1 is more suitable for higher maximum temperatures (e.g.,
Tmax = 318.15 K). Additionally, the pumping power and cooling power for these cases are
calculated and shown in Figure 10b, indicating that cooling power dominates the total
power of the cooling system, and the proportion of pumping power is negligible. Therefore,
the maximum energy efficiency ratio for Mode 1 can be approximately expressed as follows:

η1max = 0.72(Tmax − ∆Twbmin − Ta) (11)

where ∆Twbmin = 1 is the minimum temperature difference between the blade batteries
and the cooling water. Figure 10c illustrates the energy efficiency ratio distribution for
various cooling modes. It demonstrates that increasing the cooling water mass flow
rate and the rotational speed of the cooling fan is preferred for cooling blade batteries
when Tmax − Ta > 6 K, whereas reducing the cooling water temperature is a more energy-
efficient solution when Tmax − Ta < 6 K. These results are expected to provide theoretical
guidance and data support for designing cooling systems for blade batteries in extreme
high-temperature environments.

Table 2. Detailed parameters of the four cases.

Cooling Mode Tmax/K ∆Tmax/K Tw/K M/g·s−1 ∆p/Pa η P/W

Mode 1
Case 1 318.15 ≤5 316.15 27.4 3511 5.76 36.2
Case 2 313.15 ≤5 311.15 27.4 3511 2.16 96.2

Mode 2
Case 3 318.15 ≤5 313.15 13 1663 3.5 59.3
Case 4 313.15 ≤5 308.15 13 1663 3.5 59.3
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4. Conclusions

In this paper some solutions are proposed to effectively cool blade batteries in extreme
high-temperature environments. The effects of the cooling plate and the blade battery
parameters on maximum battery temperature, maximum temperature difference, and
cooling water pressure drop are thoroughly examined. Additionally, the energy efficiency
of these solutions under varying cooling demands is analyzed. The main conclusions
drawn from the results and discussions are as follows:

(1) Increasing the number of channels and altering the flow direction does not signifi-
cantly enhance the cooling performance of the cooling plate.

(2) The effect of the cooling water temperature on the maximum temperature difference
of blade batteries is negligible.

(3) Correlations between cooling plate parameters, blade battery parameters, and cooling
performance were established to address gaps in theoretical predictions.

(4) Increasing the mass flow rate of the cooling water and the rotational speed of the cool-
ing fan is recommended for cooling blade batteries, when the temperature difference
between the maximum temperature inside the battery and the ambient temperature
exceeds 6 K (Tmax − Ta > 6 K). Conversely, when the temperature difference is less
than 6 K, reducing the cooling water temperature is a more energy-efficient approach.

(5) To better cool blade batteries, future research should focus on reducing the thickness
of the cooling plate and developing new coolants.
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