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Abstract: Three-phase four-switch active power filters (APFs) have attracted attention due to their
low amount of semiconductors and low cost. The traditional control strategy of three-phase four-
switch APFs usually includes phase-locked loops (PLLs) and rotating coordinate transformation
for harmonic detection, resulting in complicated calculations and increased computation. In this
paper, a modified control strategy for three-phase four-switch APFs based on fundamental positive
sequence extraction is proposed, eliminating PLLs and rotating coordinate transformation with
trigonometric calculations. Harmonic extraction is based on the fundamental positive sequence
extraction method, while non-locked phase loop coordinate transformation is proposed to eliminate
trigonometric calculations. Quasi-PR control is adopted for current tracking, and DC voltage control
is designed to suppress voltage imbalance between the two split capacitors on the DC side. The space
vector pulse width modulation (SVPWM) method is modified for a reduced-switch APF topology.
The proposed control strategy guarantees excellent harmonic compensation: harmonic currents
are significantly suppressed when the APFs are working, the THD of the source current decreases
to 3.86%, the bus voltage fluctuation on the DC side is small, the voltage remains stable, and the
computational complexity is reduced. Finally, a simulation and an experimental hardware platform
are established to validate the feasibility and performance of the proposed control strategy. The
experimental results show that it has good performance in suppressing harmonics and improving
power quality.

Keywords: three-phase four-switch APF; phase-locked loop; fundamental positive sequence extraction

1. Introduction

Recently, smart grids and new energy generation technologies have developed rapidly,
with new load types such as electric vehicles, virtual power plants, distributed energy
storage, and so on being widely used. This is convenient for daily life, but also leads to
effects such as transient high-voltage flickers and high-frequency noise during equipment
startup [1,2], damaging the electronic components. Harmonics are also generated by the
nonlinear aspects of loads, resulting in power quality degradation and increased grid
losses [3,4]. Therefore, harmonic elimination in power systems has gradually received
widespread attention [5]. Ref. [6] proposed a generalized instantaneous reactive power
theory for reactive and harmonic current compensation, based on which an immediate
reactive power compensator was proposed that is able to eliminate the harmonic currents
caused by the instantaneous imaginary power [7]. APFs have become an important means
of improving grids’ power quality due to their excellent immediate compensation perfor-
mance and rapid dynamic response, as well as their ability to effectively suppress noise
and interference [8,9].
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APFs are an effective approach to achieve harmonic suppression and dynamic reactive
power compensation. As such, they have been widely researched and applied due to their
outstanding advantages [10,11]. Ref. [12] proposed an EMTP-based active filter model to
analyze the performance of active filters. In reality, APF performance is dependent on the
control strategies adopted, which include P-Q theory, repetitive control, neural network
control, and model predictive control, among others.

Refs. [13,14] presented a P-Q suppression harmonic control method based on instan-
taneous reactive power theory (IRPT). This method extracts harmonic components from
load currents, an important step to improve APF performance. Ref. [15] presented the
application of a generalized robust logarithmic family (GRLF) framework-derived least
absolute difference (LAD) algorithm implemented in active power filters (APFs) for PQ
enhancement, successfully eliminating lower- and higher-order errors from harmonically
rich nonlinear load currents, resulting in accurate fundamental component extraction.
Ref. [16] proposed a direct-current control strategy based on the synchronous rotating
coordinate system, which achieves static-free tracking control of the grid current through a
PI controller. Refs. [17,18] proposed an adaptive quantum calculus-based least mean fourth
(q-LMF) control for shunt APFs, which maintains the source current’s unity power factor
while turning the former sinusoidal. Ref. [19] proposed a new version of the integral power
theory in the α−β reference frame, combining the advantages of well-known instantaneous
and integral power theories, as well as a shunt active-filtering strategy based on them.
Ref. [20] presented finite-control set–model-predictive control (FCS-MPC) for hybrid APFs,
improving their dynamic performance. Ref. [21] proposed an effective model-predictive
control (MPC) method for SAPFs, avoiding the weighting factor and additional constraints
of DC capacitor voltages in the cost function. In another study, neural network algorithms
were employed in APFs to improve system performance [22]. In [23], particle swarm
optimization (PSO) was proposed to improve the PI controller and enhance the dynamic
response. Ref. [24] proposed a genetic algorithm (GA)-optimized fractional order propor-
tional resonant controller (FOPRC) for SAPF current control. Ref. [25] presented a fuzzy
logic controller for APFs with robust control capabilities. Meanwhile, Ref. [26] developed
a Kalman filter-based super-twisting sliding mode control (SMC) for APFs. Ref. [27] pro-
posed a global fast super-twisting terminal sliding-mode controller (GFSTTSMC) based
on an adaptive recurrent Chebyshev fuzzy neural network for APFs. Finally, Ref. [28] pro-
posed a direct power method based on modified interconnection and damping assignment
passivity-based control (IDA-PBC).

Most APFs use six-switch or four-bridge arm eight-switch topologies [29]. They are
complicated in terms of their control, large size, and high cost, and unfavorable for daily
life applications. In recent years, the four-switch topology of three-phase converters, which
has four power semiconductors instead of six switches, has attracted attention due to
its advantageous simple structure and low, economical cost [30,31]. Ref. [32] proposed a
novel two-leg VSI topology for a three-phase APF to reduce the cost and size. Ref. [33]
presented a three-phase four-switch APF with a synchronous reference frame control
strategy. The methods employed in four-switch APF systems are commonly based on
P-Q theory. PLLs are included, and the a–b–c frame is transformed into a d–q–o frame
through Park transformations, increasing computational demands. Ref. [34] presented a
novel control method to improve APF performance with a PI plus vector PI controller;
however, unbalanced capacitor voltages were not considered, and a Park transformation
based on trigonometric computation was included, requiring long execution times. Ref. [35]
removed two current sensors in APFs but still required a PLL for the voltage phase and
employed traditional hysteresis control.

Besides common control methods, some novel control strategies have been developed
to improve three-phase reduced-switch APFs’ performance. Ref. [36] presented finite-
control set model-predictive current control (FCS-MPCC) for four-switch APFs, adopting
a prediction algorithm instead of the traditional control technique. Meanwhile, Ref. [37]
proposed a one-cycle control method for reduced-switch APFs, removing the reference
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current generation. This control method is quite simple compared to most strategies, but its
performance worsens when grid voltages deteriorate. In the literature [38,39], double-band
hysteresis and three-level hysteresis control methods are proposed for four-switch APFs, as
well as a modified modulation technique based on output signal identification [40]. How-
ever, these novel control strategies are complicated to implement and increase computation.

Among them, MPCC establishes a predictive model and employs an adaptive notch
filter (ANF) to obtain the control references, avoiding the PLL. However, it requires a
predictive model to calculate future states and evaluate all possible switching states to
select the optimal solution, which increases its computational complexity. The OCC method
can be implemented without a PLL, but its performance is significantly affected by grid
voltage fluctuations. The HCC method removes the PLL by regulating the compensation
current in the a–b–c coordinate frame, but introduces additional control logic and param-
eter adjustments, increasing system complexity. Additionally, its performance is largely
dependent on settings such as the hysteresis width and high and low thresholds, meaning
that small changes in these parameters may affect the stability of the system.

This paper proposes a modified control strategy for three-phase four-switch APFs
based on fundamental positive sequence extraction, which removes the PLL and Park
transformation. The harmonic extraction is designed based on the fundamental positive
sequence extraction method, while the non-locked phase loop coordinate transformation
method is proposed to eliminate trigonometric calculations. The mode of quasi-PR con-
trol is adopted for current tracking, and the SVPWM is developed for a reduced-switch
APF topology. This control strategy has good harmonic suppression performance, vali-
dated, alongside its feasibility, through simulations and experiments on an experimental
hardware platform.

2. Topology of Three-Phase Four-Switch APFs

Figure 1 shows the topology of three-phase four-switch shunt APFs. vsa, vsb, and vsc
represent the three-phase voltage; isa, isb, and isc are the three-phase current; ila, ilb, and ilc
are the three-phase load current; ia, ib, and ic are the current of three-phase four-switch
APFs; L is the inductor; Udc is the bus voltage; meanwhile, uc1 and uc2 are the capacitor
voltage. The two-phase bridge arms are composed of the power device’s IGBT. Finally, S1,
S2, S3, and S4 represent the switches.
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Figure 1. Topology of a three-phase four-switch APF. 

  

Figure 1. Topology of a three-phase four-switch APF.

3. Control Strategy for Three-Phase Four-Switch APFs
3.1. Fundamental Positive Sequence Extraction Method

The dq0 rotating coordinate detection method can effectively detect voltage harmonics,
fluctuations, and distortion in the power grid, among others. However, this method
involves a large number of trigonometric function transformations, making it prone to
errors and a slow system response. In this paper, a control strategy for a stationary
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coordinate system is proposed to avoid complex coordinate transformations and remove
the PLL to extract the grid voltage phase.

The commonly used method for fundamental positive sequence extraction is the
synchronous reference frame (SRF). First, the three-phase load current is transformed from
the a–b–c coordinate frame to the d–q coordinate frame by a Park transformation. In the
d–q coordinate system, the fundamental positive sequence component of the current is
transformed into a direct current, which can be extracted by filtering with a first-order
low-pass filter (LPF). The transfer function of the first-order LPF is as follows:

Hdq(s) =
ωc

s + ωc
(1)

where ωc is the cutting frequency in the LPF. Although the SRF method achieves good
extraction results, its calculations are relatively complex and require the participation
of a PLL. In contrast, converting the LPF from the rotating d–q coordinate frame to the
stationary a–b–c coordinate frame, which corresponds to the stationary reference frame
(StatRF) control method, is simpler and easier to implement, making it more suitable for
three-phase four-switch APFs.

Figure 2 shows a fundamental positive sequence extraction scheme, wherein the three-
phase current is converted from the a–b–c coordinate frame to the d–q coordinate frame.
The active and reactive components of the three-phase current can be given, obtaining the
fundamental components through the LPF. Finally, the fundamental components under the
a–b–c coordinate frame are obtained via inverse coordinate transformation.
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The equation from the a–b–c coordinate system to the α–β coordinate system is
the following:

C32 =
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
(2)

Then, the following is true:

[
iα
iβ

]
=

2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]ia
ib
ic

 (3)

The transformation from the α–β coordinate frame to the d–q coordinate frame is
the following: [

id
iq

]
=

[
cos θ sin θ
− sin θ cos θ

][
iα

iβ

]
(4)

The LPF is converted from the d–q frame to the α–β frame, represented by the follow-
ing equation:

Hαβ(s) =
1
2


(

Hdq(s + jωo)
+Hdq(s − jωo)

) (
jHdq(s + jωo)
−jHdq(s − jωo)

)
(

−jHdq(s + jωo)
+jHdq(s − jωo)

) (
Hdq(s + jωo)
+Hdq(s − jωo)

)
 (5)
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Substituting (1) into (5), Hαβ(s) is derived as follows:

Hαβ(s) =

 ωcs+ωc
2

(s+ωc)
2+ω0

2
ωcω0

(s+ωc)
2+ω0

2

−ωcω0
(s+ωc)

2+ω0
2

ωcs+ωc
2

(s+ωc)
2+ω0

2

 (6)

Then, the transfer function of the LPF in the α–β frame is given by the following:[
iα f

+

iβ f
+

]
=

[
0 1√

3
2 − 1

2

]
Hαβ(s) = −ωcω0

(s+ωc)
2+ω0

2
ωcs+ωc

2

(s+ωc)
2+ω0

2
1
2 (ωcω0+

√
3ωc

2+
√

3ωcs)
(s+ωc)

2+ω0
2

1
2 (ωcω0−ωc

2−ωcs)
(s+ωc)

2+ω0
2

 (7)

The distortion current is calculated using Equation (7) to obtain the fundamental
positive sequence current, that is, iαf

+, iβf
+.

3.2. Coordinate Transformation Method Without PLLs

Conventional rotary coordinate transformation requires phase-locked loops to obtain
the voltage’s angular frequency information, and the error in the initial phase angle of
the voltage leads to inaccurate detection signals. In this paper, the d–q components are
obtained by directly calculating the rotational quantities, sin(ωt + ϕ) and cos(ωt + ϕ)
of the transformation equation from the α–β frame to the d–q frame, ensuring that the
elements in the following equation can accurately reflect the voltage phase:

[
uα

uβ

]
= C32

ua
ub
uc

 =

√
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]ua
ub
uc

 (8)

The three-phase voltage is represented as follows:
ua =

√
2U sin θ

ub =
√

2U sin
(
θ − 2

3 π
)

uc =
√

2U sin
(
θ + 2

3 π
) (9)

where U is the rms value of the grid voltage, determined as

[
uα

uβ

]
= C32

ua
ub
uc

 =

[√
3U sin θ√
3U cos θ

]
(10)

with
uα

2 + uβ
2 = 3U2 (11)

U =

√
uα

2 + uβ
2

3
(12)

Substituting the above into Equation (10) yields the following:sin θ = uα√
3U

= uα√
uα

2+uβ
2

cos θ =
uβ√
3U

=
uβ√

uα
2+uβ

2

(13)
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Then, the active and reactive voltage components in the d–q coordinate axis are
determined as follows:

[
ud
uq

]
=

[
cos θ sin θ
− sin θ cos θ

][
uα

uβ

]
=

 2uαuβ

uα
2+uβ

2

uβ
2−uα

2

uα
2+uβ

2

 (14)

Therefore, the PLL can be removed to avoid phase angle error, achieving the coordi-
nate’s transformation without PLL.

3.3. Quasi-PR Control Strategy

The PI regulator is generally able to accurately track the reactive current because the
fundamental component is converted into a DC component in the d–q synchronous rotating
coordinate system. PI control always achieves a steady-state error of zero but has poor
performance in AC control systems, failing to deliver the expected results.

In our methodology, a PR controller is employed, and resonant controllers are designed
according to each harmonic frequency. It has high gain at the designed frequency and can
regulate the grid-side current as a standard sinusoidal waveform.

The approximation PR controller transfer function is as follows:

GPR(s) =
1
2
[GPI(s + jω0) + GPI(s − jω0)] = Kp +

Kis
s2 + ω20

(15)

where Kp and Kr are the proportional and resonant gain coefficients, respectively, and ω0 is
the resonant frequency. Undoubtedly, the resonant element is the core of the PR controller,
which has near-infinite gain at ω0 and low gain at other frequencies, effectively eliminating
interfering signals. Figure 3 shows the Bode plot of the PR controller.
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The ideal PR controller is fully capable of tracking AC quantities corresponding to the
frequency. However, the frequency bandwidth near the resonance frequency is too narrow,
and the gain at ω0 is too high, making the system not stable enough. The PR controller
would not be able to work accurately at the frequency in question with slight shifts in
the AC signal. Although the bandwidth could be increased via adjustments, this would
significantly increase the gain and phase changes, causing system instability. To improve
the ability of the PR controller, the improved transfer function is as follows:

GPR(s) = Kp +
2Krωcs

s2 + 2ωcs + ω20
(16)
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where ωc is the cut-off frequency. Meanwhile, the gain function of the quasi-PR controller
is as follows:

|GPR(s)|s=jω0
= Kp + Kr (17)

According to the above, when the input signal frequency is ω0, the gain is Kp + Kr.
Figure 4 shows the plot of the quasi-PR controller.

Processes 2024, 12, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 4. Bode plot of the quasi-PR controller. 

Separate comparisons were carried out with different Kp, Kr, and ωc to analyze the 
effect of diverse parameters on the controller, as shown in Figure 5. 

 
Figure 5. PR control comparisons with different parameters. 

Kp increases alongside the overall gain and can regulate the system dynamics. Ac-
cording to the transfer function, the PR controller’s gain at ω0 is no longer infinite but 

Figure 4. Bode plot of the quasi-PR controller.

Separate comparisons were carried out with different Kp, Kr, and ωc to analyze the
effect of diverse parameters on the controller, as shown in Figure 5.
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Kp increases alongside the overall gain and can regulate the system dynamics. Accord-
ing to the transfer function, the PR controller’s gain at ω0 is no longer infinite but rather
20 log

(
Kp + Kr

)
. When Kp and ωc are the same, the controller’s gain increases alongside

Kr and the bandwidth near the resonant frequency. Therefore, Kr is adjusted to allow the
quasi-PR controller to have sufficiently large gain to achieve a steady error of zero.

When Kp and Kr are the same, ωc increases to improve the bandwidth and the response
speed. However, this may introduce high-frequency noise. There is a frequency fluctuation
of ±0.5 Hz in the power grid, and the corresponding cut-off frequency is ωcmax = 3.14 rad/s.
The value of ωc is generally set to 0.628 rad/s.

3.4. DC Voltage Control Strategy

We studied the stabilization of the DC bus voltage’s impact on APF compensation
performance. The DC voltage should be regulated and controlled to guarantee APF
operation, according to the principle shown in Figure 6.
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Figure 6. Schematic diagram of DC bus voltage control.

The error between the reference value and the measure of the DC voltage is fed into
the PI controller. The component Idref, the PI controller output, is added to the active
component, obtaining the compensation current to keep the DC voltage stable.

DC midpoint voltage deviations affect the voltage balance of the APF capacitor, wors-
ening the harmonic compensation performance and threatening normal APF operation. To
avoid this problem, DC midpoint voltage deviations should be suppressed effectively.

The relationship between the DC current and the midpoint voltage is the following:{
iC1 = C1 d(UC1−Un)

dt
iC2 = C2 d(Un−UC2)

dt

(18)

where the current on the DC side is iC1 and iC2, and the midpoint voltage is Un.
Then, if C1 = C2 = C, we obtain the following:

dUn

dt
= − iC1 − iC2

2C
(19)

The equation, derived by Laplace transformation, is the following:{
Un = iC1−iC2

2sC
Gc(s) = 1

2sC
(20)

To achieve satisfactory anti-interference capabilities, PI control is employed, and the
compensation method is shown in Figure 7.
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4. SVPWM Method for the Three-Phase Four-Switch Topology

The space vector diagram for the three-phase four-switch topology is shown in Figure 9.
The inverse tangent function of the target voltage vector Uref can be used as the sector
division criterion of the SVPWM algorithm for the three-phase four-switch APF.

δ = arctan
(
uβ/uα

)
(21)

where δ is the angle of the target voltage vector. The sector of the target voltage vector is
chosen according to δ. The interval of δ is within (−π/2, +π/2) and does not correspond to
the angle of a complete cycle.
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To accurately determine the target voltage sector, the target voltages U1, U2, U3, and
U4 are rotated counterclockwise by 2π/3 radians using rotating coordinates, thus obtaining
a new coordinate system. Then, according to the sector δ quadrant, the voltage sector is
obtained as shown in Figure 10.
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The rotated coordinate equation is as follows:[
Uα

Uβ

]
=

[
cos(−2π/3) − sin(−2π/3)
sin(2π/3) cos(2π/3)

][
U′

α

U′
β

]
(22)

The state of the voltage vector in the new coordinate frame is shown in Table 1 below.

Table 1. Voltage vector states in the rotated coordinate system.

Voltage Vector Sa Sa Us

U1 0 0
(

Udc/
√

6
)

ej0

U2 1 0
(

Udc/
√

2
)

ej(π/2)

U3 1 1
(

Udc/
√

6
)

ejπ

U4 0 1
(

Udc/
√

2
)

ej(2π/3)

If N = 1*A + 2*B + 3*C + 4*D and 0 ≤ δ < π
2 , then A = 1; otherwise, A = 0. Similarly,

if π
2 ≤ δ < π, then B = 1; otherwise, B = 0. If π ≤ δ < 3π

2 , then C = 1; otherwise, C = 0. If
3π
2 ≤ δ < 2π, then D = 1; otherwise, D = 0. The relationship between N and the sectors is

shown in Table 2.

Table 2. Relationship between N and the sectors.

N Disk Sector (Computing)

1 1
2 2
3 3
4 4

According to the analysis, the target vector Uref should be synthesized by the base
voltage vectors U1, U2, U3, and U4, meeting the following equation:∣∣∣Ure f

∣∣∣Ts = |U1|T1 + |U2|T2 + |U3|T3 + |U4|T4 (23)
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where T1, T2, T3, and T4 are the work time of the base voltage vectors U1, U2, U3, and U4,
respectively, and TS is the switching cycle time. The following is true:

Ts = T1 + T2 + T3 + T4 (24)

A zero vector is needed to synthesize the target vector. However, in a three-phase
four-switch circuit, there are only four basic voltage vectors and no zero vector. The two
smallest basic voltage vectors, i.e., U1 and U3, are taken to synthesize the zero vector,
making up for its absence. If we take the first sector as an example, as shown in Figure 11,
Uref, the target voltage, can be expressed as follows:

∣∣∣Ure f

∣∣∣|cos δ|Ts = T1
1|U1|∣∣∣Ure f

∣∣∣|sin δ|Ts = T2|U2|
(25)

where δ is the angle between the target voltage Uref and the base voltage vector U1, T1
1 is

the time taken to generate Uref by U1, and T2 is the time taken to generate Uref by U2.
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As mentioned above, using U1 and U3 to synthesize an equivalent zero vector, the two
vectors are equal in magnitude, and the relationship between the times can be introduced
as follows: 

T1
2 = T3

T0 = T1
2 + T3

T0 = Ts − T1
1 − T2

(26)

where T3 is the time taken to synthesize the zero vector by U3, T1
2 is the time taken to

synthesize the zero vector by U1, and T0 is the total work time taken to synthesize the
equivalent zero vector.

Combining Equation (25) with (26), the time is derived as follows:
T1 =

Ts−T2+
|Ure f |
|U1|

|cos δ|Ts

2

T2 =
|Ure f |
|U2| |sin δ|Ts

T3 =
Ts−T2−

|Ure f |
|U1|

|cos δ|Ts

2

(27)

The operation time of each base voltage vector in the first sector can be obtained from
Equation (27). According to the principle of vector concentration, the effective vectors work
at the start and end of the control period, while the zero vector works in the middle. In
sector one, the target vector Uref is synthesized by U1, U2, and U3. U1 and U2 synthesize
the effective vector, while U1 and U3 synthesize the zero vector. The working order is U2,
U1, U3, U1, and U2 and the corresponding action times are T2/2, T1/2, T3, T1/2, and T2/2.
The voltage vector’s working time in the other three sectors is same as in the first sector.
The voltage vector is obtained in the sectors as shown in Table 3.
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Table 3. Voltage vector working time.

Sector Order Time

First sector U2, U1, U3, U1, U2 T2/2, T1/2, T3, T1/2, T2/2
Second sector U2, U3, U1, U3, U2 T2/2, T3/2, T1, T3/2, T2/2
Third sector U4, U3, U1, U3, U4 T4/2, T3/2, T1, T3/2, T4/2

Fourth sector U4, U1, U3, U1, U4 T4/2, T1/2, T3, T1/2, T4/2

To maintain the SVPWM algorithm’s symmetry and smoothness, the time of the
switching mode transition within the first sector can be presented as shown in Figure 12.
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Figure 12. Switching vector timing diagram. Figure 12. Switching vector timing diagram.

At 0 − t1, Sa = 1 and Sb = 0. S1 and S4 are on, while S2 and S3 are off. At t1 − t2, Sa = 0
and Sb = 0. S3 and S4 are on, while S1 and S2 are off. S1 and S3 switch at t1. At t2 − t3, Sa = 1
and Sb = 1. S1 and S2 are on, while S3 and S4 are off. S1 and S3 switch at t2. Therefore, the
point of switching mode shift within the first sector is as follows:

Ta1 = T2
2

Ta2 = T1+T2
2

Tb = T1+T2
2

(28)

where Ta1 and Ta2 are the switching times for switches S1 and S3 in the bridge arm, while
Tb is that for switches S2 and S4 in the bridge arm. The basic voltage vector working time
can be obtained from the calculation of the first sector, as shown in Table 4.

Table 4. Switching time in different sectors.

Sector First Sector Second Sector Third Sector Fourth Sector

Ta
T2
2 , T1+T2

2
T2+T3

2
T4
2 , T3+T4

2
T1+T4

2

Tb
T1+T2

2
T2
2 , T2+T3

2
T3+T4

2
T4
2 , T1+T4

2

5. Simulation Analysis

To verify the method proposed in this paper, we carried out a simulation of the three-
phase four-switch APF without PLL based on fundamental positive sequence extraction.
The nonlinear load was composed of the uncontrollable rectifier bridge with a resistor and
an inductor. The relevant simulation parameters are summarized in Table 5.
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Table 5. Simulation parameters.

Parameter Value

Grid voltage and frequency 380 V, 50 Hz
Nonlinear load 5 Ω, 2 mH
Filter inductors 2 mH

DC voltage 1600 V
Capacitance on DC side 5000 µF

Figure 13 shows the whole DC voltage when the system is running. The bus voltage
fluctuation on the DC side is very small, maintaining a maximum deviation value within
2 V. The whole voltage can remain stable around 1600 V.
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The two-split capacitance voltage on the DC side is shown in Figure 14. The voltage of
the two capacitors is stable at about 800 V, maintaining maximum fluctuation deviations
within ±2 V.
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Figure 14. Simulation waveform of the voltage on the DC side.

The source current waveform is shown in Figure 15. The three-phase four-switch
active power filter starts working at 0.05 s, prior to which the source current is seriously
distorted. Under the proposed control strategy, the harmonic is compensated, and the
source current turns into symmetrical sine waveforms.
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Figure 15. Simulation waveform of the source current.

FFT analysis of the source current is shown in Figure 16. The total harmonic distortion
(THD) is 24.72% without a filter. The harmonic is significantly suppressed with a working
active filter, and THD is reduced to 3.86%. The proposed method satisfactorily eliminates
the harmonic in the power grid.
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6. Experimental Results

To verify the above analysis and the proposed control strategy, a dSPACE1004-based
experimental platform, shown in Figure 17, was established. The hardware comprised two
insulated gate bipolar transistors (FF150R12RT4) and two split capacitors. The experimental
parameters are presented in Table 6.
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Table 6. Experimental parameters.

Parameter Value

Grid voltage and frequency 50 V,50 Hz
Nonlinear load 5 Ω, 2 mH
Filter inductors 3 mH

DC voltage 800 V
Capacitance on DC side 5000 µF

Figure 18 shows the waveform of the three-phase voltage and current before com-
pensation, along with the isa Fourier spectrum. It can thus be seen that the source current
primarily contains fifth and seventh harmonics. Figure 19 presents the waveforms of the
three-phase voltages and currents after compensation, along with the isa Fourier spectrum.
Compared to Figure 18, the source current is regulated into a sinusoidal waveform, with
suppressed harmonic components.
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To investigate the dynamic response to the start and load variations, experiments
involving startup and sudden load changes were conducted. Figure 21 shows the transient
process during APF startup, with ifa responding rapidly to compensate the harmonic
currents. Additionally, during the startup process, isa remains stable without a startup
shock. When APF operates in a steady state, the loads change, and the transient process is
shown in Figure 22. It can be seen that the proposed control strategy has a good response
to load variations, and isa is regulated without a shock, rapidly returning to a steady state.
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To investigate computational efficiency and validate execution time improvements, a
DSP TMS320F28377D-based experimental platform was established, with TMS320F28377D
able to provide a signal processing performance of 200 MHz. The computation cycles and
execution times of the SRF and proposed method in DSP were measured in Code Composer
Studio using the clock tool: the former’s core algorithm required roughly 6106 clock cycles,
while the latter only needed approximately 4362. Assuming that each instruction cycle in
DSP was 5 ns, the SRF method required 30.53µs to run, whereas the proposed method only
needed approximately 21.81 µs. The proposed method was thus shown to have a shorter
computation time and less computations.

7. Conclusions

APFs are an effective approach to solving harmonic problems in power grids, and
their control strategy plays a crucial role in improving the power quality. The three-phase
four-switch topology of APFs has attracted more attention due to its fewer semiconductors
and lower costs. A modified control strategy for a three-phase four-switch APF based
on fundamental positive sequence extraction was proposed in this paper, which removes
the PLL and rotating coordinate transformation present in traditional control strategies.
We introduced harmonic extraction based on the fundamental positive sequence extrac-
tion method, while non-locked phase loop coordinate transformation was developed to
eliminate trigonometric calculations. The proposed APF and control strategy have satis-
factory performance in suppressing the harmonic, which was confirmed, alongside their
effectiveness, via simulation and experiments.

The proposed method offers excellent harmonic compensation for three-phase four-
switch APFs, reducing two switches and decreasing computational complexity compared
to conventional APFs and control strategies. Harmonic extraction based on fundamental
positive sequence extraction guarantees the accuracy of the APF reference current. The
coordinate transformation method without a phase-locked loop includes accuracy calcu-
lations. The APF’s DC voltage remains constant and stable, while that of the two split
capacitors is balanced and their difference is significantly reduced. Therefore, three-phase
four-switch APFs with the proposed control scheme are a promising alternative.

However, when grid voltages fluctuate, the fundamental positive sequence extraction
method proposed in the paper may misjudge or miss certain fundamental components,
resulting in inaccurate extraction results. It is particularly prone to occurring when the
frequency fluctuations are close to the fundamental frequency, further impacting the ex-
traction accuracy. In addition, when the grid voltage is distorted, conventional PLL-based
methods can employ a synchronous reference frame phase-locked loop (SRF-PLL) or a
decoupled double-synchronous reference frame phase-locked loop (DDRF-PLL) to improve
performance, while the coordinate transformation accuracy could be decreased in the
proposed method.
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