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Abstract: In this paper, the negative impact of the charging load generated by the disorderly charging
scheme of large-scale pure electric vehicles on the operation performance of the power grid system
and the problem of reducing its charging energy efficiency are studied and analyzed. First, based on
Matlab 2022a simulation software and the Monte Carlo random sampling method, the probability
density model of the factors affecting the charging load is constructed, and the total charging load of
different quantities is simulated. Second, the IEEE33-node distribution network model is introduced
to simulate the influence of charging load on the grid under different permeability schemes. Finally,
the multi-objective genetic algorithm is used to optimize the charging cost and battery life. Taking the
20% permeability scheme as an example, the research results show that, compared with the disorderly
charging scheme, the multi-objective optimization scheme reduces the peaking valley difference rate
by 24.34%, the charging load power generation cost by 29.5%, and the charging cost by 23.9%. The
power grid profit increased by 45.8%, and the research conclusion has practical significance for the
energy efficiency optimization of pure electric vehicles.

Keywords: pure electric vehicles; Monte Carlo method; IEEE model; multi-objective genetic algorithm

1. Introduction

Due to global economic growth driving industrialization and urbanization, climate
change has heightened awareness of the atmosphere, with harmful gases produced by
various industries continuing to increase. The world now faces an urgent and mandatory
challenge to reduce air pollutants, making it imperative to curb pollution caused by gas
emissions. Among these pollutants, NOx and N2O have garnered significant attention [1].
Internal combustion engines and diesel engines are widely used in heavy vehicles, rail-
way transportation, and marine applications. They use diesel fuel, which results in the
emission of a significant amount of harmful substances in the exhaust [2,3]. According to
the “2022 Annual Report on Environmental Statistics of China” released by the National
Bureau of Statistics, the emissions within the scope of the pollution source survey in 2022
were reported as follows: sulfur dioxide emissions amounted to 2.435 million tons, nitro-
gen oxide emissions reached 8.957 million tons, and particulate matter emissions totaled
4.934 million tons. The emission of nitrogen oxide (NOx) from mobile sources amounts to
5.267 million tons, accounting for approximately 58.8% of the total nitrogen oxide emissions.
Mobile sources can be broadly categorized into two main types: on-road mobile sources
(motor vehicles) and non-road mobile sources. Notably, nearly 70% of nitrogen oxide (NOx)
emissions are attributed to motor vehicle diesel engines [4].

For the aforementioned reasons, battery electric vehicles (BEVs), hybrid electric vehi-
cles (HEVs), and fuel cell electric vehicles (FCEVs) have received considerable attention
from automakers [5,6]. BEVs are crucial in reducing harmful emissions from traditional
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fuel-powered vehicles. To address the challenges of fully electric vehicles, such as lim-
ited driving range, high battery costs, and long charging times, HEVs were introduced
as an intermediate solution. HEVs combine batteries and electric motors with internal
combustion engines, significantly improving vehicle fuel efficiency [7]. However, the ulti-
mate goal remains the development of new energy, fully electric vehicles, which operate
without fuel consumption and produce zero emissions. In order to promote ongoing so-
cietal development and achieve a green, low-carbon transition, the development of the
new energy vehicle industry is a crucial aspect of building a sustainable transportation
system. The widespread adoption of BEVs is instrumental in reducing dependence on fossil
fuels and playing a significant role in environmental governance [8,9]. BEVs rely on only
one energy source—the battery. BEVs need to be regularly connected to a power source
to recharge, and this has been a primary subject of ongoing research [10,11]. Compared
to traditional internal combustion engine vehicles, the main drawbacks of BEVs are their
limited driving range and the high costs associated with purchasing and replacing batteries.
Additionally, batteries pose other challenges, such as the need for an extensive charging
infrastructure [7,12]. Presently, the primary performance metric for evaluating BEVs is the
comprehensive driving range. However, optimizing vehicle charging efficiency has become
a pressing research focus due to its dependence on factors such as battery energy density
and cost [13]. The surge in charging load resulting from the large-scale adoption of BEVs
presents challenges, as BEV charging is characterized by spatiotemporal randomness and
unpredictability. This surge amplifies the strain on the power grid and complicates optimal
scheduling, necessitating a quantitative assessment of the power grid’s operational perfor-
mance and methods to mitigate the impact of these loads [10]. Existing research on charging
load scheduling schemes primarily focuses on shifting charging loads from peak periods to
valley periods and is divided into centralized and distributed valley-filling control. The
primary distinction between the two lies in the ownership of charging curve control; the
former is managed by the grid, while the latter is set by BEV users themselves [14].

Currently, both domestic and international scholars have conducted extensive funda-
mental research on optimizing the charging efficiency of electric vehicles. The application of
the Monte Carlo method in the analysis of EV charging loads is gaining increasing attention,
particularly in the planning and management of charging infrastructure. By randomly
sampling user charging behaviors, travel patterns, charging locations, and times, the Monte
Carlo method can simulate charging demand under various conditions and can be used
to predict charging loads within specific timeframes. For example, Yi et al. [15] studied
the spatiotemporal distribution of EV charging load demand in a specific urban area of
China using a Monte Carlo simulation. The results indicated significant spatiotemporal
distribution characteristics of charging load demand across different functional zones, with
noticeable differences between them. Furthermore, Xing et al. [16] utilized the Monte Carlo
algorithm to develop a probabilistic distribution model for travel patterns and charging
characteristics, predicting the load demand when large-scale EVs are integrated into the
grid. Additionally, the stability of the power grid can be analyzed using the Monte Carlo
method, as it can evaluate the impact of concentrated EV charging on the grid. For instance,
Önder Polat et al. [17] employed Monte Carlo simulation to generate 1000 distinct charging
load curves, each with a resolution of one minute, to accurately assess the impact of EVs.
The study demonstrated that as the number of EVs increases, the load on distribution trans-
formers rises, and voltage levels may drop to 0.76 pu., potentially leading to equipment
failure for users. Additionally, to enhance the accuracy of the Monte Carlo-based charging
load estimation, Bian et al. [18] proposed an improved Monte Carlo method, simulating
the probability density models of factors influencing charging loads. The results showed
that the accuracy of charging load estimation was improved with this enhancement.

The IEEE 33-bus distribution network system is a classical test system, which is
commonly used to evaluate the performance of distribution networks, especially concerning
the impact of electric vehicle charging loads. For example, Liu et al. [19] proposed a two-
layer planning model to address the coordinated planning of distributed generation (DG)
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and electric vehicle charging stations (EVCS). In their study, the researchers used the IEEE
33-bus test system to validate the effectiveness of the proposed model, and the results
confirmed its validity. Similarly, Wang et al. [20] employed the IEEE 33-bus test system
to implement the optimization of distributed energy resources. By comparing various
charging strategies, they demonstrated that the proposed coordinated charging strategy
could optimize the operation of distributed energy resources. However, an enhanced
version of the IEEE 33-bus distribution test system has also been developed. Researchers
introduced a new IEEE 33-bus distribution test system platform designed to correct some
of the deficiencies in the Baran and Wu 33-bus distribution system and improve the test
benchmark to better reflect real-world operational constraints [21]. The study shows that
this platform can simulate unbalanced three-phase distribution systems. In addition, the
system can accommodate various distribution system operations and planning studies,
including system reconfiguration, and it is compatible with multiple power system analysis
platforms [21].

In summary, the study of total charging load forecasting for pure electric vehicles
is of significance for evaluating the performance of power grid operations. Due to its
exceptional forecasting accuracy, the Monte Carlo sampling method has been favored
by many researchers for large-scale pure electric vehicle total charging load predictions.
Additionally, most studies on the impact of electric vehicle charging on the grid are based
on using the IEEE framework as the research model, analyzing variations in load difference
rate, node voltage deviation, and network loss rate. This study focuses on the large-scale
deployment of pure EVs in a specific area of Liuzhou, Guangxi. First, the total charging load
of EVs under an unordered electricity pricing scheme is determined using the Monte Carlo
random sampling method. Then, based on the IEEE33 distribution network system, the
impact on the grid under different EV penetration rates is assessed by examining indicators
such as node voltage and load rate. Finally, a multi-objective optimization is conducted,
targeting charging costs and battery life, resulting in a Pareto front for the two optimization
goals. The results of this multi-objective optimization study have practical significance for
enhancing the charging efficiency of pure electric vehicles and improving the operational
performance of the power grid.

The structure of this paper is as follows:
Section 2 predicts and analyzes the total charging load by establishing the original

load model of the distribution network and the total charging load model.
Section 3 analyzes the impact of charging load on the performance of power grid

operations based on the IEEE 33-node distribution network system model.
Section 4 develops a multi-objective optimization model for charging costs and battery

life and applies a genetic algorithm to optimize them for pure electric vehicles.
Section 5 concludes the paper.

2. Total Charge Load Forecasting and Impact Studies

Predicting the charging load of electric vehicles is a critical research area in power
system management [22]. The objective of charging load forecasting is to reasonably
estimate the charging demand of electric vehicles, assisting grid operators in power dispatch
planning. This process helps to prevent grid overloads or localized power shortages,
thereby ensuring stable grid operation [23,24]. This section establishes the original load
model of the distribution network and the total charging load model, laying a foundation
for charging load optimization in subsequent sections.

2.1. Establishment of Distribution Network Original Load Model

The study initially creates the original load curve of the power grid in the specified
research area, which primarily depicts the distribution of electricity demand among all
residents in the area. The original load data of the distribution network for a summer day
in this area were gathered, with readings taken every 15 min, resulting in a total of 192 data
sets. The real scenario and load curve are depicted in Figure 1. As illustrated in the figure,
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the peak and valley distribution of the original load of the power grid on a summer day in
this area is clearly visible. The time period between 12:00 and 20:00 represents the peak
load region, while the period from 00:00 to 08:00 represents the valley load region.
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2.2. Establishment of the Total Charging Load Model

The large-scale deployment of pure electric vehicles impacts the stability of the
power grid, for example, by saving power during peak generation periods and supplying
power to the grid during peak demand periods. Morsy Nour et al. [25] surmised that
uncontrolled EV charging can severely affect the distribution network. Increased peak
load demand may cause transformers and cables to overload, reducing their lifespan
and increasing voltage drops. Additionally, single-phase chargers can introduce system
imbalances, leading to higher power losses and greater harmonic distortion. This section
first constructs probability density models for factors influencing charging load, such
as charging power, daily driving mileage, initial charging time, and charging duration.
Using the Monte Carlo random sampling method, the total charging load of various
numbers of electric vehicles under a disordered charging scheme is simulated within the
Matlab 2022a simulation environment.

(1) Charging power

The charging process of pure electric vehicles follows the conventional slow charging
model, which depends on factors such as battery capacity, the power of the charging
equipment, and the state of charge [25]. Generally, using a standard home charging station,
it can take several hours, or even more than 10 h, to fully charge an electric vehicle’s
battery [26]. In this charging mode, there is a noticeable disparity between the charging
start and end times, especially as the battery approaches full capacity. The charging
speed gradually slows down to prevent overcharging or overheating, though this stage
represents a small portion of the overall charging process. This variability requires efficient
coordination between the charging equipment and the battery management system to
ensure the safety and stability of the charging process [27]. Therefore, in the research
process, simplifications were made by neglecting the impact of the start and end phases on
the overall calculation. The time–probability rectangular coordinate system was simplified
to a horizontal line, as shown in the simplified diagram in Figure 2.

(2) Mileage

At present, the ownership rate of pure electric vehicles is relatively low, primarily due
to factors such as high acquisition costs, insufficient charging infrastructure, technolog-
ical limitations, and low consumer acceptance. Although electric vehicles are relatively
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economical in terms of operational costs and government policies provide some support,
the high purchase price continues to deter many potential consumers. Furthermore, the
lack of sufficient charging station coverage, especially in remote areas, intensifies concerns
about the range and convenience of charging electric vehicles [28]. In addition, the current
limitations in battery technology result in restricted driving range, causing consumers to
question the practicality of electric vehicles [29]. Considering the current situation where
the ownership of pure electric vehicles is still relatively low, this paper assumes that their
driving habits are consistent with those of internal combustion engine vehicles. Referring
to the results of the US Department of Transportation’s National Household Travel Survey
(NHTS) on household electric vehicles [30], the daily mileage is assumed to follow a log-
normal distribution, with ( S ∼ Log ∼ N(δs, σ2

s )), and its probability density function is
shown as follows:

fs(x) =
1

xσs
√

2π
exp

(
− (ln x − δs)

2

2σ2
s

)
(1)

In the equation, δs represents the expected daily mileage of pure electric vehicles, σs
represents the variance, and x is the specific driving distance in kilometers, where δs = 4.0
and σs = 0.88. Using a case study of 1000 pure electric vehicles, the probability distribution
of daily mileage in this region can be obtained, as shown in Figure 3. Most of the daily
driving mileage for pure electric vehicles is concentrated in the range of 0–60 km, with the
primary usage being daily commuting to and from work.
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(3) The time of initial charging

The return time of pure electric vehicles, which corresponds to the start of charging
time t0, follows a normal distribution, with t0 : N(δt0 , σ2

t0
). Its probability density function

is shown as follows:

ft0(x) =


1

σt0

√
2π

exp
(
− (x−δt0 )

2

2σ2
t0

)
δt0 − 12< x < 24

1
σt0

√
2π

exp
(
− (x+24−δt0 )

2

2σ2
t0

)
0 < x < δt0 − 12

(2)

In the equation, δt0 and σt0 are also derived from statistical data on the daily driving
behavior of users in the region, with values of 19.6 and 3.4, respectively. Therefore, the
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probability distribution of the charging start time can be obtained, as shown in Figure 4. The
charging start time for most pure electric vehicles returning home is concentrated between
18:00 and 21:00. During this period, a large number of electric vehicle users connect directly
to the grid for charging, leading to peak load demand, which can affect the stability of
power grid generation.
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(4) Charging time

The charging duration (t) is typically determined by factors such as daily driving
distance in kilometers (x), energy consumption per 100 km (Ed), required charging amount
(Dn), and battery capacity (B). First, the initial state of charge at the beginning of the
charging time (SOCpre.t) is defined as follows.

SOCpre.t = 1 − x × Ed
100 × B

(3)



Processes 2024, 12, 2599 7 of 26

Using the charging power (Pc) and a charging constant (K), the time required to reach
a fully charged state (t) can be calculated as follows.Differences in vehicle size, the number
of battery packs, and battery conditions can be considered. For example, when comparing
smaller electric vehicles, such as the Baojun E-Series and Wuling Mini Series, which have
a high market share in the region, to larger electric vehicles like the BYD Han, which
have a smaller market share, it can be seen that the former has a battery capacity of only
31.4 kW·h and energy consumption of about 9 kW·h per 100 km, while the latter has a
battery capacity of 86.0 kW·h and energy consumption of about 16 kW·h per 100 km.
To minimize relative error, this study assumes that all vehicles have an average battery
capacity of 45 kW·h and an energy consumption of 10.5 kW·h per 100 km. A standard
AC charging power of 7 kW/h is used, and it is uniformly stipulated that all simulated
vehicles have batteries of the same condition to ensure the reasonableness of the subsequent
optimization process. The simulation analysis provides a specific distribution diagram of
the required charging amount and charging time for electric vehicles after daily driving,
as shown in Figure 5. From the figure, it can be seen that the required charging amount
is mostly within 0–15 kW·h, and the required charging time is mainly distributed within
0–2 h.
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2.3. Simulation Analysis of Total Charging Load

In this section, we utilize the Monte Carlo random sampling method to model the
total charging load based on the factors mentioned earlier. The simulation process entails
initializing simulation parameters, randomly generating values for daily driving distance
and initial charging time, obtaining random values for the required charging amount and
charging time, simulating the charging load for each electric vehicle, and integrating it
into the original load curve of the power grid. The process then evaluates whether all
charging events in the current simulation group are complete and ultimately calculates
the total charging load [31]. For a more detailed explanation of the process for calculating
the total charging load, please refer to Figure 6. First, determine the total number (n) of
pure electric vehicles in the region and their charging methods. Then, randomly sample
the battery capacity and charging power of the electric vehicles. Next, randomly select the
daily mileage and the charging time of the electric vehicles. Finally, calculate the charging
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duration and the required energy to fully charge. Afterward, evaluate whether the specified
conditions have been met and ultimately obtain the results.
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Following the utilization of a Matlab 2022a simulation program, the total charging load
for electric vehicles was determined under three distinct quantity scenarios, as depicted in
Figure 7. The peak charging loads for the three scenarios coincide at 20:00 and amount to
1784.4 kW, 1220.7 kW, and 615.5 kW, respectively. This timeframe aligns with the peak load
zone of the distribution network in conjunction with the original grid load. It is apparent
that the incorporation of electric vehicles into the grid will unavoidably escalate the peak
load, thus impacting the stability of power generation within the grid.
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3. Analysis of the Impact of Charging Loads on Grid Operation Performance

The impact of charging loads on the operational performance of power grids has
become a critical issue in current power system research, particularly with the increasing
penetration of electric vehicles [31,32]. The uncertainty and volatility of charging loads
may result in voltage deviations, line overloads, and increased system losses, which in turn
affect the safe and stable operation of the distribution network. To study the impact of
disordered charging schemes on the power grid, this section introduces the IEEE 33-bus
distribution network system. By setting up three electric vehicle penetration rate scenarios,
the variations in power grid performance indicators, such as node voltage, network losses,
and load rate, are analyzed under each scenario.

3.1. Establishment of the IEEE 33-Node Distribution Network System Model

The IEEE 33-bus distribution network model is a standard test system widely used in
power system research. In the initial phase, a smaller-scale system allows us to observe
and analyze the performance of the proposed method more clearly and in a controlled
manner, ensuring that the method’s effectiveness is accurately evaluated under smaller-
scale conditions. This section analyzes the variations in grid performance indicators—such
as node voltage, network losses, and load rate—under different scenarios by setting three
electric vehicle penetration rates. In existing research, the IEEE 33-bus model is commonly
applied for analyzing grid operational performance [33], and its topology and functional
divisions are illustrated in Figure 8.
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3.2. Analysis of the Impact of Peak Load Levels

To more accurately quantitatively describe the degree of grid impact, it is assumed
that there are 5000 motorized vehicles in the study area, in which the pure electric vehicle
penetration rate scenarios are set at 10%, 20%, and 30%, defined as the ratio of the number
of pure electric vehicles to the total number of motorized vehicles. The indicators for evalu-
ating the operational performance of the grid include the grid peak-to-valley difference rate
σ and the load rate ρ. The former refers to the utilization of the grid load in the region, and
the larger the value is, the lower the degree of utilization of the grid load is, which indicates
that more load-shaving and valley-filling measures are needed in the region. The latter
is defined as the ratio of the peak load Ppeak to the average load Pavg in a specified period;
the closer the value is to 1, the higher the utilization of the charging infrastructure in the
region and the better the economic performance of the grid power generation cost [34]. The
specific calculation formula is shown below:

σ =
maxPpeak − minPvally

maxPpeak
(4)
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ρ =
Pavg

maxPpeak
(5)

Based on the detailed explanation of the peak-to-valley load difference ratio (σ) and
the load factor (ρ), a quantitative analysis of the grid under three different penetration
rate scenarios for uncoordinated charging schemes can be conducted, as shown in Table 1.
As indicated in the table, compared to the original grid load, the charging load under
different penetration rates increases the peak-to-valley load difference ratio while reducing
the load factor.

Table 1. The impact of different permeability rates on grid load.

Penetration
Rate/% Peak Load/kW Valley Load/kW Peak-to-Valley

Difference/kW
Peak-to-Valley

Spread/% Load Factor/%

0 6679.8 598.6 6081.2 91.03 65.16
10 7060.0 631.1 6428.9 91.06 64.71
20 7718.7 645.0 7073.7 91.64 61.98
30 8054.1 674.9 7379.2 91.62 61.86

3.3. Analysis of the Impact of Node Voltage

Voltage simulations for each node are conducted using the IEEE 33-bus distribution
network model, with a voltage reference value of 12.6 kV. According to the standards
specified in GB/T12305-2008 [35], a node voltage deviation within the range of [0.93 pu,
1.07 pu] is considered compliant. The voltage distribution for each node under three
different penetration scenarios is determined using the forward-backward sweep load
flow calculation method, as illustrated in Figure 9. The figure demonstrates that in all
three scenarios, the lowest voltages occur at Node 18 during the 20:00 time period, with
values of 0.924 pu, 0.912 pu, and 0.896 pu, all of which fall outside the acceptable voltage
range. Node 18 is situated at the far end of the system, at a significant distance from the
primary power source at Node 1, resulting in the lowest node voltage. Without appropriate
optimization measures, the increasing charging load of the grid will continue to escalate the
generation costs, significantly impacting the charging efficiency and economic feasibility of
pure electric vehicles.
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4. Research on Charging Energy Efficiency Optimization

Research on the optimization of charging energy efficiency has become a significant
topic in the current energy sector, especially in the context of the rapid proliferation of EVs.
The widespread adoption of electric vehicles has not only transformed the transportation
sector but has also posed higher demands on the stability and energy efficiency of power
systems. In this process, optimizing charging energy efficiency can reduce the charging
costs for electric vehicle users, alleviate the load pressure on the power grid, and improve
overall energy utilization efficiency [36]. This section utilizes a genetic algorithm to optimize
the charging cost of pure electric vehicles and battery lifespan. These two objectives are
simultaneously integrated into the charging curve PEV(t,n) for multi-objective optimization,
resulting in the Pareto solution set under different charging curve scenarios.

4.1. Establishment of a Multi-Objective Optimization Model Based on Charging Costs and
Battery Life

(1) Optimization Objective Function for Charging Costs

The charging cost optimization objective function for pure EVs plays a critical role
in their operation and management [37]. First, the charging cost optimization objective
function helps users choose the optimal charging time by analyzing electricity price fluctu-
ations, charging periods, and demand. During peak periods, electricity prices are typically
higher, while they are relatively lower during off-peak times. Second, the optimization
objective function also takes into account the pricing standards and service quality of
different charging stations. By comparing the prices and locations of various charging
stations, users can select the most cost-effective charging solution. This flexibility not
only improves the user experience but also promotes the rational layout of the charging
infrastructure [38]. Within the vehicle-to-grid system, the distributed valley-filling control
of pure electric vehicles enhances charging load efficiency by regulating the charging curve
PEV(t,n). This study undertakes an examination and analysis focusing on two optimization
objectives: charging cost and battery lifespan. To begin, an expression for optimizing
charging costs is articulated through the development of an optimal time-of-use pricing
scheme based on charging time (t) and charging power (P). This pricing scheme is closely
linked to the valley-filling load across various penetration scenarios. Utilizing Matlab
2022a simulation, the valley-filling load for different scenarios is obtained, as depicted in
Figure 10. This study then formulates the appropriate final pricing scheme based on the
20% penetration scenario.
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Figure 10. Load shaving conditions for three penetration rate scenarios.

The above figure shows that the valley-filling load under the 20% penetration scenario
is 2.6 × 103 kW. Therefore, the corresponding pricing scheme and objective function can be
further developed.

fele−v(t, P) =
P∗

EV.sum(t)
Pv−f × N

× C(P/
P∗

EV.sum(t)
Pv−f × N

) (6)

From the above equation, it can be inferred that the optimal time-of-use pricing under
different penetration rates is primarily related to the optimal valley-filling height Pv–f of
grid charging and the combination of charging curves for all electric vehicles P∗

EV.sum(t).
Figure 11 presents a diagram of optimal pricing as a function of time t and power P.
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In Figure 11, the side view indicates that the pricing scheme is represented by the red solid
line. It is a convex function with respect to variations in time and power, which means that a
minimum pricing scheme exists at specific time and power values. The core of the charging
pricing scheme lies in minimizing charging costs while ensuring the battery is fully charged.
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Based on the optimal time-of-use pricing scheme, a cost-minimization objective func-
tion for charging is constructed:

min
PEV(t,n)

FEV(n) =
∫ tev,s

tev,e
fele(t, PEV(t, n))dt (7)

(2) Battery Life Optimization Objective Function

The optimization objectives for the charging efficiency of pure electric vehicles typ-
ically include battery lifespan and charging costs. The battery is one of the most critical
components of an electric vehicle, and its state of health directly affects the long-term
performance of the vehicle [39]. The charging and discharging cycles, charging speed,
and the amount of charge all impact the battery’s lifespan. Frequent use of fast charging
increases the battery’s heat, leading to the gradual degradation of its chemical structure,
ultimately shortening its lifespan [40]. The primary objective of optimizing battery lifespan
is to provide a quantitative description of the battery capacity degradation process [41]. In
current research, the description of battery capacity degradation primarily focuses on the
consumption of lithium ions by the solid electrolyte interphase (SEI) film. The formation of
the SEI layer is closely related to chemical reactions and ion concentrations, both of which
significantly impact the battery’s safety and performance. At elevated temperatures, the
solubility of the SEI layer increases, potentially leading to the formation of lithium crystals
that are impermeable to Li+, thus raising the impedance of the negative electrode [42].
Presently, research on battery capacity degradation predominantly focuses on the con-
sumption of lithium ions by the SEI film. This paper initially establishes an experimental
platform for the cycle life of lithium-ion batteries. Using electrochemical theory, the internal
mechanism of the P2D model is simulated and analyzed using Comsol simulation software
(https://www.comsol.com/). Additionally, Figure 12 illustrates the schematic diagram of
the battery cycle life experimental setup.

A simulation analysis of the five primary mechanism equations and side reaction
equations of the P2D model of a lithium-ion battery is conducted under a 1C charge-
discharge rate and at 25 ◦C. Table 2 presents the simulation parameters of the P2D model.

Table 2. P2D model simulation parameters.

Parameter Name Cathode Anodal Distant (Socially Aloof) Unit (of Measure)

Active Materials Plumbago NCA
(LiNi0.8Co0.15Al0.05O2) LiPF6 -

A 0.0846 m2

L 5.5 × 10−5 4 × 10−5 3 × 10−5 m
Rp 2.5 × 10−6 2.5 × 10−7 - m

ε
brugg
s 0.384 0.42 - -

ε
brugg
l

0.444 0.41 - -
Brugg 1.5 -

cs 30,555 48,000 - mol/m3

cl 1200 mol/m3

Ds 3.8 × 10−15 1.0 × 10−15 - m2/s
Dl 7.6 × 10−10 7.6 × 10−10 7.6 × 10−10 m2/s
κeff 100 - 100 S/m

Ure f
SEI

0.4 - - -
t+ 0.365 -
R 8.314 J·(mol−1K−1)
T 298.15 K
F 9.6486 × 104 C/mol
aa 0.5 0.5 - -
ac 0.5 0.5 - -

https://www.comsol.com/
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To verify the accuracy of the parameters in Table 2, a validation analysis was performed
using COMSOL software and experimental results. Under a 1C simulation condition, the
open-circuit voltages of the positive and negative electrodes of the P2D model and the
simulation results of the charging voltage at different charge rates were recorded. Finally,
the experimental voltage was compared with the simulated voltage for verification, and
the results are shown in the Figure 13 below.

As shown in Figure 13, the experimental values and simulation values are generally
consistent, with small deviations occurring at certain time points. The primary reason for
this is the discrepancy between some parameters of the P2D model and the experimental
values, as well as the fact that the open-circuit voltage is calculated based on simulation
data. However, the overall error is within an acceptable range, indicating that the accuracy
of the P2D model meets the requirements, providing a solid foundation for subsequent
battery cycle life experiments.

Figure 14 illustrates that the rapid growth of the SEI film predominantly occurs in the
charging region.

From Figure 14, it can be observed that the rapid growth region of the SEI film is
primarily concentrated in the charging zone during the simulation period of 2000–4000 s,
with the current density reaching its peak as the SOC increases. Therefore, in the subsequent
P2D model simulation analysis, five time points-2000 s, 2500 s, 3000 s, 3500 s, and 4000 s-will
be selected from the charging region for detailed analysis.
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(1) Primary and Secondary Reaction Current Densities

From Figures 15 and 16, the distribution of the primary and secondary reaction
equations on the graphite material of the anode under constant current charging conditions
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can be observed. The primary reaction current density shows irregular patterns. As shown
in Figure 15, at the time points of 3000 s and 4000 s, the current density at the right end
(near the separator) is lower than that at the left end (near the current separator), while the
opposite is true at 2000 s, 2500 s, and 3500 s. In contrast to the primary reaction current
density, the secondary reaction current density exhibits a certain regularity. As shown in
Figure 16, at all five time points, the current density at the right end is greater than at the
left. Additionally, as the charging time progresses and the SOC increases, the secondary
reaction current density at all locations also increases correspondingly.
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(2) Liquid-phase Species and Potential Distribution

Figure 17 illustrates the distribution of liquid-phase lithium-ion concentration over
simulation time, while Figure 18 shows the distribution of liquid-phase lithium-ion po-
tential over simulation time. From the trends in lithium-ion concentration and potential
shown in both figures, it can be observed that as time increases, both the concentration and
potential increase accordingly. In the anode, separator, and cathode regions, the lithium-ion
concentration and potential are higher at the right end than at the left, and they maintain a
linear trend in the separator region. In addition, the distribution of liquid-phase lithium-ion
concentration and potential exhibits strong regularity, laying a theoretical foundation for
future simplification studies of the P2D model.
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(3) Solid-phase Species and Potential Distribution

Figure 19 illustrates the distribution of solid-phase lithium-ion concentration over
simulation time, while Figure 20 depicts the distribution of solid-phase lithium-ion potential
over simulation time. From the observed trends in the solid-phase lithium-ion concentration
and potential at the anode graphite on the left side of both figures, it is evident that, as
charging time progresses, both the concentration and potential increase in a regular pattern,
with the concentration at the right end being slightly higher than at the left. However,
the overall change in potential is minor, only on the order of 10−5, primarily due to the
relatively high solid-phase conductivity.
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The simulation results of various aspects of the aforementioned P2D model demon-
strate that it can accurately represent the distribution of key parameters such as lithium-ion
concentration and potential within the battery over the course of the simulation. Addi-
tionally, it can couple the battery capacity degradation caused by SEI film growth with
the P2D model through the side reaction mechanism. Subsequently, the simplified P2D
model proposed by Sarmadian et al. [43] was used to analyze the simplified conditions.
The simplified variables were then substituted into the side reaction equations, resulting in
the battery life objective function:

jSEI(x, t) = −i0,SEI exp

(
F(Ure f

m (θm.avg)− Ure f
SEI

2RT

)
exp

(
−asinh(

−i
2assai0 Alneg

)

)
. (8)

Here, Ure f
m (θm(x, t)) represents the function of the solid-phase material, and θm.avg

denotes the average state of charge (SOC) of the solid-phase material.

4.2. Multi-Objective Optimization Case Study Analysis

In the aforementioned research, a detailed analysis was conducted with charging
cost and battery life as optimization objectives. For pure electric vehicles, the multi-
objective optimization concerning both charging cost and battery life can be expressed
simultaneously. The expression for this multi-objective optimization is as follows:

min
PEV

f1 =
∫ ts

te
fele(t, PEV)dt (9)

min
PEV

f2 =
∫ ts

te
δ f ilm(SOC(t), PEV)dt (10)

In this multi-objective optimization expression, f 1 represents the optimization of
charging costs, while f 2 represents the optimization of battery capacity degradation. It
can be seen that both objectives are achieved through the control of the decision variable,
the charging curve of the pure electric vehicle. The constraints for the above-mentioned
multi-objective optimization problem are as follows:∫ ts

te
PEVdt = D(n). (11)

The preceding research results were thoroughly analyzed with a focus on optimizing
charging cost and battery life. This section includes a simulation analysis based on a 20%
penetration rate scenario, aimed at optimizing the charging efficiency of pure electric vehi-
cles using a multi-objective genetic algorithm. The specific steps involved are as follows:
(1) Statistically analyzing basic information such as daily driving distance, initial charging
time, required charging amount, and charging duration for pure electric vehicle users using
the Monte Carlo random sampling method. To minimize individual differences, the daily
driving distance was uniformly set to 30 km, while the initial charging time and charging
duration followed the valley-filling time demand. The required charging amount was set to
10.0 kW·h. Then, we set the information such as the number of individuals in the commu-
nity and the number of iterations, where the number of communities is 120 and the number
of iterations is 35. (2) Generating multiple feasible solutions for the pure electric vehicle
charging curve PEV(t,n) as the initial parent population for the multi-objective optimization
problem, with a loop count variable set to track the final genetic generations. (3) The fitness
values of each individual are calculated based on the constraint conditions of the multi-
objective optimization problem in Equation (11). (4) All individuals in the initial parent
cohort were coded and subjected to genetic operator operations at set crossover and vari-
ance probabilities of 0.9 and 0.05, respectively. (5) Selecting superior individuals from the
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initial parent population to form a new generation of parents. (6) Repeating steps 3–5 until
the specified number of genetic iterations is reached, completing the evolution process.

Following the definition of the multi-objective optimization model for pure electric
vehicle charging efficiency and the subsequent analysis, a simulation was conducted. All
simulations were performed using Matlab 2022a on a personal computer with a 2.90 GHz
CPU and 32 GB of memory. The Pareto optimal solution curve for the multi-objective
optimization model, considering charging costs and battery capacity degradation of the
electric vehicle, is shown in Figure 21.
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Figure 21. Pareto analysis of multi-objective optimization problems for pure electric vehicles.

The Figure 21 shows the Pareto front obtained after 35 iterations of the multi-objective
genetic algorithm, illustrating the trade-off between charging costs and SEI film thickness.
Each non-dominated solution in the figure represents a charging curve PEV(t,n). Among
them, three representative non-dominated solutions, labeled a, b, and c, were selected.
Solution A focuses on minimizing charging costs, Solution B balances both objectives,
and Solution C prioritizes battery lifespan. To more intuitively illustrate the trend be-
tween the two optimization objectives in these three different non-dominated solutions,
Table 3 provides a quantitative description of the charging costs and SEI film thickness for
each solution.

Table 3. The value of each control solution in the multi-objective optimization scheme.

Optimization Goals
Non-Dominated Solution a b c

Charging Cost (yuan) 6567.5 6883.9 7369.0
SEI Film Thickness Values (nm) 118,625 115,936 114,681
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According to Table 3, the Pareto front reflects the trade-off relationship between the
two optimization objectives. Each Pareto solution corresponds to a different charging curve
PEV for the electric vehicle, and due to varying objective weights, the charging curve will
change depending on which objective is prioritized. By separately invoking the charging
power curves of the three non-dominated solutions in the simulation program, the results
are shown in Figure 22.
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The figure shows that the charging curves of the non-dominated solutions vary due
to the differences in optimization weights. Among them, the non-dominated solution “a”
represents the optimal scheme for minimizing charging costs, where the charging power
remains relatively stable across all time periods during valley filling. Non-dominated
solution “c” focuses on maximizing battery life, with lower charging power during the
early stages of valley filling and higher power in the later stages. Non-dominated solution
“b” strikes a balance between charging cost and battery life, primarily using high charging
power in the mid-to-late stages of valley filling.

This paper uses non-dominated Solution B as an example to simulate the grid load
profile under a 20% penetration rate, as shown in Figure 23. The figure indicates that
non-dominated Solution B considers both charging cost and battery life as optimization
objectives. As a result, its charging power is primarily concentrated between 3:00 and
6:00 the next day. In comparison to non-dominated Solution A, which evenly distributes
charging power across all time periods to minimize charging costs, and non-dominated
Solution C, which utilizes high power to reduce battery capacity degradation during
the latter part of the valley period to achieve optimal battery life, Solution B offers a
more balanced approach. This affords electric vehicle users greater flexibility in selecting
charging curves.
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4.3. Analysis of the Impact of Optimization Error

To provide a clearer illustration of the differences in the total charging load of pure
electric vehicles under a multi-objective optimization scheme and the ideal valley-filling
state, an analysis of the average reaction rate of side reactions at different charging rates
and battery state of charge (SOC) was conducted based on the P2D model of lithium-ion
batteries, resulting in Figure 24. The figure revealed that the average reaction rate of side
reactions follows a consistent trend across different charging rates. Specifically, when the
SOC of the ternary lithium battery is between 0% and 80%, the average reaction rate of
side reactions remains relatively low with minimal variation. However, when the SOC
is between 80% and 100%, the average reaction rate increases dramatically, leading to
accelerated battery capacity degradation and a rapid increase in solid electrolyte interphase
(SEI) film thickness. To prioritize battery life in the optimization process, electric vehicle
charging should maintain the battery at a lower SOC state. This indicates that the multi-
objective optimization scheme necessitates charging at a lower power during the early
to mid-valley periods and at a higher power during the later period. Consequently, this
approach results in lower charging loads in the early to mid-periods, causing fluctuating
impacts on the grid load under the multi-objective optimization scheme.

In essence, to effectively balance both optimization objectives, it is important for
electric vehicle charging efficiency to maintain a lower state of charge (SOC) during the
early to mid-valley periods, even though this may lead to some discrepancies in the grid’s
valley-filling effect. An analysis of the impact of the multi-objective optimization scheme
on grid performance is conducted using quantitative indicators such as peak-to-valley
difference ratio, load factor, and grid profit, as detailed in Table 4.

As shown in Figure 4, the data presented in the table illustrate that the multi-objective
optimization scheme, designed to balance battery life and charging costs, leads to a 24.34%
decrease in the peak-to-valley difference ratio compared to the unordered scheme. Fur-
thermore, it decreases the generation cost of the charging load by 29.5%, lowers charging
costs by 23.9%, and increases grid profits by 45.8%. Consequently, the multi-objective
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optimization scheme enhances the charging efficiency for both the grid and electric vehicles.
To verify the authenticity of the experimental results, this study compared the data from
specialized studies [44–46] and found the results to be similar to those of this study.
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Table 4. Quantitative analysis of multi-objective optimization schemes.

Type Peak-to-Valley
Difference/kW

Peak-to-Valley
Spread/%

Load
Factor/%

Charging Load
Power

Generation
Cost/¥

Charging
Cost/¥

Grid
Profit/¥

20%—disorderly tariffs 7073.7 91.64 64.71 8377.38 9049.95 672.57
20%—Multi-objective optimization 4509.1 67.30 70.72 5903.00 6883.90 980.90

5. Conclusions

This research paper addresses the issue of negative impacts on grid system perfor-
mance caused by uncoordinated charging loads in large-scale EV charging programs. It
aims to optimize charging efficiency by employing a multi-objective genetic algorithm to
balance charging costs and battery life, leading to Pareto optimal solutions in the form of
a set of charging curves. These results are crucial for both charging efficiency and grid
operation performance. The key findings are as follows:

(1) The study utilizes a probability density model and the Monte Carlo random sampling
method to predict the total charging load for EVs. Simulations conducted using Matlab
2022a show that peak loads occur at 20:00, specifically at 1784.4 kW, 1220.7 kW, and
615.5 kW for different quantities of EVs. These peak loads coincide with the original
grid load peak, indicating an inevitable impact on the grid’s operational performance.

(2) Based on the IEEE33-node distribution network system, three EV penetration schemes
were simulated to analyze the impact of uncoordinated charging loads on the grid.
Evaluation indicators such as the peak-to-valley difference ratio and node voltage
were defined, demonstrating that as penetration rates increase, the peak-to-valley
difference ratio also increases, and the load rate decreases. Additionally, the minimum
node voltages for the three schemes—0.924 pu, 0.912 pu, and 0.896 pu—were all below
the specified range, severely affecting the charging efficiency and economic viability
of EVs.
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(3) Based on the research into the impact of uncoordinated charging on the grid, a
multi-objective optimization function was constructed focusing on charging costs and
battery life. Using a multi-objective genetic algorithm, Pareto fronts were obtained in
the form of charging curves under different optimization weights. Taking the example
of a 20% penetration rate with both optimization objectives considered, simulations
were conducted to evaluate the valley-filling effect on the grid, analyze the causes
of errors, and quantify the results of the multi-objective optimization scheme. The
study results indicate that, compared to the uncoordinated scheme, the multi-objective
optimization scheme reduces the peak-to-valley difference ratio by 24.34%, decreases
the generation cost of the charging load by 29.5%, lowers charging costs by 23.9%,
and increases grid profits by 45.8%, further optimizing EV charging efficiency.
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Nomenclature

δs The expected average daily driving range of pure electric vehicles
σt The variance
X The specific kilometers driven (km)
t0 The starting charging time for pure electric vehicles (h)
SOCpre.t The battery status value at the start of charging (kW·h)
t The charging time (h)
Ed The 100 km power consumption of pure electric vehicle (kW·h)
Dn The amount of EV to be charged (kW·h)
B The battery capacity (kW·h)
Pc The charging power for pure electric vehicles (kW/h)
K The charging constant
σ The Grid Peak-Valley Difference Ratio
ρ The grid load factor
Ppeak The peak load during a defined time period (kW)
Pavg The average load over a defined period of time (kW)
A The cross-sectional area of graphite material
aa The anode electrochemical transfer reaction coefficient
ac The cathode chemical transfer reaction coefficient
assa The specific surface area of active particulate material
Ds The solid-phase diffusion coefficient
Dl The liquid phase diffusion coefficient
FEV The charging costs
fele The optimal time-sharing tariff
i0,SEI The SEI membrane side reaction exchange current density
jSEI(x,t) The side-reaction current density
N The number of pure electric vehicles
PEV(t,n) The charging power curve
PEV.sum The sum of charging power curves
Pvalley The valley load
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Pv-f The height of valley filling load
R The ideal gas constant
T The temperature
tev,s The starting time of charging for pure electric vehicles
tev,e The end-of-charge time for pure electric vehicles
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17. Polat, Ö.; Eyüboğlu, O.H.; Gül, Ö. Monte Carlo simulation of electric vehicle loads respect to return home from work and impacts
to the low voltage side of distribution network. Electr. Eng. 2020, 103, 439–445. [CrossRef]

18. Bian, H.; Guo, Z.; Zhou, C.; Peng, S. Multi-time scale electric vehicle charging load forecasting considering constant current
charging and parallel computing. Energy Rep. 2022, 8, 722–732. [CrossRef]

19. Liu, L.; Zhang, Y.; Da, C.; Huang, Z.; Wang, M. Optimal allocation of distributed generation and electric vehicle charging stations
based on intelligent algorithm and bi-level programming. Int. Trans. Electr. Energy Syst. 2020, 30, e12366. [CrossRef]

20. Wang, Z.H.; Fan, S.X.; Liu, B.Z.; Liu, X.W.; Wei, Z.C. Coordinated charging strategy of plug-in electric vehicles for maximising the
distributed energy based on time and location. J. Eng. 2018, 2017, 1740–1744. [CrossRef]

21. Dolatabadi, S.H.; Ghorbanian, M.; Siano, P.; Hatziargyriou, N.D. An Enhanced IEEE 33 Bus Benchmark Test System for
Distribution System Studies. IEEE Trans. Power Syst. 2021, 36, 2565–2572. [CrossRef]

22. Zhu, J.; Yang, Z.; Mourshed, M.; Guo, Y.; Zhou, Y.; Chang, Y.; Wei, Y.; Feng, S. Electric vehicle charging load forecasting: A
comparative study of deep learning approaches. Energies 2019, 12, 2692. [CrossRef]

23. Ahmad, N.; Ghadi, Y.; Adnan, M.; Ali, M. Load forecasting techniques for power system: Research challenges and survey. IEEE
Access 2022, 10, 71054–71090. [CrossRef]

24. Habib, S.; Khan, M.M.; Abbas, F.; Ali, A.; Hashmi, K.; Shahid, M.U.; Bo, Q.; Tang, H. Risk evaluation of distribution networks
considering residential load forecasting with stochastic modeling of electric vehicles. Energy Technol. 2019, 7, 1900191. [CrossRef]

https://doi.org/10.1016/j.jclepro.2018.02.178
https://doi.org/10.3390/en14061766
https://doi.org/10.1016/j.fuel.2020.118477
https://doi.org/10.1016/j.fuproc.2020.106527
https://doi.org/10.1016/j.geits.2022.100020
https://doi.org/10.3390/en14010252
https://doi.org/10.1016/j.jenvman.2024.120188
https://www.ncbi.nlm.nih.gov/pubmed/38308990
https://doi.org/10.1016/j.ocecoaman.2023.106985
https://doi.org/10.1016/j.ijepes.2022.108240
https://doi.org/10.3390/asi3030035
https://doi.org/10.1016/j.est.2020.101721
https://doi.org/10.1016/j.est.2023.106802
https://doi.org/10.1016/j.ijepes.2019.105661
https://doi.org/10.1016/j.jclepro.2019.118457
https://doi.org/10.1016/j.egyr.2022.05.264
https://doi.org/10.1007/s00202-020-01093-5
https://doi.org/10.1016/j.egyr.2022.08.034
https://doi.org/10.1002/2050-7038.12366
https://doi.org/10.1049/joe.2017.0630
https://doi.org/10.1109/TPWRS.2020.3038030
https://doi.org/10.3390/en12142692
https://doi.org/10.1109/ACCESS.2022.3187839
https://doi.org/10.1002/ente.201900191


Processes 2024, 12, 2599 26 of 26

25. Nour, M.; Chaves-Ávila, J.P.; Magdy, G.; Sánchez-Miralles, Á. Review of Positive and Negative Impacts of Electric Vehicles
Charging on Electric Power Systems. Energies 2020, 13, 4675. [CrossRef]

26. Muttaqi, K.M.; Isac, E.; Mandal, A.; Sutanto, D.; Akter, S. Fast and random charging of electric vehicles and its impacts:
State-of-the-art technologies and case studies. Electr. Power Syst. Res. 2024, 226, 109899. [CrossRef]

27. Sadeghian, O.; Oshnoei, A.; Mohammadi-Ivatloo, B.; Vahidinasab, V.; Anvari-Moghaddam, A. A comprehensive review on
electric vehicles smart charging: Solutions, strategies, technologies, and challenges. J. Energy Storage 2022, 54, 105241. [CrossRef]

28. Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A review on electric vehicles: Technologies and
challenges. Smart Cities 2021, 4, 372–404. [CrossRef]

29. Tran, M.-K.; Bhatti, A.; Vrolyk, R.; Wong, D.; Panchal, S.; Fowler, M.; Fraser, R. A review of range extenders in battery electric
vehicles: Current progress and future perspectives. World Electr. Veh. J. 2021, 12, 54. [CrossRef]

30. Wang, X.; Renne, J.L. Socioeconomics of Urban Travel in the US: Evidence from the 2017 NHTS. Transp. Res. Part D Transp.
Environ. 2023, 116, 103622. [CrossRef]

31. Das, S.; Acharjee, P.; Bhattacharya, A. Charging scheduling of electric vehicle incorporating grid-to-vehicle and vehicle-to-grid
technology considering in smart grid. IEEE Trans. Ind. Appl. 2020, 57, 1688–1702. [CrossRef]

32. Hannan, M.; Mollik, M.; Al-Shetwi, A.Q.; Rahman, S.; Mansor, M.; Begum, R.; Muttaqi, K.; Dong, Z. Vehicle to grid connected
technologies and charging strategies: Operation, control, issues and recommendations. J. Clean. Prod. 2022, 339, 130587. [CrossRef]

33. Feng, J.; Chang, X.; Fan, Y.; Luo, W. Electric vehicle charging load prediction model considering traffic conditions and temperature.
Processes 2023, 11, 2256. [CrossRef]

34. Li, N.; Hakvoort, R.A.; Lukszo, Z. Segmented energy tariff design for flattening load demand profile. In Proceedings of the
2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), The Hague, The Netherlands, 26–28 October 2020;
pp. 849–853.

35. GB/T 12305-2008; Power Quality-Deviation of Supply Voltage. Standardization Administration of China: Beijing, China, 2008.
36. Amin, A.; Tareen, W.U.K.; Usman, M.; Ali, H.; Bari, I.; Horan, B.; Mekhilef, S.; Asif, M.; Ahmed, S.; Mahmood, A. A review of

optimal charging strategy for electric vehicles under dynamic pricing schemes in the distribution charging network. Sustainability
2020, 12, 10160. [CrossRef]

37. Hussain, S.; Thakur, S.; Shukla, S.; Breslin, J.G.; Jan, Q.; Khan, F.; Ahmad, I.; Marzband, M.; Madden, M.G. A heuristic charging
cost optimization algorithm for residential charging of electric vehicles. Energies 2022, 15, 1304. [CrossRef]

38. Zhou, G.; Zhu, Z.; Luo, S. Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm.
Energy 2022, 247, 123437. [CrossRef]

39. Ekatpure, R. Optimizing Battery Lifespan and Performance in Electric Vehicles through Intelligent Battery Management Systems.
J. Sustain. Urban Futures 2024, 14, 11–28.

40. Thakur, A.K.; Sathyamurthy, R.; Velraj, R.; Saidur, R.; Pandey, A.; Ma, Z.; Singh, P.; Hazra, S.K.; Sharshir, S.W.; Prabakaran, R. A
state-of-the art review on advancing battery thermal management systems for fast-charging. Appl. Therm. Eng. 2023, 226, 120303.
[CrossRef]

41. Zadeh, P.G.; Gholamalizadeh, E.; Wang, Y.; Chung, J.D. Electrochemical modeling of a thermal management system for cylindrical
lithium-ion battery pack considering battery capacity fade. Case Stud. Therm. Eng. 2022, 32, 101878. [CrossRef]

42. Rufino Júnior, C.A.; Sanseverino, E.R.; Gallo, P.; Amaral, M.M.; Koch, D.; Kotak, Y.; Diel, S.; Walter, G.; Schweiger, H.-G.; Zanin, H.
Unraveling the Degradation Mechanisms of Lithium-Ion Batteries. Energies 2024, 17, 3372. [CrossRef]

43. Sarmadian, A.; Widanage, W.D.; Shollock, B.; Restuccia, F. Experimentally-verified thermal-electrochemical simulations of a
cylindrical battery using physics-based, simplified and generalised lumped models. J. Energy Storage 2023, 70, 107910. [CrossRef]

44. Jin, C.; Tang, J.; Ghosh, P. Optimizing Electric Vehicle Charging: A Customer’s Perspective. IEEE Trans. Veh. Technol. 2013, 62,
2919–2927. [CrossRef]

45. Chupradit, S.; Widjaja, G.; Mahendra, S.; Ali, M.; Tashtoush, M.; Surendar, A.; Kadhim, M.; Oudah, A.; Fardeeva, I.; Firman, F.
Modeling and Optimizing the Charge of Electric Vehicles with Genetic Algorithm in the Presence of Renewable Energy Sources.
J. Oper. Autom. Power Eng. 2023, 11, 33–38.

46. Qin, L.; Yujiao, L.; Shi, X.; Shi, F. Study on Coordinated Charging Strategy for Electric Vehicles Based on Genetic Algorithm. In
Proceedings of the 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Weihai, China, 13–15 July 2020;
pp. 1523–1527.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/en13184675
https://doi.org/10.1016/j.epsr.2023.109899
https://doi.org/10.1016/j.est.2022.105241
https://doi.org/10.3390/smartcities4010022
https://doi.org/10.3390/wevj12020054
https://doi.org/10.1016/j.trd.2023.103622
https://doi.org/10.1109/TIA.2020.3041808
https://doi.org/10.1016/j.jclepro.2022.130587
https://doi.org/10.3390/pr11082256
https://doi.org/10.3390/su122310160
https://doi.org/10.3390/en15041304
https://doi.org/10.1016/j.energy.2022.123437
https://doi.org/10.1016/j.applthermaleng.2023.120303
https://doi.org/10.1016/j.csite.2022.101878
https://doi.org/10.3390/en17143372
https://doi.org/10.1016/j.est.2023.107910
https://doi.org/10.1109/TVT.2013.2251023

	Introduction 
	Total Charge Load Forecasting and Impact Studies 
	Establishment of Distribution Network Original Load Model 
	Establishment of the Total Charging Load Model 
	Simulation Analysis of Total Charging Load 

	Analysis of the Impact of Charging Loads on Grid Operation Performance 
	Establishment of the IEEE 33-Node Distribution Network System Model 
	Analysis of the Impact of Peak Load Levels 
	Analysis of the Impact of Node Voltage 

	Research on Charging Energy Efficiency Optimization 
	Establishment of a Multi-Objective Optimization Model Based on Charging Costs and Battery Life 
	Multi-Objective Optimization Case Study Analysis 
	Analysis of the Impact of Optimization Error 

	Conclusions 
	References

