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Abstract: The accuracy of demand forecasting is critical for supply chain management and strategic
business decisions. However, as data volumes grow and demand patterns become increasingly
complex, traditional forecasting methods encounter significant challenges in processing intricate
multi-dimensional data and achieving a satisfactory predictive accuracy. To address these challenges,
this paper proposed an end-to-end multi-model demand forecasting framework based on attention
mechanisms. The framework employs a dual attention mechanism to dynamically extract features
from both the temporal and product dimensions, while integrating conditional information captured
through convolutional neural networks, thereby enhancing its ability to model complex demand
patterns. Additionally, a channel attention mechanism is introduced to perform the weighted fusion
of outputs from multiple predictive models, thereby overcoming the limitations of single-model
approaches and improving adaptability to varying demand patterns across diverse scenarios. The
experimental results demonstrate that the proposed method outperforms conventional approaches
across several evaluation metrics, achieving a 42% reduction in Mean Squared Error (MSE) compared
to the baseline model. This notable improvement enhances both the accuracy and stability of
demand forecasting. The framework offers valuable insights for addressing large-scale and complex
demand patterns, providing guidance for precise decision-making and resource optimization within
supply chain management. Future research will concentrate on further enhancing the model’s
generalization capability to manage missing data and demand fluctuations. Additionally, efforts will
focus on integrating diverse heterogeneous data sources to assess its performance in various practical
scenarios, ultimately improving the model’s accuracy and flexibility.

Keywords: demand forecasting; dual attention; conditional information; multi-model fusion

1. Introduction

In today’s increasingly competitive market environment, rapid shifts in consumer
demand and heightened market volatility make it crucial for businesses to accurately track
market dynamics and manage resources effectively. The demand for goods serves as a vital
input for numerous business decisions, including upstream product procurement, local
inventory management, and downstream logistics distribution activities [1]. As a bridge
connecting market demand to internal business operations, demand forecasting influences
not only short-term activities like inventory management and production scheduling but
also plays a direct role in shaping long-term strategic planning and competitive positioning.
Accurate demand forecasting enables companies to mitigate issues such as stockouts or
overstock caused by demand fluctuations [2] while optimizing marketing strategies, includ-
ing developing effective promotional campaigns and precisely tracking market trends. This
ultimately enhances supply chain efficiency and improves customer satisfaction [3]. There-
fore, improving the accuracy of demand forecasting is of critical importance for businesses.

Initially, demand forecasting research predominantly relied on historical sales data
as input, utilizing univariate time series analysis methods for predicting future sales [4].
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However, due to market uncertainties and the complexity of the data, product demand
is influenced not only by historical sales figures but also by various external factors, such
as seasonality, holiday promotions, and market trends [5]. For sales patterns affected by
multiple factors, multivariate models tend to provide more accurate forecasting results.
Moreover, the rise of e-commerce has led to a rapid increase in product variety, and market
dynamics have become more volatile, with consumer purchasing behavior becoming more
diversified [6]. As a result, accurately forecasting product demand has become a more
challenging task.

Currently, the mainstream demand forecasting methods can be broadly categorized
into statistical methods and computational intelligence approaches. Statistical methods
mainly include Autoregressive Integrated Moving Average (ARIMA) models [7], the
Prophet model [8], and Fourier analysis [9]. However, these linear models are limited
in capturing unquantifiable factors, such as consumer psychology and market changes, and
tend to perform poorly when dealing with complex nonlinear relationships. Furthermore,
as the variety of products and data sources increases, companies face the challenge of
processing vast amounts of real-time data, and traditional time series methods struggle
with adaptability and scalability in the context of big data. As a result, computational
intelligence methods, such as support vector machine (SVM) [10], artificial neural network
(ANN) [11], and Long Short-Term Memory (LSTM) networks [12], have gained promi-
nence in demand forecasting in recent years. These methods are proficient at learning
complex nonlinear relationships and high-dimensional features and effectively manag-
ing long-term dependencies in sequential data. However, these models primarily focus
on the temporal dimension and conditional information, frequently overlooking the in-
terrelationships between different products. Additionally, a single forecasting model is
insufficient for capturing the composite features of time series sales data and encounters
notable limitations when dealing with complex features and long sequence dependencies.
For instance, while LSTM and Gated Recurrent Unit (GRU) networks can capture long-term
dependencies in sales time series, they tend to get trapped in local optima when han-
dling multi-dimensional features and global information. To further improve forecasting
performance, some researchers have explored composite models that integrate various
time series analysis methods for more effective demand pattern modeling. Li et al. [13]
enhanced the output of Gated Recurrent Unit (GRU) using an attention mechanism and
integrated it with the Prophet model through objective-weighted fusion, effectively im-
proving the accuracy of sales forecasting. Multi-model fusion enables the consolidation
of strengths from different models, allowing for the capture of diverse patterns within
demand data, particularly when demand is influenced by various factors such as sea-
sonality and market fluctuations. Additionally, an effective fusion method can integrate
multi-dimensional features, thereby enhancing the accuracy, robustness, and stability of
demand forecasting. However, these current composite models typically combine time
series analysis methods with machine learning approaches or integrate machine learning
with deep learning methods, using multi-model fusion strategies that combine the outputs
of individual models in a post-processing phase rather than through joint training within
a unified framework. A key limitation of this approach is that it fails to fully leverage
the synergies between models, particularly as each model emphasizes distinct aspects of
data feature extraction. The simple post-fusion of results often overlooks the interactive
information between models. Moreover, during model fusion, traditional methods such
as objective weighting [13], genetic algorithm-based weighting [14], or weight allocation
through other machine learning techniques all have their limitations. Objective weighting
does not dynamically adapt to changes in data, whereas genetic algorithms and machine
learning-based weighting methods, though capable of optimizing weights, necessitate
secondary training, which leads to higher computational costs. Furthermore, the attention
mechanism has been widely utilized in forecasting. In predictive tasks, it is predominantly
employed to enhance feature selection [15] and manage global dependencies [16], with
relatively few applications in multi-model fusion.
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To address the poor adaptability of existing single-model demand forecasting methods
in handling diverse demand signals, as well as the challenges related to weight selection,
the lack of joint training capability, and high computational costs in multi-model fusion
approaches, this paper proposes an end-to-end, attention-based multi-model fusion deep
learning framework for demand forecasting. By leveraging the strengths of deep learning
models, the proposed method effectively addresses the limitations of traditional approaches
in joint training and weight allocation flexibility. The experimental results demonstrate that
the proposed method outperforms traditional methods in complex scenarios, highlighting
its promising application prospects. The specific contributions are as follows:

(1) A dual attention mechanism is designed to perform feature extraction from both
the temporal and product dimensions, dynamically capturing correlations between
different time points and products. This effectively improves the model’s sensitivity
to complex demand fluctuations. Conditional information (e.g., date, promotional
factors, etc.) is extracted using convolutional neural networks and fused with the
time and product features obtained from the dual attention mechanism to form a
comprehensive feature extraction module. This ensures that the model simultane-
ously considers historical sales data and external conditions, thereby improving the
comprehensiveness and accuracy of the predictions;

(2) This paper introduces a multi-model fusion strategy based on a channel attention
mechanism, enabling joint training. By adaptively adjusting the contribution weights
of each model, the proposed method overcomes the limitations of single models in
multi-dimensional data forecasting, leveraging complementary strengths across the
models and further improving the prediction performance;

(3) Experimental results demonstrate that the proposed framework outperforms con-
ventional methods across multiple evaluation metrics, achieving a 42% reduction in
MSE compared to the baseline LSTM forecasting model. A series of ablation experi-
ments further validate the effectiveness of the framework, improving the accuracy of
demand forecasting. This improvement facilitates more informed decision-making,
offering valuable guidance for supply chain management activities.

The remainder of the paper is organized as follows: Section 2 reviews the relevant
literature. Section 3 presents the proposed end-to-end multi-model fusion demand fore-
casting framework. Section 4 discusses the experimental results, including comparative
experiments and ablation studies of the proposed framework. Finally, Section 5 summarizes
the research findings and presents some conclusions.

2. Literature Review

Accurate demand forecasting is essential for optimizing supply chain management
and strategic business decision-making [17]. As the data volume grows and demand
patterns become increasingly complex, traditional statistical methods have demonstrated
limitations in managing nonlinear and multi-dimensional data. In contrast, computational
intelligence methods have become the mainstream approach in demand forecasting due to
their strengths in feature extraction and recognizing complex patterns. Accordingly, this
section briefly overviews both statistical and computational intelligence methods.

Time-related factors are often considered key variables influencing demand forecasting.
Consequently, statistical methods, as traditional demand forecasting approaches, primarily
depend on the time series analysis of historical data. Steinker et al. [18] integrated external
factors such as promotions, holidays, and weather conditions (e.g., sunshine, temperature,
and rainfall) into a demand forecasting model for retailers. They employed the Seasonal
Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) model
and found that weather factors contributed to reducing forecast errors, significantly en-
hancing the accuracy of demand predictions. Nucamendi-Guillén et al. [19] employed
an exponential smoothing model for demand forecasting in the fashion retail industry,
assisting businesses in inventory and transportation management. Ramos et al. [20] con-
ducted a case study of five different types of retail products, comparing the forecasting
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performance of state-space models with that of the ARIMA model. Ma et al. [21] devel-
oped an Autoregressive Distributed Lag (ADL) model for forecasting using data from
multiple product categories and stores, yielding favorable results. However, with rapid
changes in market environments and the diversification of consumer behavior, demand
fluctuations have become increasingly complex and nonlinear. The assumptions inherent in
traditional statistical methods (such as linear relationships and stationarity) constrain their
performance in managing multi-dimensional and nonlinear data. Consequently, although
statistical methods can perform well in small-scale, short-term forecasts, they increasingly
demonstrate limitations when addressing big data and complex demand patterns.

Computational intelligence methods, particularly those based on machine learning
and deep learning, have demonstrated greater adaptability in demand forecasting. These
methods can autonomously learn complex patterns, nonlinear relationships, and the inter-
actions of high-dimensional features in data, making them especially effective for handling
multi-dimensional time series and complex datasets. Craparotta et al. [22] employed a
Siamese Neural Network (SNN) to enhance fashion sales forecasting by integrating het-
erogeneous data, including both image and time series data. Their case analysis yielded
favorable results. Salinas et al. [23] proposed a probabilistic forecasting method using an
Autoregressive Recurrent Neural Network model (DeepAR), which outperformed previous
methods in forecasting accuracy. Abbasimehr et al. [24] developed a demand forecasting
method based on a multi-layer LSTM network, enhancing prediction accuracy. Their ex-
perimental results indicated that this method surpassed other commonly used standard
methods. Vallés-Pérez et al. [25] presented an architecture based on LSTM and trans-
former models, enabling the training model to adapt to different time steps and effectively
addressing sales forecasting challenges.

Despite the successes of individual models in demand forecasting, they often show
limitations when handling complex, multi-dimensional data. Single models often fail to
capture the multi-level relationships and nonlinear features within the data, particularly
when dealing with multi-dimensional condition information (e.g., promotions, temper-
ature) and long time series data, which can negatively impact prediction performance.
To overcome these limitations, researchers have increasingly adopted hybrid models that
combine the strengths of multiple methods to further improve their prediction accuracy
and robustness. Li et al. [13] developed a composite model with an attention mechanism
that integrates the Gated Recurrent Unit (GRU) and Prophet models for sales forecast-
ing. The model used the CRITIC method for weight assignment, making it suitable for
rapidly changing market demands. Punia et al. [14] explored the relationships between
various influencing factors and sales sequences, designing an ensemble method based on
genetic algorithms to merge the strengths of deep learning and machine learning models.
This approach outperformed individual models in short-term, mid-term, and long-term
real-time demand forecasting. Ma et al. [26] introduced meta-learning for the first time in
sales demand forecasting, proposing a meta-learner based on convolutional neural net-
work (CNN) to assign weights to base predictors, demonstrating its effectiveness. Punia
et al. [27] proposed a forecasting method based on a combination of random forests and
Long Short-Term Memory (LSTM) networks, modeling complex temporal relationships
and achieving a higher accuracy than other forecasting methods. However, these hybrid
models are often designed by combining deep learning and machine learning models, and
due to the heterogeneity between these two types of models, their training processes are
usually not efficiently coordinated within a single framework. Furthermore, during the
model fusion process, fixed weights or a weight optimization through genetic algorithms
or other intelligent algorithms are often used. This not only increases computational time
costs but also raises the risk of model overfitting.

In summary, while statistical methods excel at handling linear, well-structured data,
they struggle with nonlinear and multi-dimensional complex data. On the other hand,
computational intelligence methods, despite their significant advantages in feature extrac-
tion and complex pattern recognition, still face challenges in multi-model fusion and joint
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training. To address these challenges, this paper proposes an end-to-end multi-model fu-
sion deep learning demand forecasting framework based on an attention mechanism. This
approach fully harnesses the strengths of deep learning models and successfully overcomes
the limitations of traditional methods in joint training and flexible weight distribution.

3. Chapter Approaching the Problem

In this study on product demand forecasting, our goal is to predict the sales of a specific
product over a defined future period, ranging from time t + 1 to t + predlength, using data
from the previous windows time periods up to time t. In addition to considering the
product’s historical sales data, we also incorporate contextual factors such as temperature,
promotions, and calendar time. Thus, the entire problem can be described by Equation (1).

ŷt+1:t+predlength = f (item1:j,(t−w):t, condition1:k,(t−w):(t+predlength)) (1)

In this context, ŷt+1:t+predlength represents the forecast target, which is the specific sales
of the product from time t+ 1 to t+ predlength. f (·) denotes the forecasting function, which
in this study corresponds to the proposed demand forecasting framework. item1:j,(t−w):t
represents the historical sales data of J products from time t − w to time t, with w being
the historical sliding window length. condition1:k,(t−w):(t+predlength) refers to the values of k
types of contextual factors, such as temperature, promotions, and calendar time, from time
t − w to time t + predlength.

To enhance the effectiveness of the multi-model fusion and improve the accuracy
of product demand forecasting, this paper proposes an end-to-end multi-model fusion
framework based on product correlations, as illustrated in Figure 1. The framework is
primarily composed of four components: data preprocessing, feature extraction and fusion,
model learning, and model fusion and prediction.
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Figure 1. Multi-model fusion demand forecasting framework based on attention mechanism.
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3.1. Data Preprocessing

In product-based demand forecasting, data preprocessing is a crucial foundational step
that ensures both the effectiveness and the accuracy of the model. It consists mainly of three
stages: data cleaning, data normalization, and sliding window processing. These prepro-
cessing stages provide more accurate inputs for model learning, establishing a solid founda-
tion for subsequent training and thereby guaranteeing the precision of demand forecasting.

(1) Data Cleaning

During the acquisition and transmission of product sales data, unforeseen issues may
arise, resulting in anomalies such as redundancy and missing values. Therefore, data
cleaning is essential to eliminate redundant and null values from the raw product sales
data, thus enhancing the accuracy of the forecasts.

(2) Data Normalization

Product demand is often influenced by various factors such as seasonality, promotional
activities, and market trends. Therefore, standardizing the data format and scale enables
the model to better capture underlying relationships. By normalizing the sales data,
discrepancies in sales volumes between different products can be eliminated, enabling
the model to focus more on the relative demand fluctuations across products. Thus, data
normalization is performed using Equation (2) to eliminate inconsistencies across different
units of measurement.

x′i =
xi − xmin

xmax − xmin
(2)

Here, xi represents the ith data point of a certain feature and x′i denotes the normalized
data. xmax and xmin represent the maximum and minimum values, respectively, of all data
points for that feature.

In addition, date-related features, such as the day of the year and the day of the month,
are crucial conditional factors in demand forecasting. However, due to the discrete nature of
dates, directly using these features may cause instability during model training. To address
this issue, this study applies a sinusoidal transformation to the date information prior to
normalization. This transformation converts the date features into continuous, periodic
variables, smoothing the changes in date-related features and eliminating disruptions
caused by abrupt shifts. This approach enables the model to better capture underlying
temporal patterns and cyclical fluctuations, as shown in Equation (3).

x′ =
1
T

sin(2πx
1
T
) (3)

where, x represents the date-related influencing factor, x′ denotes the transformed sinu-
soidal date feature, and T refers to the period of the corresponding date feature.

(3) Sliding Window

The sliding window technique is a crucial step in demand forecasting, as it effectively
captures trends and patterns in time series data. By creating windows of a fixed size, we
can extract data features from consecutive time periods, enabling the model to better under-
stand the influence of historical data on future demand. This approach not only enhances
the local correlation within the data but also strengthens the model’s predictive capability.

For the product information features, we utilize a fixed sliding window with a width
of window_size to estimate and predict future sales. The prediction target corresponds to
the product sales over the next pred_length time steps, with a sliding window stride of 1.
The specific process is illustrated in Figure 2.
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item1
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Window_size

Figure 2. Sliding window processing of commodity features.

As for conditional information such as date features and promotional factors, since
these factors can be anticipated in advance, we utilize a fixed sliding window with a width
of window_size + pred_length for their estimation and prediction. The sliding window
stride is set to 1, accordingly. The detailed process is shown in Figure 3.
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Window_size
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Figure 3. Sliding window processing of conditional information.

3.2. Feature Extraction and Fusion
3.2.1. Dual Attention Mechanism Based on Time and Product

Currently, most attention mechanisms, such as SE attention, primarily focus on calcu-
lating feature weights within a single dimension, often overlooking the complex interactions
between multiple dimensions. In the field of product demand forecasting, most research
predominantly emphasizes the time dimension of time series data, with limited in-depth
analysis of the product dimension. Consequently, the interrelationships between different
products are frequently overlooked, limiting the model’s ability to capture demand fluctua-
tions. To address these shortcomings, this paper introduces a dual attention mechanism
that simultaneously considers both the time and product dimensions. By accounting for
the significance of both dimensions, this mechanism offers a more comprehensive under-
standing of how various factors influence demand forecasting. It enables the exploration of
inter-product relationships and provides more precise feature representations for model
training. The attention structure takes the data tensor X ∈ RI×W as input and produces an
output tensor of the same size. The specific structure is illustrated in Figure 4.

Window_pool

Item_pool

Sigmoid

Sigmoid

Window

Item

I×W

1×2W

2I×1

Transpose

MLP

MLP

I×W

Figure 4. Dual attention based on time and item.
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(1) Global information embedding

For the historical sales data stored as a two-dimensional tensor, we apply one-dimensional
pooling operations along both the product and time dimensions. This compresses global
information, while simultaneously encoding both product-specific and temporal informa-
tion. To capture the global context and salient features of the feature maps, we utilize both
global average pooling and max pooling, concatenating their outputs. This approach helps
capture diverse feature representations across the product and time dimensions, while also
reducing the risk of model overfitting.

The procedure is as follows: for an input X ∈ RI×W , vectors of sizes (2I, 1) and
(1, 2W) are used to encode the historical sales data along the time and product dimensions,
respectively. The aggregated output along the time dimension can then be expressed as

XW_mean(w) =
1
I

I

∑
i=0

x(i, w), XW_max(w) = max(
I

∑
i=0

x(i, w)) (4)

Xw_pool = concat(Xw_mean, Xw_max) (5)

In the equation, XW_mean ∈ R1×W represents the vector obtained from global average
pooling, XW_max ∈ R1×W represents the vector obtained from max pooling, and Xw_pool ∈
R1×2W is the aggregated output along the time dimension. Similarly, the aggregated output
along the product dimension can be represented as follows:

XI_mean(i) =
1

W

W

∑
w=0

x(i, w), XI_max(i) = max(
W

∑
w=0

x(i, w)) (6)

XI_pool = concat(XI_mean, XI_max) (7)

In this context, XI_mean ∈ RI×1 represents the vector obtained from global average
pooling, XI_max ∈ RI×1 denotes the vector derived from max pooling, and XI_pool ∈ R2I×1

signifies the final aggregated output along the product dimension.

(2) Adaptive fusion correction

Building on the aforementioned compression operations, we propose a simple gating
mechanism incorporating a fusion truncation function. This mechanism is designed to learn
the nonlinear relationships between the aggregated vectors, making full use of the global
and salient information in both the time and product dimensions. The gating structure
consists of two fully connected layers: the first, a dimensionality reduction layer W1, with
a reduction ratio r, which helps reduce the computational burden, followed by a ReLU
activation function and an upscaling fully connected layer W2. Specifically, the aggregated
vectors from Equations (5) and (7) are first transposed to match dimensions, then passed
through the two fully connected layers for attention-based fusion and correction, as shown
in Equations (8) and (9).

sw = σ(W2(δ(W1Xw_pool ))) (8)

sI = σ(W ′
2(δ(W

′
1Xw_pool ))) (9)

In this framework, sw ∈ R1×W represents the time-dimensional attention vector
after transformation, sI ∈ R1×I denotes the product-dimensional attention vector after
transformation, δ is the nonlinear activation function ReLU, and σ is the Sigmoid activation
function, which introduces the gating mechanism. After dimension matching, the final
output of our dual attention mechanism, integrating both time and product dimensions, is
as follows:

Y1(i, w) = x(i, w)× sw(w)× si(i) (10)

Compared to other single-channel attention mechanisms, our dual attention module
offers enhanced capabilities. It fully leverages both global and significant information from
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the original time series data, while simultaneously computing attention weights across
both the time and product dimensions. The result is a mask that matches the shape of the
input data and contains the attention weights associated with each input feature, thereby
providing robust support for subsequent demand forecasting.

3.2.2. Conditional Information Feature Extraction Based on Convolutional Neural Network

Convolutional neural network (CNN) can automatically extract and generate deep
features from input time series data and images. With key principles such as local receptive
fields, weight sharing, and pooling—distinct from traditional feedforward neural network—
CNN demonstrate exceptional capability in feature extraction and robustness to variations
in input data. As a result, they have shown superior performance in many machine learning
and pattern recognition tasks.

Building upon this, for the conditional information in historical sales data (such as
date features, promotional factors, etc.), we designed a three-layer convolutional neural
network (CNN) architecture for feature extraction. This network is specifically aimed at
fully leveraging the impact of these conditional factors on historical sales data, as illustrated
in Figure 5.
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Figure 5. Conditional information feature extraction based on convolutional neural network.

The network architecture consists of three layers of 1D convolutional neural network
(1D CNN), batch normalization layers, activation functions, and pooling operations. The
input condition information is first passed through the 1D CNN layers for feature extraction,
capturing local temporal patterns and variations in the condition data, such as periodicity
in date features and abrupt changes due to promotional factors. To stabilize the distribution
of network inputs and accelerate training, batch normalization layers are applied after each
convolutional layer, helping to prevent gradient vanishing. The ReLU activation function
is then used to introduce nonlinearity, enabling the model to capture complex features in
the condition data. After the convolutional layers, a global average pooling layer is applied
to reduce the number of parameters, retain critical information, prevent overfitting, and
improve computational efficiency. Thus, after feature extraction and dimension matching
through the three convolution layers, the condition input X ∈ RC×(W+T) results in the
feature output Y2 ∈ RC×W . Here, C represents the condition dimension, W is the sliding
window width, and T denotes the prediction length.

3.2.3. Feature Fusion

After feature extraction, we employed a feature fusion strategy to effectively integrate
the time and product information extracted by the dual attention mechanism with the con-
ditional feature information obtained through the convolutional neural network (Figure 6).
This approach ensures that both the temporal and product-related dependencies, as well as
the conditional factors, are comprehensively considered in the final feature representation
for demand forecasting.

Specifically, through a concatenation operation, these two types of features are com-
bined into a unified feature matrix, as shown in Equation (11). The significance of this
feature fusion lies in the fact that the time and product information provide the model
with a dynamic perspective on demand variations, while the conditional feature informa-
tion, such as date features and promotional factors, adds contextual background. This
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integration enhances the model’s comprehensiveness and accuracy in subsequent demand
forecasting tasks.

Y = concat(Y1, Y2) (11)

where Y ∈ R(I+C)×W represents the fused feature vector, Y1 ∈ RI×W denotes the time
and product feature information extracted through the dual attention mechanism, and
Y2 ∈ RC×W refers to the condition feature information extracted via the convolutional
neural network. I represents the product dimension, C indicates the condition information
dimension, and W is the sliding window width.

Concat

I×W

C×W

(I+C)×W

 
Figure 6. Feature fusion.

3.3. Model Learning

In time series forecasting, commonly used models include Recurrent Neural Network
(RNN), Long Short-Term Memory network (LSTM), Gated Recurrent Unit (GRU), Temporal
Convolutional Network (TCN), and the Nbeats model. Each of these models has unique
characteristics, making them suitable for different types of time series data and demand
patterns. RNN and their variants, LSTM and GRU, are particularly effective in capturing
long-term dependencies in time series data. However, they often suffer from issues such as
vanishing gradients when dealing with complex patterns, which can limit their ability to
simultaneously capture both long-term and short-term trends. In contrast, TCN enhance
the ability to extract local features through convolutional operations and address the
gradient problems associated with traditional RNN. However, TCN may lack the flexibility
of recurrent networks when modeling long-range dependencies. Nbeats, a relatively
new framework, focuses on modeling trends and seasonality. While it performs well
across various types of time series, it may not adapt as effectively to domain-specific
requirements. In order to make this more intuitive and clear, we illustrate the advantages
and disadvantages of commonly used prediction models in Table 1.

Due to the influence of various conditional factors and the rapid fluctuations in
product sales, a single model often struggles to fully capture the intricate patterns within
time series data. Consequently, predictions based solely on a single model may encounter
limitations in both accuracy and stability. To address this limitation, we adopted a multi-
model fusion forecasting strategy. As shown in Table 1, statistical models like ARIMA and
machine learning models like random forest (RF) incur high computational costs due to
their inability to be trained jointly. Recurrent Neural Network models, such as LSTM and
GRU, capture long-term dependencies; however, the GRU has fewer parameters than LSTM,
allowing for greater computational efficiency. The TCN model enables efficient parallel
processing and enhances the capture of complex demand patterns through convolution
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operations, though it is susceptible to overfitting. The Nbeats and NbeatsX models provide
interpretability, focusing on trend and seasonality modeling; NbeatsX extends Nbeats by
incorporating external variables, enhancing its versatility in handling diverse time series.
While the Informer network delivers a high accuracy, it requires substantial data and
computational resources.

Table 1. Model comparison.

Model Advantages Limitations

ARIMA Easy to use, interpretable Limited to univariate, cannot
train jointly

RF Suitable for nonlinear relationships Struggles with temporal
dependencies, no joint training

LSTM Captures long-term dependencies,
memory capability

High computational cost, risk of
gradient vanishing

GRU Captures long-term
dependencies, efficient Slightly lower accuracy

TCN Captures long-term dependencies,
efficient parallel processing Lacks memory, prone to overfitting

Nbeats Interpretable, leverages trends
and seasonality Limited to univariate

NbeatsX Incorporates external variables
over Nbeats Prone to overfitting

Informer High accuracy, strong adaptability Requires large datasets and
computational resources

Based on these observations, we implemented an ensemble approach that incorporated
a GRU, TCN, and NbeatsX during model training. Leveraging the strengths of these
three distinct model architectures, we achieved multi-level feature learning, enhancing
the model’s capacity to capture and interpret demand variations. The GRU effectively
manages short- and mid-term dynamic changes, the TCN captures long-term dependencies,
and NbeatsX offers robust trend and seasonality modeling. This ensemble approach
not only improves the overall model performance but also enhances its adaptability to
diverse data characteristics and demand patterns, providing robust support for accurate
demand forecasting.

(1) Gated Recurrent Unit (GRU) [28]

The GRU is a widely adopted variant of the RNN designed to address the gradient
vanishing problem commonly encountered in traditional RNNs when learning long se-
quences. It introduces a gating mechanism consisting of an update gate and a reset gate,
which regulate the flow of information and control the forgetting process. Compared to
LSTM, the GRU offers a simpler architecture and superior computational efficiency, mak-
ing it particularly effective for handling time series data and tasks that require modeling
long-term dependencies.

(2) Temporal Convolutional Network (TCN) [29]

The TCN is a sequence-modeling approach based on convolutional operations. It
employs causal convolutions and dilated convolutions, which enable the model to capture
long-term dependencies in sequential data. Unlike a traditional RNN, a TCN handles
long-range dependencies by parallelizing computations and expanding the receptive field,
without significantly increasing its computational complexity. This approach offers greater
stability and enhanced training efficiency, making TCN particularly well suited for model-
ing time series data with long-term dependencies.

(3) NbeatsX [30]

NbeatsX is an extension of the Nbeats model, specifically developed for time series
forecasting. It employs a fully feedforward neural network-based stacked module structure,
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which progressively extracts multi-level features from time series data. By incorporating
residual connections, the model enhances its prediction accuracy. NbeatsX is highly flexible,
capable of adapting to various trends and seasonal patterns in time series data, and it has
garnered significant attention for its exceptional predictive accuracy and interpretability.

3.4. Model Fusion and Prediction

To achieve model fusion and prediction, conventional methods often combine the
outputs of multiple models using simple weighted averages or optimization algorithms
to assign weights, facilitating information sharing and complementarity among models.
However, these approaches have several limitations. First, the weights in conventional
methods are typically fixed, and their selection is challenging, preventing the model
from fully accounting for performance variations across different tasks. This leads to
the underestimation of certain model outputs during fusion, particularly when handling
complex demand fluctuations where key features may not be effectively captured. Second,
these methods lack dynamic adjustment mechanisms, rendering them unable to adapt
to changes in input data or fluctuations in model performance. In practical applications,
where data characteristics and environmental factors often change, fixed weight allocation
is ineffective, diminishing the accuracy and reliability of predictions.

To overcome these limitations, we introduce the Squeeze-and-Excitation (SE) attention
mechanism [31] to adaptively assign weights to different models, improving the model
fusion process, as shown in Figure 7. Compared to self-attention and other attention
mechanisms, the Squeeze-and-Excitation (SE) attention mechanism involves a simple two-
step operation, without the need for complex similarity calculations or attention matrix
generation. This makes it more computationally efficient in handling multi-model outputs,
maintaining performance while reducing the computational burden. Moreover, SE offers
improved adaptability in multi-model fusion. By employing the SE attention mechanism,
we can dynamically compute the weights of each model’s output, reflecting its relative
importance in the current forecasting task. This approach not only fully leverages feature
information from each model but also adaptively adjusts the weights through joint training,
allowing the system to better handle complex demand patterns and dynamic fluctuations.

Time

Value

Prediction

3×1×T

1×1×T

1×1×T

1×1×T 1×1×T

MLP

3×1

3×1

Figure 7. Model fusion and prediction.

Specifically, the output of each model undergoes global average pooling to extract
global feature information. A fully connected layer is then applied to transform these
features and generate corresponding weight coefficients, reflecting the relative importance
of each model in the current forecasting task. These computed weights are applied to the
outputs of the individual models, and the weighted outputs are summed to obtain the final
prediction. This approach effectively integrates feature information from multiple models,
enhancing the accuracy and robustness of the predictions. By dynamically adjusting the
model weights, we not only capitalize on the strengths of each individual model but also
mitigate errors that may arise from relying on a single model, ultimately leading to more
precise and reliable demand forecasting.
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4. Experimental Analysis

In this section, we present the dataset and experimental parameters used in our study.
We then conduct experiments to compare the proposed model framework with commonly
used time series forecasting methods, demonstrating the superiority of our approach.
Finally, ablation experiments are performed to assess the effectiveness and necessity of
each module. All tests were conducted on a server equipped with three NVIDIA GeForce
RTX 4090 GPUs, running CentOS Stream 9 as the operating system.

4.1. Data Description

The dataset used in this study is sourced from an electronics-manufacturing company and
spans sales data from 20 stores over the period of 2013 to 2018. It includes sales records for
five similar products over six years, resulting in a high-dimensional time series dataset with an
extensive temporal range. The dataset not only contains the daily sales volume of each product
across different stores but also records various external factors, such as temperature, holidays,
and promotional events, that influence sales. This rich set of contextual information allows for a
more comprehensive analysis of how external factors impact product demand.

4.2. Evaluation Index

To quantitatively assess the performance of the proposed method, we employed sev-
eral evaluation metrics, including Mean Squared Error (MSE), Mean Absolute Error (MAE),
R-squared (R2), and Mean Absolute Percentage Error (MAPE), for a comprehensive evalua-
tion of the forecasting model’s accuracy and robustness. These metrics were employed to
evaluate the model’s performance in demand forecasting.

First, MSE is used to evaluate the model’s performance by calculating the squared
differences between predicted and actual values, as shown in Equation (12). MSE is
particularly sensitive to larger errors, making it effective at capturing significant deviations
during demand peaks, particularly in cases of dramatic fluctuations, such as promotional
seasons or holidays. A lower MSE indicates that the model effectively handles sudden,
large demand variations and provides more stable and accurate forecasts, which supports
inventory control and resource optimization during periods of demand volatility.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (12)

Here, yi represents the actual values, ŷi denotes the predicted values, and n is the
number of samples.

Next, MAE is employed to evaluate the model by calculating the absolute difference
between predicted and actual values, providing a direct measure of forecast bias, as shown
in Equation (13). MAE provides an intuitive error metric, reflecting the overall accuracy of
the model. It focuses on the model’s stability in handling routine demand variations and
measures the long-term precision of demand forecasting.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (13)

R2 is employed to assess the model’s ability to explain the variance in the data. The value
of R2 ranges from 0 to 1, with values closer to 1 indicating the better fit of the model. As shown
in Equation (14), R2 reflects the model’s adaptability to demand patterns, including long-term
trends and cyclical fluctuations, providing insight into how well the model captures these
demand dynamics.

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(14)
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In the equation, y represents the mean of the actual values.
Finally, MAPE is employed to evaluate the model’s accuracy by calculating the per-

centage of the forecast error relative to the actual values, as shown in Equation (15). MAPE
reflects the consistency of the model’s accuracy across different products and time periods,
particularly when dealing with products subject to significant demand fluctuations. A lower
MAPE indicates that the model maintains a high accuracy across varying demand levels.

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (15)

A lower MSE and MAE indicate a reduction in overall forecast error, enabling better
demand prediction, minimizing inventory overstocking, and reducing stockouts. This
ultimately reduces inventory costs and enhances customer satisfaction. A lower MAPE
reflects the relative accuracy of predictions, assisting supply chain decision-makers in
forecasting demand more accurately for different times and products. This helps pre-
vent over-purchasing or stock shortages, thereby improving inventory turnover and
minimizing waste.

4.3. Comparative Experiment

To assess the effectiveness of the proposed method, a series of comparative experi-
ments were conducted, comparing the model presented in this study with widely adopted
and state-of-the-art models in demand forecasting. Specifically, seven benchmark models
were selected: ARIMA, LSTM, GRU, TCN, 1DCNN, Nbeats, and Informer. Python 3.7.16
was used for the implementation, with the ARIMA model optimized using the Statsmod-
els package 0.14.0. The deep learning models were developed using the PyTorch 1.12.1
framework. The Adam optimizer [32] was chosen for the network, as it combines the
advantages of momentum and adaptive learning rates, effectively addressing the sparse
gradient problem and accelerating convergence. Adam has demonstrated its superiority in
various deep learning applications, particularly in training large-scale datasets and complex
models. The batch size was set to 64, the learning rate was set to 0.001, and the loss function
used was the MSE loss function. The sliding window width was set to 30 days to predict
the sales for the next 7 days. The specific experimental settings for comparison are shown
in Table 2.

Table 2. Comparison method parameter.

Method Parameter Settings

ARIMA Set using the Auto-ARIMA method.

LSTM num_layers: 2
hidden_size: 32

GRU num_layers: 2
hidden_size: 32

TCN kernel_size = 2
dropout = 0.2

1DCNN kernel_size = 3
dropout = 0.3

NbeatsX

hidden_size = 128
num_stacks = 4
num_block = 3

stack_types = trend

Informer n_head = 8
d_layers = 2

Proposed

window attention ratio = 3
product attention ratio = 2

SE_ratio = 2
conv_kernel_size = 3
conv_dropout = 0.3
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To ensure fairness, each experiment was repeated five times, and the average of the
evaluation metrics was computed as the final result, as presented in Table 3. Among them,
the best performing model is shown in bold.

Table 3. Comparative experiment.

Methods/Metrics MSE MAE R2 MAPE

ARIMA 25.0069 ± 0.7798 3.6044 ± 0.0542 0.6900 ± 0.0097 7.94% ± 0.14%
LSTM 13.8058 ± 0.8859 2.7600 ± 0.1448 0.8879 ± 0.0073 6.93% ± 0.46%
GRU 13.7575 ± 1.1017 2.6828 ± 0.2161 0.8884 ± 0.0097 6.62% ± 0.61%
TCN 13.1931 ± 2.1062 2.5333 ± 0.2567 0.8924 ± 0.0179 6.05% ± 0.59%

1DCNN 22.8854 ± 13.3470 3.4789 ± 0.8482 0.8109 ± 0.1157 8.71% ± 2.01%
NbeatsX 11.3605 ± 0.5053 2.2191 ± 0.4140 0.9080 ± 0.1071 5.31% ± 0.11%
Informer 10.9094 ± 1.3002 2.3805 ± 0.1098 0.9031 ± 0.0202 6.73% ± 0.91%
Proposed 7.9426 ± 0.7011 1.9665 ± 0.2007 0.9326 ± 0209 4.95% ± 0.52%

As shown in Table 1, the traditional time series analysis method, ARIMA, struggles
to effectively capture the complex dynamic relationships in such intricate, nonlinear sales
data. Additionally, it is highly sensitive to outliers, resulting in a poorer performance, with
a significantly lower predictive accuracy compared to the other models. Meanwhile, the
one-dimensional convolutional neural network primarily relies on local feature extraction
to capture patterns in the data, which makes it challenging to effectively learn the temporal
dependencies and long-term trends, leading to a decrease in predictive accuracy. In contrast,
the three widely used deep learning models—LSTM, GRU, and TCN—are better equipped
to handle long-term dependencies within time series data and address the complex, nonlin-
ear relationships in demand fluctuations. As a result, these models exhibit a relatively good
and similar performance in the prediction results. The NbeatsX model, based on Nbeats,
introduces conditional information features and utilizes a feedforward neural network with
stacked fully connected layers, effectively capturing trends and seasonality in the input
sequences, yielding satisfactory results. The Informer network, built on the transformer
architecture, overcomes the limitations of traditional models in handling long sequences
by leveraging sparse attention mechanisms and efficient hierarchical structures. In this
case, it demonstrates a strong predictive performance. The network model proposed in this
study incorporates a dual attention mechanism that comprehensively extracts temporal
information, product characteristics, and external conditions, followed by an attention
mechanism for multi-model fusion, which improves the overall prediction performance
and accuracy. Therefore, it outperforms all the other models in this study. To present the
prediction results more clearly and avoid clutter from excessive lines, only the top three
performing models are selected for visualization, as shown in Figure 8.

Figure 8. Comparison of the models.
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The figure clearly indicates that, among the three models, the model proposed in
this study aligns more closely with the actual sales values. Furthermore, the residual plot
presented below offers a more intuitive perspective, demonstrating that our model exhibits
relatively smaller errors than the other models.

4.4. Ablation Experiment

To validate the effectiveness of each module within the proposed model, we conducted
a series of ablation experiments for each component and conducted comparative analyses.
Furthermore, to assess the effect of different feature sets on the prediction accuracy, we
performed feature ablation experiments.

4.4.1. Comparison of Feature Extraction Effectiveness

To illustrate the effectiveness of the proposed feature extraction structure for product
demand forecasting, we designed a series of experiments to comprehensively assess the
performance of this module. We designated the automated feature extraction module
introduced in this study as “AF” and applied it to the benchmark models for comparative
analysis. The specific experimental results are summarized in Table 4. Among them, the
best performing model is shown in bold.

Table 4. Comparison of feature extraction effectiveness.

Methods/Metrics MSE MAE R2 MAPE

LSTM 13.8058 2.7600 0.8879 6.93%
GRU 13.7575 2.6828 0.8884 6.62%
TCN 13.1931 2.5333 0.8924 6.05%

NbeatsX 11.3605 2.2191 0.9080 5.31%
AF-LSTM 11.3468 2.1725 0.9096 5.33%
AF-GRU 10.8248 2.0595 0.9122 5.11%
AF-TCN 11.1251 2.2047 0.9100 5.25%

AF-NbeatsX 9.8425 1.9954 0.9213 5.03%
Proposed 7.9426 1.9265 0.9326 4.95%

The experimental results indicate that incorporating the feature extraction module de-
signed in this study yields varying degrees of improvement in the predictive performance
of the benchmark models, thereby validating its effectiveness. This feature extraction mod-
ule first employs a dual attention mechanism to adaptively capture significant information,
emphasizing the influence of various time points and products on the predictions. Sub-
sequently, it employs a convolutional neural network to process conditional information
and facilitate feature fusion, thereby enhancing the model’s performance and effectively
capturing the complex relationships between time, product, and conditional factors.

4.4.2. Comparison of Effectiveness of Multi-Model Fusion

To examine the advantages of multi-model fusion compared to single models, we
designed a series of experiments comparing three individual benchmark models with our
proposed attention-based multi-model fusion method (excluding the feature extraction
module), as shown in Table 5. Among them, the best performing model is shown in bold.

Table 5. Comparison of effectiveness of fusion modules.

Methods/Metrics MSE MAE R2 MAPE

GRU 13.7575 2.6828 0.8884 6.62%
TCN 13.1931 2.5333 0.8924 6.05%

NbeatsX 11.3605 2.2191 0.9080 5.31%
Fusion module 9.9736 2.1246 0.9175 5.02%
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The experimental results demonstrate that the model employing the attention mecha-
nism for fusion surpasses the individual benchmark models across all performance metrics.
By assigning dynamic weights to the outputs of various models, the fusion model effec-
tively captures the complex relationships between time and product, thereby improving its
overall predictive accuracy.

4.4.3. Comparison of Multi-Model Fusion Methods

To assess the effectiveness of the attention-based multi-model fusion, we conducted
comparative experiments using four distinct methods: simple averaging, weighted aver-
aging, fully connected network fusion, and attention mechanism fusion (Figure 9). In the
simple averaging approach, equal weights were assigned to the three models. However, as
shown in Table 1, the NbeatsX network exhibits superior performance compared to both
the GRU and TCN. Consequently, in the weighted averaging approach, higher weights
were assigned to NbeatsX, distributed as 4, 3, and 3 for NbeatsX, the GRU, and the TCN,
respectively. Additionally, to further explore the advantages of attention weighting in
processing multi-model outputs, we included a comparison group that utilized only fully
connected fusion. Specifically, we initially vertically concatenated the outputs of the three
models, followed by employing a fully connected layer to perform linear combinations and
achieve dimension matching for the final prediction results.

MSE MAE MAPE
0

2

4

6

8

10

12

14

Figure 9. Comparison of multi-model fusion methods.

The experimental results demonstrate that among various fusion strategies, attention-
weighted fusion achieves the highest performance. In comparison to simple and weighted
averaging, the integration of the attention mechanism substantially improves the prediction
accuracy. This finding confirms the effectiveness of attention mechanisms in processing
multi-model outputs, facilitating a more precise evaluation of each model’s significance.
Notably, although weighted averaging performs better than simple averaging, its fusion
results remain inferior to those of the top-performing model, NbeatsX. This implies that an
improper weight distribution can negatively impact prediction accuracy, further emphasiz-
ing the benefits of an adaptive weight allocation via attention mechanisms. Furthermore,
the fully connected fusion demonstrated the lowest performance, suggesting that simple
concatenation and linear combinations did not effectively utilize the information from
multi-model outputs.

4.4.4. Feature Sensitivity Analysis

To evaluate the impact of different feature sets on model accuracy, this section cate-
gorizes the feature set into three components: the predicted product, additional product
information, and the effect of conditional information, including date, temperature, and
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promotion. These features will be sequentially removed to assess their impact on the
model’s performance (Table 6). Among them, the best performing model is shown in bold.

Table 6. Feature sensitivity analysis.

Feature/Metrics MSE MAE R2 MAPE

Target product 10.3399 2.2049 0.8819 4.89%
Other products 8.4191 2.1069 0.9072 4.55%

Date 8.7960 2.2030 0.8995 5.13%
Temperature 8.3863 2.1365 0.9057 4.45%
Promotion 10.6666 2.2141 0.8788 4.99%

Include all features 7.9426 1.9265 0.9326 4.95%

The experimental results show that different feature sets impact the model accuracy
to varying degrees. Removing features related to the target product and promotional
information had the most pronounced effect on accuracy. Excluding the target product’s
historical sales data weakens the predictive capability, as the sales trend and seasonality
of the product are essential predictors. Promotional information is also a crucial factor, as
sales fluctuations often correlate with promotional activities. The removal of promotional
information reduces accuracy, particularly during promotional periods. Excluding informa-
tion about other products limits the model’s ability to capture inter-product relationships,
reducing its ability to predict ripple effects in sales. Excluding date information diminishes
the model’s awareness of seasonality and time trends, which may reduce accuracy for
cyclical patterns. Omitting temperature information has a comparatively minor impact,
indicating that the product’s sales are relatively insensitive to temperature changes. No-
tably, the removal of individual features does not significantly degrade model performance,
highlighting the robustness of the proposed method.

The experimental results show that the proposed model generally performs well across
scenarios but may face challenges in highly complex demand patterns. Significant shifts
in data characteristics or external factors may impair the model’s ability to capture such
changes effectively, thereby reducing its predictive accuracy. In such cases, incorporat-
ing additional features or employing more complex models could improve performance,
though it may increase model complexity and computational costs. Although our method
demonstrates effectiveness within the scope of this study, its adaptability and scalability
across various sectors and domains require further validation. Distinct demand patterns,
industry characteristics, or external factors may require model retraining or adaptation to
maintain efficacy and robustness in different contexts. Furthermore, because demand pat-
terns vary over time, periodic model updates or retraining may be necessary, particularly
when the data distribution changes significantly. Future research could focus on enhancing
model adaptability to reduce the need for frequent retraining.

5. Conclusions

In the context of today’s rapidly evolving market environment, accurate demand
forecasting has emerged as a crucial tool for businesses aiming to optimize inventory
management, enhance supply chain efficiency, and formulate precise marketing strategies.
Effective demand forecasting not only reduces inventory costs but also enhances customer
satisfaction and responsiveness to market changes. However, traditional forecasting models
demonstrate considerable limitations in feature extraction and information integration,
leading to inadequate performance in capturing complex market dynamics and consumer
behavior. These challenges critically undermine the accuracy and reliability of demand
predictions, thereby necessitating innovative solutions from researchers. To tackle this
challenge, this study proposes a feature extraction framework that integrates a dual atten-
tion mechanism with a Squeeze-and-Excitation (SE) attention mechanism for multi-model
fusion. The design of the dual attention mechanism enables the dynamic weighting of fea-
tures from both the temporal and product dimensions, emphasizing the information most
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critical for demand forecasting. This approach not only enhances the model’s adaptability
but also facilitates the effective capture of the interactions between various time points
and products. Furthermore, the SE attention mechanism allows for the flexible integration
of outputs from different models based on their significance. During the implementation
process, we initially employ the dual attention mechanism to extract key features, followed
by the use of convolutional neural networks to process relevant conditional information.
Ultimately, the extracted features are effectively integrated through a multi-model fusion
architecture to generate the final prediction results. The experimental results indicate
that the proposed method outperforms traditional approaches across multiple evaluation
metrics, thereby validating the effectiveness of both the dual attention mechanism and the
multi-model fusion strategy.

By effectively integrating the strengths of various models, the end-to-end deep learn-
ing demand forecasting framework proposed in this study provides valuable insights for
future forecasting in complex scenarios. Furthermore, it assists businesses in optimizing
inventory management and supply chain operations, promoting agile responses and in-
formed decision-making in dynamic environments, thereby enhancing their competitive
advantage. Nevertheless, certain limitations exist. First, the accuracy of deep learning
models heavily depends on historical data, potentially limiting their prediction accuracy
when sample sizes are small or data are missing. Additionally, this study primarily consid-
ers time series and conditional information as feature inputs, without incorporating more
heterogeneous data sources, such as social media feedback and macroeconomic indicators,
which may also influence demand fluctuations. This limitation may reduce the model’s
applicability in specific contexts, indicating the need for further scalability improvements.
Future research should aim to enhance the model’s generalization capability, enabling it
to handle missing data and fluctuating demand scenarios. Additionally, incorporating
diverse data sources and multiple demand-influencing factors will be explored to assess
the model’s performance in various real-world contexts, ultimately enhancing both its
accuracy and its flexibility.
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