Biofilm Formation in Water Distribution Systems
Abstract
:1. Introduction
2. Biofilm
3. Bacteria in DWDS Biofilms
4. Biofilm on Different Materials in DWDS
5. Microbial Chlorine Resistance in DWDS
5.1. Problems with MCR
- Group I: all five strains of bacteria;
- Group II: without Acidovorax defluvii;
- Group III: without Acinetobacter sp.;
- Group IV: without Bacillus cereus;
- Group V.: without Microbacterium laevaniformans;
- Group VI.: all except Sphingomonas sp.
5.2. Chlorine-Resistant Bacteria
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hemdan, B.A.; El-Taweel, G.E.; Goswami, P.; Pant, D.; Sevda, S. The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: An overview of surveillance, outbreaks, and prevention. World J. Microbiol. Biotechnol. 2021, 37, 36. [Google Scholar] [CrossRef]
- Speight, V.L.; Mounce, S.R.; Boxall, J.B. Identification of the causes of drinking water discolouration from machine learning analysis of historical datasets. Environ. Sci. Water Res. Technol. 2019, 5, 747–755. [Google Scholar] [CrossRef]
- Liu, G.; Verberk, J.Q.J.C.; Van Dijk, J.C. Bacteriology of drinking water distribution systems: An integral and multidimensional review. Appl. Microbiol. Biotechnol. 2013, 97, 9265–9276. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, N. Water under pressure. Nature 2012, 483, 256–257. [Google Scholar] [CrossRef] [PubMed]
- Garner, E.; Inyang, M.; Garvey, E. Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res. 2019, 15, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Elhadidy, A.M.; Van Dyke, M.I.; Chen, F. Development and application of an improved protocol to characterize biofilms in biologically active drinking water filters. Env. Sci. Water Res. Technol. 2019, 3, 249–261. [Google Scholar] [CrossRef]
- Neu, L.; Proctor, C.R.; Walser, J.C.; Hammes, F. Small-scale heterogeneity in drinking water biofilms. Front. Microbiol. 2019, 10, 2446. [Google Scholar] [CrossRef]
- Morvay, A.A.; Decun, M.; Scurtu, M.; Sala, C.; Morar, A.; Sarandan, M. Biofilm formation on materials commonly used in household drinking water systems. Water Sci. Technol. Water Supply 2011, 11, 252–257. [Google Scholar] [CrossRef]
- Belák, Á.; Héher, B.; Kiskó, G. Formation and removal of Listeria monocytogenes and Lactococcus lactis biofilms. Acta Univ. Sapientiae Aliment. 2012, 5, 5–17. [Google Scholar]
- Simoes, L.C.; Simoes, M. Biofilms in drinking water: Problems and solutions. RSC Adv. 2013, 3, 2520–2533. [Google Scholar] [CrossRef]
- Chan, S.; Pullerits, K.; Keucken, A.; Persson, K.M.; Paul, C.J.; Radström, P. Bacterial release from pipe biofilm in a full-scale drinking water distribution system. NPJ Biofilms Microbiomes 2019, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Hu, X.; Ren, L. Biofilm control strategies in food industry: Inhibition and utilization. Trends Food Sci. Technol. 2022, 123, 103–113. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; de Remy de Courcelles, V.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Fratamico, P.M.; Annous, B.A.; Gunther, N.W. Biofilms in the Food and Beverage Industries; Woodhead Publishing Limited: Cambrige, UK, 2019; ISBN 978-1-84569-477-7. [Google Scholar]
- Husband, P.S.; Boxall, J.B.; Saul, A.J. Laboratory studies investigating the processes leading to discolouration in water distribution networks. Water Res. 2008, 42, 4309–4318. [Google Scholar] [CrossRef] [PubMed]
- Szewzyk, U.; Szewzyk, R.; Manz, W.; Schleifer, K.H. Microbiological safety of drinking water. Annu. Rev. Microbiol. 2000, 54, 81–127. [Google Scholar] [CrossRef] [PubMed]
- Bakke, R.; Trulear, M.G.; Robinson, J.A.; Characklis, W.G. Activity of Pseudomonas aeruginosa in Biofilms: Steady State. Biotechnol. Bioeng. 1984, XXVI, 1418–1424. [Google Scholar] [CrossRef]
- Batté, M.; Appenzeller, B.M.R.; Grandjean, D.; Fass, S.; Gauthier, V.; Jorand, F.; Mathieu, L.; Boualam, M.; Saby, S.; Block, J.C. Biofilms in drinking water distribution systems. Rev. Environ. Sci. Bio/Technol. 2003, 2, 147–168. [Google Scholar] [CrossRef]
- Allison, D.G.; Sutherland, I.W. The role of exopolysacharides in adhesion of freshwater bacteria. J. Gen. Microbiol. 1987, 133, 1319–1327. [Google Scholar]
- Pap, K.; Kiskó, G. Efficacy of disinfectants against static biofilms on stainless steel surface. Acta Aliment. 2008, 37, 1–7. [Google Scholar] [CrossRef]
- Besner, M.-C.; Prevost, M.; Regli, S. Assessing the public health risk of microbial intrusion events in distribution systems: Conceptual model, available data, and challenges. Water Res. 2011, 45, 961–979. [Google Scholar] [CrossRef]
- Żur, J.; Wojcieszyńska, D.; Guzik, U. Metabolic Responses of Bacterial Cells to Immobilization. Molecules 2016, 21, 958. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.G.; Nakaishi, L.A. Managing the complexity of a dynamic biofilm. J. Am. Dent. Assoc. 2006, 137, S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Cheng, K.J.; Geesey, G.G.; Ladd, T.I.; Nickel, J.C.; Dasgupta, M.; Marrie, T.J. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 1987, 41, 435–464. [Google Scholar] [CrossRef] [PubMed]
- Kiskó, G.; Szabó-Szabó, O. Biofilm Removal of Pseudomas Strains Using Hot Water Sanitation. Acta Univ. Sapientiae Aliment. 2011, 4, 69–79. [Google Scholar]
- Hammes, F.; Berney, M.; Wang, Y.; Vital, M.; Koster, O.; Egli, T. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res. 2008, 42, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Percival, S.L.; Walker, J.T. Contamination potential of biofilms in water distribution systems. Water Sci. Technol. 2002, 2, 271–280. [Google Scholar] [CrossRef]
- Al-Makhlafi, H.; Nasir, A.; Mcguire, J.; Daeschel, M. Adhesion of Listeria monocytogenes to Silica Surfaces after Sequential and Competitive Adsorption of Bovine Serum Albumin and b-Lactoglobulin. Appl. Environ. Microbiol. 1995, 61, 2013–2015. [Google Scholar] [CrossRef]
- Labidi, S.; Jánosity, A.; Yakdhane, A.; Yakdhane, E.; Surányi, B.; Mohácsi-Farkas, C.; Kiskó, G. Effects of pH, sodium chloride, and temperature on the growth of Listeria monocytogenes biofilms. Acta Aliment. 2023, 52, 270–280. [Google Scholar] [CrossRef]
- Grimaud, R.; Sivadon, P.; Barnier, C.; Urios, L. Biofilm formation as a microbial strategy to assimilate particulate substrates. Environ. Microbiol. Rep. 2019, 11, 749–764. [Google Scholar] [CrossRef]
- Helke, D.M.; Sommers, E.B.; Wong, A.C.L. Attachment of Listeria monocytogenes and Salmonella typhimurium to Stainless Steel and Buna-N in the Presence of Milk and Individual Milk Components. J. Food Prot. 1993, 56, 479–484. [Google Scholar] [CrossRef]
- Mráz, B.; Kiskó, G.; Hidi, E.; Ágoston, R.; Mohácsiné Farkas, C.S.; Gillay, Z. Assessment of biofilm formation of Listeria monocytogenes strains. Acta Aliment. 2011, 40 (Suppl. S1), 101–108. [Google Scholar] [CrossRef]
- Luo, L.; Wu, Y.; Yu, T.; Wang, Y.; Chen, G.; Tong, X.; Bai, Y.; Xu, C.; Wang, H.; Ikuno, N.; et al. Evaluating method and potential risks of chlorine-resistant bacteria (CRB): A review. Water Res. 2021, 188, 116474. [Google Scholar] [CrossRef]
- Hussain, T.; Roohi, A.; Munir, S.; Ahmed, I.; Khan, J.; Edel-Hermann, V.; Yong, K.; Anees, K. Biochemical characterization and identification of bacterial strains isolated from drinking water sources of Kohat, Pakistan. Afr. J. Microbiol. Res. 2013, 7, 1579–1590. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef]
- Ruhal, R.; Kataria, R. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol. Res. 2021, 251, 126829. [Google Scholar] [CrossRef]
- Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 2019, 5, 02192. [Google Scholar] [CrossRef] [PubMed]
- Abebe, G.M. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. Hindawi Int. J. Microbiol. 2020, 2020, 1705814. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Soto, I.; McTiernan, C.; Gonzalez-Gomez, M.; Ross, A.; Gupta, K.; Suuronen, E.J.; Mah, T.-F.; Griffith, M.; Alarcon, E.I. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 2021, 24, 102443. [Google Scholar] [CrossRef] [PubMed]
- Meganathan, Y.; Vishwakarma, A.; Ramya, M. Biofilm formation and social interaction of Leptospira in natural and artificial environments. Res. Microbiol. 2022, 173, 103981. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Chen, J.; Qi, W.; Wang, F.; Zhoua, Y. Impact of biofilm formation and detachment on the transmission of bacterial antibiotic resistance in drinking water distribution systems. Chemosphere 2018, 203, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Douterelo, I.; Boxall, J.B.; Deines, P.; Sekar, J.; Fish, K.A.; Biggs, C.A. Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Res. 2014, 65, 134–156. [Google Scholar] [CrossRef]
- Chen, X.D.; Zhang, C.K.; Zhou, Z.; Gong, Z.; Zhou, J.J.; Tao, J.F.; Feng, Q. Stabilizing effects of bacterial biofilms: EPS penetration and redistribution of bed stability down the sediment profile. J. Geophys. Res. Biogeosci. 2017, 122, 3113–3125. [Google Scholar] [CrossRef]
- Jing, Z.; Wang, X.; Wang, W.; Lu, Z.; Mao, T.; Cao, W.; Ke, Y.; Zhao, Z.; Sun, W. Microbial composition and diversity of drinking water: A full scale spatial-temporal investigation of a city in northern China. Sci. Total Environ. 2021, 776, 145986. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Li, C. The laboratory study of drinking water biofilms. Appl. Mech. Mater. 2014, 535, 455–459. [Google Scholar] [CrossRef]
- Liu, H.; Walski, T.; Fu, G.; Zhang, C. Failure impact analysis of isolation valves in a water distribution network. J. Water Resour. Plan. Manag. 2017, 143, 04017019. [Google Scholar] [CrossRef]
- Gião, M.S.; Azevedo, N.F.; Wilks, S.A.; Vieira, M.J.; Keevil, C.W. Interaction of Legionella pneumophila and Helicobacter pylori with bacterial species isolated from drinking water biofilms. BMC Microbiol. 2011, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Bunn, J.E.G.; MacKay, W.G.; Thomas, J.E.; Reid, D.C.; Weaver, L.T. Detection of Helicobacter pylori DNA in drinking water biofilms: Implications for transmission in early life. Lett. Appl. Microbiol. 2002, 34, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Stingu, C.S.; Rodloff, A.C.; Jentsch, H.; Schaumann, R.; Eschrich, K. Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDI-TOF-MS. Oral Microbiol. Immunol. 2008, 23, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Boe-Hansen, R.; Martiny, A.C.; Arvin, E.; Albrechtsen, H.-J. Monitoring biofilm formation and activity in drinking water distribution networks under oligotrophic conditions. Water Sci. Technol. 2003, 47, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Goraj, W.; Pytlak, A.; Kowalska, B.; Kowalski, D.; Grządziel, J.; Szafranek-Nakonieczna, A.; Gałązka, A.; Stępniewska, Z.; Stępniewski, W. Influence of pipe material on biofilm microbial communities found in drinking water supply system. Environ. Res. 2021, 196, 110433. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, Y.; Liu, X.; Hammes, F.; Liu, W.T.; Medema, G.; Wessels, P.; van der Meer, W. 360-Degree Distribution of Biofilm Quantity and Community in an Operational Unchlorinated Drinking Water Distribution Pipe. Environ. Sci. Technol. 2020, 54, 5619–5628. [Google Scholar] [CrossRef]
- Vávrová, A.; Matoulková, D.; Balážová, T.; Šedo, O. MALDI-TOF MS Analysis of Anaerobic Bacteria Isolated from Biofilm-Covered Surfaces in Brewery Bottling Halls. J. Am. Soc. Brew. Chem. 2014, 72, 95–101. [Google Scholar] [CrossRef]
- Pereira, F.D.E.S.; Silva, L.P.; Bonatto, C.C.; Lopes, C.A.P.; Pereira, A.L. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces. Microb. Pathog. 2015, 86, 32–37. [Google Scholar] [CrossRef]
- Caputo, P.; Di Martino, M.C.; Perfetto, B.; Iovino, F.; Donnarumma, G. Use of MALDI-TOF MS to Discriminate between Biofilm-Producer and Non-Producer Strains of Staphylococcus epidermidis. Int. J. Environ. Res. Public. Health 2018, 15, 1695. [Google Scholar] [CrossRef] [PubMed]
- Gaudreau, A.M.; Labrie, J.; Goetz, C.; Dufour, S.; Jacques, M. Evaluation of MALDI-TOF mass spectrometry for the identification of bacteria growing as biofilms. J. Microbiol. Methods 2018, 145, 79–81. [Google Scholar] [CrossRef]
- Asghari, E.; Kiel, A.; Kaltschmidt, B.P.; Wortmann, M.; Schmidt, N.; Hüsgen, B.; Hütten, A.; Knabbe, C.; Kaltschmidt, C.; Kaltschmidt, B. Identification of Microorganisms from Several Surfaces by MALDI-TOF MS: P. aeruginosa Is Leading in Biofilm Formation. Microorganisms 2021, 9, 992. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.B.S.; Marques, L.A.; Röder, D.D.B. Diagnosis of biofilm infections: Current methods used, challenges and perspectives for the future. J. Appl. Microbiol. 2021, 131, 2148–2160. [Google Scholar] [CrossRef]
- Li, W.; Zheng, T.; Ma, Y.; Liu, J. Current status and future prospects of sewer biofilms: Their structure, influencing factors, and substance transformations. Sci. Total Environ. 2019, 695, 133815. [Google Scholar] [CrossRef]
- Learbuch, K.L.G.; Smidt, H.; van der Wielen, P.W.J.J. Influence of pipe materials on the microbial community in unchlorinated drinking water and biofilm. Water Res. 2021, 194, 116922. [Google Scholar] [CrossRef]
- Janzon, A.; Sjöling, A.; Lothigius, A.; Ahmed, D.; Qadri, F.; Svennerholm, A. Failure to Detect Helicobacter pylori DNA in Drinking and Environmental Water in Dhaka, Bangladesh, Using Highly Sensitive Real-Time PCR Assays. Public Health Microbiol. 2009, 75, 3039–3044. [Google Scholar] [CrossRef] [PubMed]
- Srey, S.; Jahid, I.K.; Ha, S.-D. Biofilm formation in food industries: A food safety concern. Food Control 2013, 31, 572–585. [Google Scholar] [CrossRef]
- Zhou, X.; Ahmad, J.I.; Hoek, P.; Zhang, K. Thermal energy recovery from chlorinated drinking water distribution systems: Effect on chlorine and microbial water and biofilm characteristics. Environ. Res. 2020, 187, 109655. [Google Scholar] [CrossRef] [PubMed]
- Manuel, C.M.; Melo, L.F.; Nunes, O.C. Dynamics of drinking water biofilm in flow/non-flow conditions. Water Res. 2007, 41, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Wen, G.; Kötzsch, S.; Vital, M.; Egli, T.; Ma, J. BioMig—A Method to Evaluate the Potential Release of Compounds from and the Formation of Biofilms on Polymeric Materials in Contact with Drinking Water. Environ. Sci. Technol. 2015, 49, 11659–11669. [Google Scholar] [CrossRef] [PubMed]
- Zarnowski, R.; Sanchez, H.; Andes, D.R. Large-scale production and isolation of Candida biofilm extracellular matrix. Nat. Protoc. 2016, 11, 2320–2327. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, M.; Schüßler, C.A.; Lieleg, O. Biofilm Adhesion to Surfaces is Modulated by Biofilm Wettability and Stiffness. Adv. Mater. Interfaces 2021, 8, 2001658. [Google Scholar] [CrossRef]
- Taczman-Brückner, A.; Juhász, I.; Dancs, V.; Erdős, H.; Surányi, B.; Kocsis, T.; Kiskó, G. Removal of Pseudomonas aeruginosa biofilm in plastic bottles filled with different beverages. In Abstracts of 4th FoodConf—International Conference on Food Science and Technology, Budapest, Hungary, 9–11 June 2022; Szalóki-Dorkó, L., Batáné Vidács, I., Kumar, P., Pomázi, A., Gere, A., Eds.; Élelmiszertudományért Alapítvány Bicske: Bicske, Hungary, 2022; Abs. 29; p. 1. [Google Scholar]
- Taczman-Brückner, A.; Erdei-Tombor, P.; Mouki Mwiwi, A.; Szijj, O.; Medve, D.; Hős, C.S.; Huzsvár, T.; Kiskó, G. Biofilm formation on HDPE surface used in drinking water distribution system. In Abstracts of Lippay János–Ormos Imre–-Vas. Károly (LOV) Scientific Meeting, Budapest, Hungary, 5 November 2023; MATE: Budapest, Hungary, 2024. [Google Scholar]
- Erdei-Tombor, P.; Mouki Mwiwi, A.; Hős, C.S.; Huzsvár, T.; Kiskó, G.; Taczman-Brückner, A. Biofilm formation on model surfaces of drinking water distribution system. In Proceedings of the 5th International Conference on Biosystems and Food Engineering (ByosisFoodEng), Budapest, Hungary, 9 June 2023; p. E552, ISBN 978-615-01-8151-6. [Google Scholar]
- Zhou, C.; Hou, S.; Liu, Z.; Young, W.; Shi, Z.; Ren, D.; Kallenbach, N.R. Antimicrobial dendrimer active against Escherichia coli biofilms. Bioorganic Med. Chem. Lett. 2009, 19, 5478–5481. [Google Scholar] [CrossRef]
- Mathieu, L.; Bertrand, I.; Abe, Y.; Angel, E.; Block, J.C.; Skali-Lami, S.; Francius, G. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress. Water Res. 2014, 55, 175–184. [Google Scholar] [CrossRef]
- Fish, K.E.; Boxall, J.B. Biofilm Microbiome (Re)Growth Dynamics in Drinking Water Distribution Systems Are Impacted by Chlorine Concentration. Front. Microbiol. 2018, 9, 2519. [Google Scholar] [CrossRef]
- Ekundayo, T.C.; Igwaran, A.; Oluwafemi, Y.D.; Okoh, A.I. Global bibliometric meta-analytic assessment of research trends on microbial chlorine resistance in drinking water/water treatment systems. J. Environ. Manag. 2021, 278, 111641. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Niu, Z.; Miao, Q.; Fu, W. Study on the distribution characteristics and metabolic mechanism of chlorine-resistant bacteria in indoor water supply networks. Environ. Pollut. 2023, 328, 121640. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Shan, L.; Hu, F.; Li, Z.; Zhong, D.; Yuan, Y.; Zhang, J. Biofilm formation potential and chlorine resistance of typical bacteria isolated from drinking water distribution systems. RSC Adv. 2020, 10, 31295–31304. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Shan, L.; Zhang, X.; Hu, F.; Zhong, D.; Yuan, Y.; Zhang, J. Effects of bacterial community composition and structure in drinking water distribution systems on biofilm formation and chlorine resistance. Chemosphere 2021, 264, 128410. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Y.; Mark, E.; Magic-Knezev, A.; Pinto, A.; Bogert, B.; Liu, W.; Medema, G. Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by Source Tracker using microbial community fingerprints. Water Res. 2018, 138, 86–96. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, S.; Bao, X.; Shan, L.; Pei, Y.; Zheng, W.; Yuan, Y. Effect of outdoor pipe materials and community-intrinsic properties on biofilm formation and chlorine resistance: Black sheep or team leader. J. Clean. Prod. 2023, 411, 137308. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdei-Tombor, P.; Kiskó, G.; Taczman-Brückner, A. Biofilm Formation in Water Distribution Systems. Processes 2024, 12, 280. https://doi.org/10.3390/pr12020280
Erdei-Tombor P, Kiskó G, Taczman-Brückner A. Biofilm Formation in Water Distribution Systems. Processes. 2024; 12(2):280. https://doi.org/10.3390/pr12020280
Chicago/Turabian StyleErdei-Tombor, Patrícia, Gabriella Kiskó, and Andrea Taczman-Brückner. 2024. "Biofilm Formation in Water Distribution Systems" Processes 12, no. 2: 280. https://doi.org/10.3390/pr12020280
APA StyleErdei-Tombor, P., Kiskó, G., & Taczman-Brückner, A. (2024). Biofilm Formation in Water Distribution Systems. Processes, 12(2), 280. https://doi.org/10.3390/pr12020280