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Abstract: In this research, hydrofluoric acid (HF) was used as a leaching agent to remove silicon
impurities from titanium dioxide powder regenerated from a spent SCR catalyst. Further, the effects
of HF concentration, liquid–solid ratio, leaching temperature, and leaching time on the leaching rate
of regenerated titanium dioxide powder were investigated. The results revealed that the leaching
rate of silicon in alkali-leached samples could reach 99.47% under the following conditions: 4% HF
concentration, a leaching temperature of 50 ◦C, and a liquid–solid ratio of 5:1. When compared under
identical experimental conditions, the silicon leaching rate in the alkali leached sample using HF
surpassed that of the spent SCR catalyst. This suggests that high-temperature alkali leaching led to
the degradation of the catalyst and the glass fiber within it, rendering this process more favorable for
silicon leaching.

Keywords: spent SCR catalyst; TiO2; silicon removal; alkali leaching; hydrofluoric acid

1. Introduction

Coal-fired power plants produce large amounts of nitrogen oxides (NOx), polluting the
environment and endangering public health. Generally, thermal power plants use selective
catalytic reduction (SCR) denitration technology to reduce air pollution [1]. V2O5/TiO2-
based catalysts are recognized as the most advanced and commonly applied catalysts in
SCR technology [2]. However, the SCR catalyst loses its activity during the denitration
process due to sintering, wear, poisoning, and other factors. Typically, the service life
of an SCR catalyst is usually only 2–3 years [3]. Many power plants use coal with high
ash and high sulfur content, accelerating catalyst deactivation and shortening the service
life of the catalyst [4]. Once the catalyst loses its regeneration value due to irreversible
deactivation [5], it is discarded. The thermal power industry alone produces more than
200,000 cubic of catalyst waste every year [4]. Spent SCR catalysts contain harmful elements
such as vanadium and arsenic. If disposed of improperly, the catalyst wastes will cause soil
and water pollution, severely damaging the ecological environment [6,7].

Additionally, metals found in depleted SCR catalysts, like vanadium, tungsten, and
titanium, hold immense value in terms of industrial application. It is a waste-to-landfill
waste catalyst [8]. Thus, the resource utilization of spent SCR catalysts does not only solve
the problem of waste pollution but also brings enormous economic benefits.

TiO2 is the primary component in the SCR denitration catalyst and accounts for 70–80%
of the mass percentage of the spent catalyst [7]. Indeed, the titanium content is notably
higher compared to the titanium concentrate typically utilized in the production of titanium
dioxide. TiO2 is a transition metal oxide semiconductor material characterized by its low
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cost, non-toxicity, resistance to chemical erosion, and good light stability. It is widely used
in carrier preparation, photocatalysis, sensors, etc. [9–11]. Therefore, spent SCR catalyst
is a vital secondary resource with high economic recovery value. The typical procedure
for TiO2 recovery from spent SCR catalysts begins by leaching vanadium and tungsten.
Subsequently, the filter residue undergoes a process to eliminate silicon, aluminum, and
other impurities, resulting in the acquisition of pure TiO2 products.

The titanium separation and recovery methods include the sodium roasting method and
the strong alkali or strong acid leaching method [12,13]. Chen et al. [14] used sulfuric acid
solution (20% mass fraction) to simultaneously leach V, W, Ti, and other metals from spent SCR
catalyst and obtained titanium–tungsten carrier via hydrolysis and precipitation, which had
minimal impurities and could be used to prepare new SCR catalyst. Cheng et al. [15] reported
the use of oxalic acid and sodium hydroxide solution to leach the spent SCR catalyst. In the
process, metals other than titanium were almost completely leached. Cheng et al. also reported
that the acid-leaching process had no impact on the crystal structure of TiO2. In contrast, the
high-temperature alkali leaching process converted a part of TiO2 into amorphous sodium
titanate. Chen Yingmin et al. [16], Ma et al. [17], and Zhang et al. [18] recovered TiO2 from
spent SCR catalysts via the process of sodium roasting-hot water leaching-sulfuric acid (or HCl)
washing. Although TiO2 leaching and recovery rate can reach values > 90%, the separated
TiO2 is in mixed crystal form (anatase and rutile). Song et al. [19] mixed Na2CO3 and NaCl-KCl
with spent SCR catalysts for roasting and water leaching. The roasting temperature and the
amount of sodium carbonate were reduced by introducing molten salt into the roasting system.
Notably, the leaching residue TiO2-Na2Ti6O13 can be used as an adsorbent for heavy metal
pollutants. Wu Wenfen et al. [4] used NaOH solution to leach W, followed by sulfuric acid or
HCl to wash, activate, and then calcine to obtain anatase and rutile TiO2. Ma et al. [20] removed
silicon and aluminum from the waste catalyst by microwave-assisted alkaline leaching, and
then leached vanadium and tungsten through high-pressure alkaline leaching. Cao et al. [21]
achieved complete leaching of vanadium and tungsten elements from a spent SCR catalyst by
applying a mixed solution of hydrogen peroxide and ammonium bicarbonate. The residue
was washed, dried, and ground to obtain anatase TiO2. The crystal phase of the obtained TiO2
did not change in the ingress and egress process and therefore it can be employed as a catalyst
carrier. In summary, the published research on SCR catalyst resource utilization indicates
the possibility of separation of valuable metals—titanium, vanadium, and tungsten—from
spent SCR catalysts. Consequently, relatively pure vanadium and tungsten products could be
extracted [22–24]. However, only a few studies have focused on the purification of titanium
products. Further, the silicon impurity in the regenerated TiO2 powder was still high (>5%)
after acid leaching [25], alkali leaching 18], and alkali roasting-leaching [19]. This reduced
the purity of TiO2 products and limited their application scope. Therefore, it is necessary to
remove silicon impurities in TiO2 to obtain high-purity products.

This research aims to improve the purity of TiO2 products recovered from spent cata-
lysts. HF was employed for leaching silicon from spent catalysts, focusing on investigating
the removal of silicon in spent catalysts under different experimental conditions to provide
a feasible route to obtain high-purity TiO2 products cost-effectively.

2. Experimental System and Method
2.1. Reagent, Material, and Instrument

Analytically pure concentrated HCl with a mass fraction of 36%, HF, and sodium
hydroxide were used.

The spent SCR denitration catalyst selected was the spent honeycomb SCR catalyst
procured from a company in Ningbo. The catalyst was dusted, dried, and ground before
use. Based on the results of the XRF analysis, the SiO2, V2O5, Al2O3, and TiO2 content was
4.29%, 1.27%, 1.15%, and 86.1%, respectively. The catalyst was marked with the subscript
s since Sis represented the leaching rate of silicon in the spent SCR catalysts that had not
been treated with alkali or acid.
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The samples utilized in this experiment were derived from spent catalysts subjected to
alkali leaching followed by acid washing. The experimental conditions included leaching
with 2 mol/L NaOH, a temperature of 180 ◦C, a liquid–solid ratio of 3:1, and a reaction
time of 3 h, followed by filtration and drying for 3 h. The dried sample was pickled with
5% HCl at 70 ◦C, with the liquid–solid ratio of 3:1, and the pickling time of 3 h. It was
then filtered and washed with deionized water to pH > 5. The cleaned solid sample was
placed into a drying oven at 110 ◦C for 4 h and ground to 100~200 mesh for further use.
The sample was called an alkali-leached acid-washed sample, marked with the subscript
a, i.e., Sia represents the leaching rate of silicon in the leached sample. XRF analysis of
the sample revealed that the SiO2 content in the sample was 3.38%, the V2O5 content was
0.309%, the Al2O3 content was 0.092%, and the TiO2 content was 92.9%.

The following instruments were obtained from the respective manufacturers/suppliers:
ME104E electronic balance—Mettler-Toledo International Trading Co., Ltd., Zurich, Switzer-
land; DF-101S collector constant temperature heating magnetic stirrer—Yuhua Instru-
ment Co., Ltd., Gongyi, China; Vacuum pump—Hangzhou David Scientific and Educa-
tional Instrument Co., Ltd., Hangzhou, China; Electric thermostatic temperature drying
oven—Shanghai Jinghong Laboratory Instrument Co., Ltd., Shanghai, China.

2.2. Experimental Methods

The catalyst acid leaching silicon removal experiment was performed in a flask, in
which a plastic flask was used for HF leaching (Figure 1). The catalyst sample was ground
to 100~200 mesh. A certain amount of sample was weighed and added to the flask, followed
by the addition of the acid solution based on the specified liquid–solid ratio, and reacted
according to the set temperature and speed. A condenser tube was inserted at the top of
the flask to condense the acid solution to prevent it from evaporating due to the higher
temperature. After the reaction was completed, the heating was stopped, and the solution
was processed by vacuum filtration and then washed with deionized water to obtain the
leaching solution and wet residue. The wet residue was dried in a drying oven at 120 ◦C
for 4 h and then ground to 100~200 mesh for later use.
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Figure 1. Sketch of acid leaching system: (1) Thermostatic water bath. (2) Condensation tube.
(3) Bracket. (4) Stirrer. (5) Three-necked flask. (6) Suction flask. (7) Acid leaching solution. (8) Glass
rod. (9) Core Buchner funnel. (10) Vacuum pump. (a) acid leaching system. (b) filtration system.

The leaching rate of each element in the catalyst was calculated using Equation (1).

ηi =
Ci × V

Ci × V + mi
× 100% (1)
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where Ci is the concentration of each element in the leaching solution, g/L;
mi is the mass of each element in the leaching residue, g;
V is the total volume of the leaching solution, L.

2.3. Characterization Methods

Inductively coupled plasma optical emission spectrometry (ICP-OES) was used for
the qualitative and quantitative analysis of each element in the solution. This experiment
selected optima 9000 ICP-OES from PE company (Pocasset, MA, USA) to qualitatively and
quantitatively analyze the elements, like V, W, Si, Al, Na, Ca, and As, in the solution.

A surface analyzer (ASAP2460, Micromeritics Instrument, Norcross, GA, USA) was
used to record N2 adsorption/desorption isotherms to determine the specific surface area,
average pore size, and total pore volume of the sample.

The crystal structure of the sample was analyzed using the XRD diffractometer (X’Pert
Pro, Panalytical, Almelo, The Netherlands). The experimental instrument was an X-ray
diffractometer (Rigaku, D/max-2200, Tokyo, Japan) equipped with a Cu Kα light source
(λ = 0.15405 nm, 40 mV, 200 mA). The scanning range was 10–90◦, the scanning speed was
10◦min−1, and the scanning step was equivalent to 0.02◦.

The morphology and particle size of samples were analyzed using the Japanese Hitachi
SU-8010 scanning electron microscope (SEM). The samples were evenly dispersed on the
conductive adhesive and sprayed with gold before testing.

The X-ray fluorescence spectrometer (XRF) ZSX105e from Hitachi (Japan) was used to
test the chemical element composition and content of the sample.

3. Results and Discussion
3.1. Investigating the Influence of Experimental Conditions on Silicon Leaching from Spent Catalysts
3.1.1. Effect of Leaching Agent Concentration

The concentration of leaching agent (hydrofluoric acid; HF) on the leaching rates of
silicon, vanadium, and aluminum from spent SCR catalyst before and after alkali leaching
is compared under the following reaction conditions: temperature—50 ◦C, time—120 min,
and liquid–solid ratio—3:1 (See Figure 2). As shown in the figure, the leaching rate of
each component in the spent catalyst increases with the increase in HF concentration. For
alkali-leached samples, the silicon leaching rate is 25.63% when the HF concentration is
1%. The leaching rate increases rapidly with the increasing HF concentration; when the
HF concentration increases to 4%, the leaching rate of silicon reaches 95.74%. The increase
in HF concentration has little effect on the silicon leaching rate. The silicon leaching rate
reached 99.13% with a 12% HF concentration, nearly achieving complete leaching. In
alkali-leached samples, the HF has little effect on the leaching efficiency of vanadium and
aluminum. When the concentration of HF was 12%, the leaching rates of vanadium and
aluminum were recorded as 33.16% and 19.12%, respectively. This was attributed to the
low content of aluminum and vanadium in the alkaline leaching sample. For the spent
SCR catalysts without alkali leaching, HF was found to have a minor leaching effect on
these three elements. When the HF concentration was 1%, the leaching rates of silicon,
vanadium, and aluminum were 21.87%, 9.68%, and 21.67%, respectively.

Further, the leaching rates of silicon, vanadium, and aluminum were 92.2%, 54.93%,
and 76.05%, respectively, when the HF concentration was increased to 8%. The continuous
increase in HF concentration had minimal effect on the leaching rate of the catalyst. It was
found that HF has a more significant impact on silicon leaching in alkali-leached samples,
implying that the damage to the catalyst structure during the alkali-leaching process is
more conducive to silicon leaching.
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3.1.2. Influence of the Liquid–Solid Ratio

Figure 3 shows the effect of the liquid–solid ratio on the leaching rates of silicon,
vanadium, and aluminum from different samples studied under a reaction temperature of
50 ◦C, a reaction time of 120 min, and an HF concentration of 2%, and 4%. The leaching
rates of silicon, vanadium, and aluminum increase significantly with increasing the liquid–
solid ratio since a high liquid–solid ratio is more conducive to the complete mixing of
the leaching agent and sample. Consequently, this mixing amplifies the contact area for
reactions and diminishes the diffusion resistance of soluble metals into the solution, thereby
facilitating the leaching of metals.

For alkali-leached samples, when the concentration of HF is 2%, and the liquid–solid
ratio is 10:1, and the silicon leaching rate reaches 99.46%. Additionally, increasing the
liquid–solid ratio at this concentration has little effect on the leaching rate of vanadium
and aluminum; the leaching rate being <10%. When the HF concentration is 4% and the
liquid–solid ratio is 3:1, the leaching rate of silicon reaches 95.74%, indicating that a higher
liquid–solid ratio increases the concentration gradient in the solution under the same total
concentration of HF. Consequently, the mass transfer rate during leaching improves, which
is more conducive to metal leaching.

The leaching efficiency of these three elements also increases with the increase in the
liquid–solid ratio for spent SCR catalysts without acid and alkali treatment. But when
the HF concentration is 4% and the liquid–solid ratio is 5:1, the leaching rates of silicon,
vanadium, and aluminum are 88.77%, 44.08%, and 75.08%, respectively. Further increase in
the liquid–solid ratio has little effect on the leaching of the catalyst. In contrast, the increase
in the liquid–solid ratio increases the leaching agent dosage, which is not conducive to the
subsequent processing of the leaching solution. Therefore, the liquid–solid ratio should not
be higher than 5:1 in actual application.

3.1.3. Effect of Leaching Temperature

The leaching rates of silicon, vanadium, and aluminum under different leaching
temperatures are studied under the conditions of a liquid–solid ratio of 3:1, reaction time
of 120 min, and HF concentration of 2% and 4% (See Figure 4). The results indicated that
higher leaching temperatures inhibited silicon leaching. When the HF concentration was 2%
and the leaching temperature was 30 ◦C, the leaching rates of silicon in the alkali leached
sample and spent catalyst were 67.18% and 41.69%, respectively. When the temperature
increased to 90 ◦C, the leaching rates reduced to 52.5% and 37.73%, respectively.
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Figure 3. Effect of liquid–solid ratio on leaching efficiency. (a) HF concentration is 2%; (b) HF
concentration is 4%.

However, when the concentration of HF increased to 4%, increasing temperature
promoted silicon leaching in the alkali-leached sample. The leaching rate of silicon at 30 ◦C
and 60 ◦C was 93.22% and 99.46%. Thus, at 60 ◦C, there was almost complete leaching.
Further increase in temperature had little effect on the silicon leaching. Elevating the
leaching temperature can moderately enhance the leaching of vanadium and aluminum.
However, the increased reaction temperature leads to increased energy consumption
for heating. Consequently, the optimal leaching temperature was established as 60 ◦C,
considering both energy input and return efficiency.
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3.1.4. Effect of Leaching Time

The leaching rates of silicon, vanadium, and aluminum under different leaching
times were studied under a liquid–solid ratio of 3:1, an HF concentration of 4%, and a
leaching temperature of 50 ◦C (See Figure 5). The leachings of silicon, vanadium, and
aluminum in the catalyst were rapid, with the leaching efficiency reaching equilibrium in
5 min. As the leaching time extends, the leaching efficiency experiences a gradual increase.
Exploring the thermodynamic relationship of liquid–solid leaching reactions unveiled
that the magnitude of chemical potential serves as a criterion to determine the direction
and restriction of substance movement among components. When a substance exists in
two phases, it shifts from the phase with higher chemical potential to the phase with
lower chemical potential. Once the chemical potentials in the two phases become equal,
the transfer halts, and the system attains equilibrium. During the leaching reaction, the
chemical potential difference of substance in the liquid and solid phases decreases. At the
point where the chemical potential reaches zero, the leaching reaction achieves equilibrium.
During this phase, extending the alkali leaching time does not enhance the leaching rate. In
industrial settings, optimizing productivity necessitates balancing high leaching efficiency
with shorter leaching durations. The research outcomes recommend a 60 min leaching time
as a better compromise meeting both requirements.
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3.2. Influence of Acid Leaching on the Structure and Morphology of Catalysts
3.2.1. XRD Test Analysis

XRD was used to analyze the changes in the crystal phase structure of the spent
catalyst, alkali leaching sample, spent catalyst-HF acid leaching sample, and alkali leaching
sample-HF acid leaching sample. The X-ray diffractogram displayed in Figure 6 revealed
that only the characteristic diffraction peaks of anatase TiO2 appeared in the XRD spectrum
of the spent SCR denitration catalyst. No other diffraction peaks of other metal oxides were
observed, indicating that other metal oxides were distributed on the TiO2 surface in an
amorphous or highly dispersed state. In the alkali leaching sample, three small diffraction
peaks at 13.9◦, 24.2◦, and 34.6◦ were observed in the XRD spectrum, in addition to the
anatase TiO2 crystal phase. Comparing the three peaks with the powder diffraction file
(PDF) in the standard database revealed that these peaks corresponded to the characteristic
diffraction peaks of hydrated sodium aluminosilicate 1.08Na2O·Al2O3·1.68SiO2·1.8H2O
(PDF 00-031-1271). The presence of Si and Al in the SCR catalyst was attributed to the fact
that a part of the titanium silicon powder (TiO2-SiO2) and a small amount of glass fiber
was used in the catalyst generation process—which was primarily present in the form of
SiO2, Al2O3, and aluminosilicate and the reactions during the alkali leaching process were
relatively complex. The XRD results revealed that apart from the soluble Na2SiO3 and
Na2AlO2, a new sodium aluminosilicate structure was also formed during alkaline leaching,
the reaction formulas are shown in (2)~(5). When HF was utilized for acid leaching, the
sodium aluminosilicate structure disappeared, and only the characteristic diffraction peaks
of anatase TiO2 were observed in the XRD spectrum, indicating that HF reacts with sodium
aluminosilicate to leach silicon.

Al2O3 + 2NaOH(aq) + 3H2O = 2Al(OH)−4(aq) + 2Na+
(aq). (2)

SiO2 + 2NaOH = Na2SiO3 + H2O (3)

Al2O3·2SiO2·2H2O(s) + 2NaOH(aq) + 5H2O

= 2Al(OH)−4(aq) + 2Si(OH)4(aq) + 2Na+
(aq)

(4)

xNaAlO2(aq) + yNa2SiO3(aq) + (y + z)H2O

= Nax

[
(AlO 2)x (SiO 2)y

]
·zH2O + 2yNaOH(aq)

(5)
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3.2.2. Specific Surface Area Analysis

Tables 1 and 2 illustrate the effects of HF concentration on the surface structural proper-
ties of alkali-leaching samples and spent catalysts, respectively. The findings demonstrated
that, in the alkali leaching sample, employing HF for leaching initially led to a decrease in
the specific surface area, followed by an increase as the HF concentration rose. When the HF
concentration increased from 0 to 2%, the specific surface area dropped from 81.98 m2/g
to 74.01 m2/g, and the average pore size increased from 12.7 nm to 13.1 nm. As the HF
concentration increased, the specific surface area of the alkali leaching sample increased
again, while the average pore size decreased. When the HF concentration reached 12%, the
specific surface area increased to 78.97 m2/g, whereas the average pore size was 12.2 nm.
In contrast to the alkali leaching sample lacking HF treatment, both the specific surface area
and average pore size were reduced. This alteration might be attributed to the addition
of hydrofluoric acid, causing structural disruption in the aluminosilicate. Consequently,
some pores collapsed, and others were obstructed, leading to a decline in the catalyst’s
specific surface area and an increase in the average pore size. When the HF concentration
is further increased, the leaching rates of silicon and aluminum increase and some small
pores recover, which, in turn, increases the specific surface area. However, the average pore
size decreases.

Table 1. Effect of HF concentration on the surface structural characteristics of the alkali leaching sample.

Sample HF Concentra-
tion/%

Specific Surface
Area/(m2·g−1)

Total Pole
Volume/(cm3·g−1)

Average Pore
Size/(nm)

1 0 81.98 0.279 12.7
2 1 77.92 0.269 12.9
3 2 74.01 0.266 13.1
4 4 76.93 0.264 12.6
5 8 78.24 0.269 12.5
6 12 78.97 0.269 12.2

Table 2. Effect of HF concentration on surface structural characteristics of spent catalyst.

Sample HF Concentra-
tion/%

Specific Surface
Area/(m2·g−1)

Total Pore
Volume/(cm3·g−1)

Average Pore
Size/(nm)

Spent catalyst 0 47.88 0.236 18.5
1 1 46.92 0.234 18.1
2 2 58.73 0.285 18.04
3 4 61.51 0.283 17.4
4 8 62.17 0.296 17.1
5 12 65.34 0.358 19.3

For the spent SCR catalyst, the specific surface area and pore volume of the catalyst
decrease upon leaching with 1% HF. This decrease might also be caused by the collapse of
some pores. With increasing HF concentration, the specific surface area and pore volume of
the catalyst increase. When the HF concentration is 12%, the specific surface area and pore
volume increase to 65.34 m2/g and 0.358 cm3/g, respectively, thereby implying that during
the leaching process, the destruction of aluminosilicate structure and vanadium leaching
may restore some of the original pores, while generating additional pores, which increases
the catalyst’s specific surface area and pore volume.

3.2.3. Morphology Analysis

Figure 7 shows the effect of HF concentration on catalyst morphology. The SEM
image showed that for the alkali leaching sample, when the HF concentration was 1%,
there were minor agglomerations on the surface of the sample, which may be attributed
to the blocking of pores due to the destruction of the aluminosilicate structure. As the
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concentration of HF continued to increase, the particle size of the alkali leaching sample
became significantly smaller, and finer primary particles appeared, which were probably
part of the catalyst structure destroyed by HF, resulting in fine particles and smaller pores
and reducing the average pore size, which was consistent with the results of the specific
surface area. For the spent SCR catalysts that had not been treated with acid and alkali,
post-HF leaching, the dense structure of the catalyst surface became fluffy, and the particle
size reduced with an increase in HF concentration, which was consistent with the surface
structural data presented in Table 2. This change can primarily be attributed to the leaching
of aluminosilicate.
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Based on the above experimental results, the optimal experimental conditions for
alkali-leached samples were adjusted as follows: HF concentration of 4%, a liquid–solid
ratio equal to 5:1, and a temperature of 50 ◦C. The obtained solution was filtered and
washed until the pH > 5, followed by placing it in a drying box to dry at 120 ◦C for 4 h, and
then ground to obtain a powder. The obtained sample was analyzed via X-ray fluorescence
spectrum as shown in Table 3. The silicon was efficiently eliminated from the sample, with
a residual content of merely 0.0819%. Additionally, the levels of other impurities in the
catalyst were relatively low, resulting in a TiO2 purity of 97.5%. This sample holds potential
as a raw material for fabricating new catalysts, thereby enabling the resource recycling of
TiO2 from spent SCR catalysts.

Table 3. Analysis of components of acid-leached sample.

Element V2O5 TiO2 WO3 SiO2 Al2O3 CaO

Content (%) 0.15 97.5 1.84 0.0819 0.014 0.009
Element MgO Fe2O3 Na2O K2O As2O5

Content (%) 0.0015 0.139 not detected not detected 0.036

4. Conclusions

This research utilized HF leaching to treat both the alkali-leached catalyst and the
spent SCR catalyst sample to eliminate silicon from the catalyst and enhance the purity of
TiO2. The influence of acid leaching conditions on catalyst leaching was investigated, and
the variations in the physical structure and microscopic morphology of the catalyst were
analyzed. The main conclusions from the research are as follows:

(1) HF can react with silicon in the catalyst, destroying the structure of aluminosilicate in the
catalyst, thereby facilitating silicon and aluminum leaching. Increasing HF concentration
and liquid–solid ratio improves the leaching efficiency of silicon, vanadium, and aluminum
in the sample by acid leaching. The increase in leaching temperature also inhibits the
leaching of silicon in the sample while promoting the leaching of vanadium and aluminum.
When the HF concentration is 4%, the liquid–solid ratio is 5:1, and the temperature is 50 ◦C,
the leaching rate of silicon in an alkali-leached sample reaches 99.47%;

(2) Under identical experimental conditions, the silicon leaching rate in the alkali-leached
sample with HF was higher compared to the spent SCR catalyst. This suggests that
high-temperature alkali leaching damages the catalyst and the glass fiber within it,
thereby favoring silicon leaching;

(3) For alkali-leached samples, HF treatment reduces the catalyst’s specific surface area to
a certain extent. The particle and average pore size of the catalyst also decreases. In
the spent SCR catalyst, the damage to the aluminosilicate structure and the leaching
of vanadium restores some pores in the catalyst and forms some new pores, thereby
increasing the specific surface area and the pore volume of the catalyst.
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