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Abstract: Various studies have been conducted on Multi-Agent Reinforcement Learning (MARL) to
control multiple agents to drive effectively and safely in a simulation, demonstrating the applicability
of MARL in autonomous driving. However, several studies have indicated that MARL is vulnerable
to poisoning attacks. This study proposes a ’locality-based action-poisoning attack’ against MARL-
based continuous control systems. Each bird in a flock interacts with its neighbors to generate the
collective behavior, which is implemented through rules in the Reynolds’ flocking algorithm, where
each individual maintains an appropriate distance from its neighbors and moves in a similar direction.
We use this concept to propose an action-poisoning attack, based on the hypothesis that if an agent
is performing significantly different behaviors from neighboring agents, it can disturb the driving
stability of the entirety of the agents. We demonstrate that when a MARL-based continuous control
system is trained in an environment where a single target agent performs an action that violates
Reynolds’ rules, the driving performance of all victim agents decreases, and the model can converge
to a suboptimal policy. The proposed attack method can disrupt the training performance of the
victim model by up to 97% compared to the original model in certain setting, when the attacker is
allowed black-box access.

Keywords: reinforcement learinng; multi-agent reinforcement learning; AI security; poisoning attack;
adversarial attack

1. Introduction

Deep reinforcement learning is a method used to approximate optimal policies for
sequential decision-making problems defined as Markov Decision Process (MDP) [1], using
deep neural networks that are attracting attention in various research fields such as robotics,
autonomous driving, and battlefield strategies [2–4]. Due to the nature of those fields, it is
essential to consider environments where many agents train and test together, or where
many agents and human agents work together collaboratively, competitively or in combi-
nation, so studies on multi-agent reinforcement learning (MARL) are also in the spotlight.
Recently, studies using MARL are actively conducted to control multiple agents to drive
effectively and safely in simulation, showing its applicability in auotonomous driving envi-
ronment. However, reinforcement learning models are vulnerable to adversarial attacks [5],
including poisoning attacks [6]. Liu et al. [7] proposed an action-manipulation attack in
which an attacker can manipulate actions during the training phase by changing the action
signal selected by the user in a multi-armed bandit problem. This study demonstrated
that an attacker can force the target agent to learn a suboptimal policy as intended by the
attacker. In a subsequent study [8], an action-poisoning attack was proposed, which is an
extended action-manipulation attack in multiarmed bandits that may be applied to general
reinforcement learning models to investigate the potential risks of action-manipulation
attacks in the MARL model with a discrete action space [9,10].
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The vulnerabilities of single-agent RL models also exist in MARL models, making
them susceptible to action-poisoning attacks. Despite this risk, MARL is frequently applied
in autonomous driving models owing to its superior performance achieved through inter-
agent cooperation compared with single-agent reinforcement learning [11]. The action
space of an autonomous driving model can be discrete or continuous; however, common
tasks included in such models, such as steering and acceleration, have continuous values.
Given the safety-critical characteristics of autonomous driving and the risk of fatal damage,
it is necessary to evaluate the vulnerability to action-poisoning attacks in MARL-based
autonomous driving models with a continuous action space.

Poisoning attacks during the training of autonomous driving systems using MARL can
be dangerous. These attacks disrupt the learning process, leading to unsafe driving behavior.
For example, cars might learn the wrong way to handle traffic situations, increasing the
chance of accidents. This is a big concern, especially since real-world driving is complex
and always changing. When these attacks affect how autonomous agents make decisions
together, it can cause major safety issues. This shows why having strong and reliable
training methods is crucial for autonomous driving technology.

To the best of our knowledge, despite this critical importance, no previous study
has investigated action-poisoning attacks on the MARL-based continuous control of au-
tonomous driving models. Therefore, we propose a black-box action-poisoning attack
against the continuous control of an autonomous driving model by using target actions
that violate Reynolds’ rules of a flocking algorithm [12], which implements the flocking
behavior of birds. In the flocking algorithm, individuals in the flock act in consideration
of their neighbors and generate collective behavior. When all agents in the MARL-based
autonomous driving model are viewed as a flock, if the flock includes target agents that
are not compatible with performing actions that are significantly different from those of
their neighbors, all agents except the target agent may be disturbed. By identifying and
analyzing the susceptibility of MARL-based autonomous models to locality-based action-
poisoning attacks, our study aims to contribute to the development of more robust training
methodologies. The main contributions of our study are as follows:

1. First, we execute an action-poisoning attack against the MARL-based continuous
control system and force the victim model to be trained as a suboptimal policy.

2. We propose an action-poisoning attack that uses a target action that changes dynami-
cally with the observation of the target agent.

3. We show that an attacker who allows only black-box access can disrupt training by
using target actions that violate Reynolds’ rules.

2. Backgrounds
2.1. Multi-Agent Reinforcement Learning

Sequential decision making in deep reinforcement learning (DRL) can be formulated
as a Markov Decision Process (MDP), where at time step t, the agent observes state st and
chooses action at according to policy π, and receives the reward rt and observes the next
state in time step t + 1. The cumulative reward is affected by discount factor γ. An optimal
policy π* is one that maximizes the expected value of the reward obtained by an agent
when following the policy. The goal of reinforcement learning is to obtain an optimal policy
through training. The discounted cumulative reward sum is obtained as follows where γ is
the discount factor and r(st)is the reward at time step t:

Rt =
T

∑
t′=t

γt′−tr(st) (1)

There are two main categories of DRL algorithms. In value-based learning, the al-
gorithm performs actions based on a value function that calculates the expected value of
the reward in each state. When the optimal action-value function is learned, the optimal
policy can be derived by selecting the action that can receive the highest reward according
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to the value function. In policy-based learning, the model trains the policy represented as a
probability distribution of actions and determines a policy that maximizes the expected
cumulative reward. Value-based algorithms, such as Deep Q-networks (DQN), can find it
challenging to obtain the optimal action-value function, and policy-based algorithms, such
as REINFORCE, may not converge well during training. Therefore, algorithms such as ac-
tor–critic have been developed to combine the advantages of both value- and policy-based
learning algorithms.

Multi-agent reinforcement learning is a subfield of reinforcement learning in which
multiple agents interact with each other in a shared environment and learn a policy that
can obtain higher rewards through cooperative or competitive actions. MARL is more
complex and challenging than single-agent reinforcement learning because it involves
multiple agents in a shared environment. The dimensions of the joint action space in
MARL increase exponentially, which leads to an increase in the computational complexity
of MARL algorithms. In MARL, multiple agents concurrently learn and interact with the
environment during training. Because the joint action of all agents affects the subsequent
state that each agent observes, the agents must adapt to the changing policies of the other
agents. This is one of the reasons why the stable convergence of MARL is difficult. In
addition, in a partially observable environment, agents are unable to observe the full
state and make decisions based on partial observation, which can lead to difficulties in
learning [13,14].

Multi-agent reinforcement learning (MARL) in autonomous driving simulations is
increasingly important for mimicking complex, real-world traffic scenarios. It enables
autonomous vehicles, treated as individual agents, to interact with and learn from the
behaviors of other vehicles, pedestrians, and traffic signals, which is vital for developing
advanced, safe driving strategies. The recent trend in this field is towards creating more
intricate and lifelike simulations. In these simulations, the actions of one agent can have
significant effects on the entire system, promoting not only individual learning but also
collaborative strategies. This aspect of MARL is particularly beneficial for enhancing traffic
flow and safety. The inherent complexity and unpredictability of traffic scenarios in the
real world make MARL an essential tool for training autonomous vehicles in environments
that closely resemble actual driving conditions.

2.2. Adversarial Attacks against RL in Training Phase

In a poisoning attack, an attacker injects malicious samples into the training data
to disrupt the models’ learning process. The model learns from the malicious data and
makes undesirable predictions during the inference phase. A backdoor attack [15] is a
method in which an attacker inserts a backdoor trigger into the training data. When
the input matches the specific trigger designated by the attacker, the model behaves as
intended by the attacker. Both attacks can undermine the performance and robustness of the
model. Adversarial attacks in the training phase, such as poisoning and backdoor attacks,
are well-known vulnerabilities of supervised learning methods such as deep learning
models [16]. Recent studies demonstrated that reinforcement learning is vulnerable to
these types of attacks. Recent studies have also investigated poising attacks on RL and
identified vulnerabilities. Ma et al. [17] conducted a reward poisoning attack, allowing
an attacker to access the training batch data and determine the target model’s algorithm.
The attacker arbitrarily modifies the reward and shows that changing only the reward can
sufficiently poison the policy. Rakhasha et al. [18] proposed a method in which an attacker
can manipulate rewards or transition dynamics in an MDP to force the agent to execute the
target policy chosen by the attacker. The proposed attack is applicable in both offline and
online settings, and they also provide optimization framework for finding optimal stealthy
attacks. Zhang et al. [19] studied a reward poisoning attack in which an attacker added
perturbations to the environmental reward. This study also introduced adaptive attacks,
which are more time-efficient than non-adaptive attacks, depending on the learning process.
Sun et al. [20] indicated the unrealistic aspects of previous studies that assumed the attacker
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knows the MDP and proposed the Vulnerability-aware Adversarial Critic Poison (VA2C-P)
algorithm, which does not require any prior knowledge of the environment. Compared
to environmental-poisoning attacks, which require the direct manipulation of rewards or
MDP models, action-poisoning attacks assume that an attacker can manipulate actions,
limiting the ability of the model. The proposal of the attack corresponds to [7], a paper
by Liu et al. proposed a new attack strategy called an action-manipulation attack in the
multi-armed bandit [21] model [7]. In their study, an attacker manipulates the user’s actions
by changing the arm selected by the user to the target arm selected by the attacker. The
attacker may or may not know the true mean reward for each arm. In an Oracle attack,
when the attacker knows the true mean reward, they can decide which is the worst scenario
and simply manipulate the user to pull the worst arm instead of the arm selected by the
user. If the attacker does not know the true mean reward, they can estimate the mean
rewards and use lower confidence bounds (LCBs) to select the arm with the smallest LCB
as the non-target arm. This attack can force the user to pull the target arm, frequently at a
logarithmic cost. In a subsequent study, Liu et al. proposed an attack on an RL model called
an action-poisoning attack [8]. In their study, the attacker can also manipulate the action of
the RL agent by assuming that the attacker is sitting between the agent and environment,
and they force the agent to learn the target policy chosen by the attacker. They proposed a
white-box attack called an α-portion attack that can force the RL agent to choose actions
following the target policy and proposed a black-box attack called an LCB-H attack that
nearly matches the performance of the α-portion attack.

The MARL model may have the vulnerabilities of other RL models; however, most
studies have focused on single-agent settings, resulting in insufficient studies on poisoning
and backdoor attacks on MARL. Zheng et al. [22] proposed a black-box poisoning attack
method called the state noise pooling attack (SNPA) and a white-box backdoor attack
method called the target action-poisoning attack (TAPA) against the MARL model with
a discrete action space. SNPA modifies the observation of an agent, and TAPA injects a
backdoor system by manipulating the reward function and action of an agent to trigger
the target action selected by the attacker. The proposed method demonstrates that it is
sufficient to manipulate only one agent to lower the performance of the c-MARL model
with a discrete action space.

Several studies have shown above that MARL models are vulnerable to poisoning
and backdoor attacks. Furthermore, the research about action-poisoning attacks in MARL-
based autonomous driving models becomes more important due to the growing interest of
MARLs in which the action of multiple agents in shared environments can significantly
impact outcomes in complex systems such as autonomous driving. The growing use
of MARL in safety-critical domains, such as autonomous driving, necessitates thorough
security research for MARL models. As MARL models become more prevalent in these
applications, their vulnerability to security risks increases. Therefore, it becomes crucial
to enhance the security of these models, especially in the context of continuous action
spaces common in autonomous driving. But, no previous studies have been conducted on
action-poisoning attacks specifically targeting MARL models with continuous action spaces,
particularly considering the continuous control systems of autonomous driving models.
Therefore, we propose a locality-based action-poisoning attack against the continuous
control systems of autonomous models to investigate and analyze the potential risks of
autonomous driving models with safety-critical characteristics.

2.3. Social Interaction of Autonomous Driving

Various approaches exist for modeling social interactions between autonomous driving
vehicles. A popular approach is a swarm/flocking-based model [23,24]. In a multivehicle
traffic system, individual agents pursue their own goals while interacting with neighboring
agents and strive to achieve global coordination, similar to the behavior of flocks or swarms.
Flocking systems share some attributes with the particle system and follow Reynolds’
rules, which dictate that each agent avoids collisions with each neighbor (separation),
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attempts to stay close to neighbors (cohesion), and matches the heading and velocity of
its neighbors (alignment). However, unlike the flocking behavior found in birds, flocking
in cooperative autonomous driving occurs in 1D environments, especially on roads, and
the communication found in human drivers differs from that of birds. In this respect,
Park et al. [25] proposed modified Reynolds rules for cooperative autonomous vehicles:

• Cohesion: Minimizing the distance between adjacent vehicles in the same lane im-
proves road throughput and fuel efficiency.

• Separation: Maintaining a safe distance between adjacent vehicles in the same lane
with optional lane changes.

• Alignment: Replacing desirable velocities, such as the road speed limit or the most
fuel-efficient speed when heading control is not required.

A previous study discussed the importance of mimicking the social interactions and
behaviors of human drivers in autonomous driving scenarios [26]. Additionally, the
physical laws and natural behavior of animal swarms help improve the cooperation of
autonomous vehicles on the road. By combining these two approaches, researchers can
create models and algorithms that enable multiple vehicles to navigate complex driving
scenarios safely and efficiently while also considering the social and behavioral aspects of
human driving in the real world.

3. Preliminaries
3.1. Proximal Policy Optimization (PPO)

Proximal policy optimization (PPO) [27] represents a significant advance in policy gra-
dient methods for reinforcement learning. It simplifies the complex computations involved
in its predecessor, trust region policy optimization (TRPO), by approximating the surrogate
objective function using first-order methods. This surrogate objective is designed to ensure
that the policy updates do not deviate significantly from the previous policy, thus maintain-
ing a stable learning progression. The PPO algorithm achieves this by employing a clipping
mechanism in its objective function that acts as a penalty. Clipping prevents the ratio of
the new to old policy probabilities from exceeding a predefined range, denoted by the
hyperparameter. This range serves as a trust region, ensuring that updates are adequately
significant to improve the policy but not large enough to cause performance degradation
due to excessive changes. Furthermore, PPO demonstrated superior performance for
various benchmarks. It achieves higher scores than its counterparts in a shorter training
period, making it both efficient and effective. This efficiency is a key reason why PPO has
become one of the most popular algorithms for reinforcement learning tasks. PPO uses the
advantage function that is provided by Schulman et al. [27] as Aπ(s, a) = Qπ(s, a)− Vπ(s),
which allocates greater importance to relatively better actions at a state and decreases
variance where st is the current state, a is the action, and Q(s, a) is the estimated Q-value of
taking action a in state s, and V(s) is the estimated value of being in state s. PPO introduced
its surrogate objective function in Equation (2).

LCLIP(θ) = E
[
min(r(θ)At, clip(r(θ), 1 − ϵ, 1 + ϵ)Ât)

]
, (2)

where:

• θ represents the parameters of the policy.

• r(θ) = πθ(at |st)
πθold

(at |st)
is the probability ratio of the action under the new and old policies.

• At is an estimator of the advantage function at time t.
• ϵ is a hyperparameter that defines the clipping range to constrain r(θ).

This objective function strikes a balance between taking larger policy steps for im-
provement and avoiding overly large updates that may lead to a decrease in performance.
By focusing on this balance, PPO has carved out a niche in the sphere of reinforcement
learning, demonstrating its capability to maintain steady advancement while avoiding
the pitfalls of dramatic policy shifts. Its impact in the field is indicated by its considerable
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adoption and adaptation to various complex environments, highlighting its versatility and
strength. Note that the exact form of the multi-agent objective function may vary based on
the specific cooperative or competitive dynamics of the environment.

3.2. IPPO and MAPPO

IPPO and MAPPO are refined adaptations of the PPO algorithm designed for multi-
agent situations. Schroeder et al. [28] conceptualized these algorithms to address coopera-
tive multi-agent reinforcement learning (MARL) frameworks and to handle the complexities
of Decentralized Partially Observable Markov Decision Processes (Dec-POMDP). Of the
two, IPPO is noteworthy for its methodology, which allows each participating agent to
independently employ a PPO algorithm. This independent application focuses on improv-
ing individual policies based on each agent’s unique experiences in the environment. This
approach allows agents to learn and adapt in an environment where they are unaware of
their peers’ actions, which offers significant advantages in non-stationary environments.
The IPPO’s embedded independent learning mechanism enhances the stability of the
system by isolating each agent’s policy shifts effectively, reducing the interdependencies
between the agents. However, this approach, despite its simplicity and computational
efficiency, may not fully capture the entire range of complexities linked to inter-agent
interactions, particularly in situations that require high levels of cooperation or competition
among agents. In IPPO, separate policies are learned for each agent, with an option for
centralized critics. MAPPO is designed for situations where multiple agents work together
on a shared task. It combines the advantages of Centralized Training and Decentralized
Execution (CTDE) by utilizing a shared policy and critic function across all agents during
training. This centralization fosters better collaboration amongst agents, as they learn to
optimize collective outcomes through shared experiences. MAPPO’s approach proves to be
efficient in cooperative multi-agent environments wherein agents work together towards a
common purpose. Both IPPO and MAPPO have showcased notable enhancements over
conventional methods in various scenarios. The versatility of these algorithms is evident in
their capability to adjust to numerous complexities of multi-agent interactions.

3.3. CoPO

CoPO [29] advanced the performance of the IPPO algorithm by introducing neighbor-
hood rewards to act cooperatively with neighbor agents, inspired by Mean Field Theory [30].
CoPO introduced the Local Coordinate Factor (LCF), which controls the amount of concern
neighborhood rewards. As the Local Coordinate Factor (LCF) increases, the system pro-
motes more altruistic behaviors, while a decrease in LCF leads to more selfish actions being
learned. CoPO maximizes for each agent advantages of neighborhood and individuals for
each agent. Where the policy of the i-th agent is θi and the individual and neighborhood
advantages are Ai

Ind and Ai
Nei, the objective function is as follows:

Li(θi, P) = E(s,a)∼πθi
(·),ϕ∼P

[
min(Air(θ), Ai · clip(1 − ϵ, 1 + ϵ, r(θ)))

]
for i ∈ I where Ai = Ai

Ind cos(ϕ) + Ai
Nei sin(ϕ)

(3)

The LCF ϕ is derived from the local coordinate distribution P(µϕ, σϕ). The parameters
µϕ, σϕ are learned by the gradients computed from the sum of global rewards determined
by [µϕ, σϕ]T . Note that ϕ is shared with all agents. CoPO showed better results than other
DRL algorithms on Metadrive [31] multi-agent autonomous driving simulation tests in
which the agents exhibited cooperative behavior. Note that ϕ is shared with all agents.
CoPO showed better results than other DRL algorithms on Metadrive [31] multi-agent
autonomous driving simulation tests in which the agents exhibited cooperative behavior.
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4. Locality-Based Action-Poisoning Attack

We propose a novel type of adversarial attack in the training phase against MARL
models. This attack is designed to be more difficult to detect and to have a significant
impact with minimal manipulation. It assumes a scenario where the attacker manipulates
one target agent’s action among many. The attacker has only black-box access, where
they cannot know the model’s architecture or parameters and must execute an action-
poisoning attack using only the target agent’s observation. In MARL-based autonomous
driving models, each agent references the position, speed, and other relevant factors of
its neighboring agents to avoid collisions and navigate efficiently. Based on this fact, our
proposed method assumes that an attacker manipulates the behavior of the target agent
based on the behavioral information of the surrounding agent. The target action of the
target agent flexibly changes with each time step according to the observation.

As shown in Figure 1, the proposed method assumes an attacker manipulates the
action between the environment and the target agent. The target action is based on the
action information of neighbors. This attack aims to change the action of a single agent
such that it can affect the learning of all victim agents and prevent them from converging
to an optimal policy π* in the continuous control system of autonomous driving models.

The relationship between the attacker’s target action and the actions of neighboring
agents is shown in Figure 2. Here, the attacker selects a target action that differs significantly
from the overall action of the neighboring agents in three ways. The detailed method for
the proposed attack is presented in Algorithm 1. It should be noted that the success of an
attack relies on the assumption that the agent references local information and that the
victim agent is significantly affected by the unexpected actions of its neighbors. Therefore,
target algorithms were selected for the proposed attack method, which determines the
ego agent’s action based on the neighboring agents’ rewards or uses the mean action of
neighboring agents as the action of an ego agent.

Algorithm 1: Locality-based Action-Poisoning Attack
Input: State space S, action space A, time step h, set of agents I , number of

episodes K, number of timesteps H, agent index i, target policy π, LiDAR
radius Li, hyperparameter ω

Output: —
1 Initialize all state si

h ∈ S and action ai
h ∈ A for timestep h, set of agents I for

episode k
2 for episode k = 1 to K do
3 for timestep h = 1, 2, . . . , H do
4 forall agents i ∈ I do
5 if i is the target agent then
6 Observe state si

h, detect neighbor in Li
7 if len(neighbors) > ω then
8 Replace ai

h with poisoned action a∗i
h

9 else
10 ai

h = π(si
h)

11 else
12 ai

h = π(si
h)

13 Environment receives action ai
h or poisoned action a∗i

h
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Figure 1. The attacker manipulates the action of the target agent between the environment and the
agent. The attacker chooses the target action based on the action information of the neighboring agent.
The neighbor shown in this figure is arbitrarily set for description. The attack action manipulated by
the attacker is passed to the environment.

Figure 2. Here, the red car represents the target agent selected by the attacker, and the black car
represents the neighbor agent detected within the radius of the target agent’s LiDAR. The attacker
selects the target action that deviates significantly from the average action (the gray arrow with a
dotted line) of the neighboring agents.

4.1. Problem Formulation

Multiagent reinforcement learning is an effective method for training self-driving
agents within a partially observable Markov decision process (POMDP) that limits observa-
tions of the environment. In real-world driving scenarios, vehicles have limited observation
capabilities and must interact with other vehicles without having complete knowledge
of their maps and traffic conditions. In a multiagent setting, this problem is defined as a
multiagent partially observable Markov decision process (MAPOMDP). When each agent’s
decision making is independent, it is referred to as a decentralized POMDP (Dec-POMDP).

We define our problem as a Dec-POMDP represented as tuple < S, {Av,At}P, R, Ov, Ot,
h, γ > and S is a set of all states, P is the transition probability, R =< r1, r2, r3, · · · , rn > is
a tuple of rewards that each agent Ai received excluding the victim agent Av. Oi means the
observations of agent Ai, h as a time horizon, and γ is the discount factor. The model tries
to find the Θ maximized objective in Equation (4) where a is a joint action of local or global
agents, derived from policy πθ .

J(Θ) = Σh
t=0Es∈S,a∼πΘ(s)(γ

tR(s, at)) (4)

Our action-poisoning attack changes the action of one target agent at each training
time step, disturbing the convergence to the optimal policy π∗ by reducing the rewards of
its neighboring agents.
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4.2. Attacker’s Constraint and Capability

In an action-poisoning attack, the attacker disrupts the performance of the victim
model by manipulating the actions of the target agent, which is under the attacker’s full
control. As the proposed method only allows black-box access, the attacker has no prior
knowledge of the environment or victim model (architecture, parameters, etc.) and can
know the states and actions generated during the interaction between all agents and the
environment. In contrast to other attack methods that require direct access to the victim’s
observation space or reward function, an action-poisoning attack can effectively reduce
the performance of the victim model by disrupting other agents through the actions of the
target agent during the training phase. Therefore, this method has a more limited scope of
requirements, as it does not require permission to access the victim agent’s observations,
environmental information, or the probability distribution of the victim agent’s reward
or actions. Consequently, the practical applicability of this attack is enhanced due to its
reduced dependency on accessing extensive information about the victim agent, thereby
broadening its potential utility in real-world scenarios.

4.3. Attack Actions

We defined the target actions to be used for the attack during the training phase and
introduced indicators to determine the attack performance. The attacker manipulates action at

that follows training policy π to the adversarial target action a∗t. The episode is represented
by tuple τ =< sh,

{
av

h, at
h
}

, rh, . . . , sH,
{

av
H, at

H
}

, rH > is poisoned, and the poisoned episode is
represented by tuple τ =< sh,

{
av

h, a∗th
}

, rh, . . . , sT,
{

av
H, a∗tH

}
, rH >. The poisoned episode

data is used to train the victim model.
We propose three target actions for the MARL-based autonomous driving model based

on the assertion that if an agent takes an action violating Reynolds’ rules that is considered
incompatible with its neighbors, it may interfere with the reward of a partial flock defined
as its neighbors, lower efficiency and driving safety by considering the MARL-based
autonomous driving model as a flocking model.

4.3.1. Anti-Correlated Action

Because our attack targets an algorithm that concerns the neighboring agent’s reward
or uses the mean action of neighboring agents, the mean action of the target agent’s neigh-
boring agent can provide important information. The neighboring agent of the target
agent it is represented as a set of neighbor = {i1, i2, . . . , iN} where n = 1, 2, . . . , N is the
index of each neighboring agent and N is the number of neighboring agents within the
LiDAR radius of the target agent. The attacker calculates the mean action of neighbor-
ing agents, consisting of the steering and acceleration values between −1 and 1 using
Equations (5) and (6). steeringn and accelerationn are the steering and acceleration value of
each agent whose index is n, respectively.

steeringmean =
∑N

n=1 steeringin
N

(5)

accelerationmean =
∑N

n=1 accelerationin
N

(6)

During the training phase of the victim model, we can assume that each agent is
likely to use driving velocities similar to their neighboring agents and are often positioned
similarly at a specific time step t. Therefore, if an arbitrary agent executes the mean action
vector of the neighboring agents [steeringmean, accelerationmean], this strategy is less likely
to significantly decrease the local reward, even if is not the optimal action, and it would be
a reasonable strategy.

Based on this intuition, we propose the attacker’s target action as a∗it = −1 · [steeringmean,
accelerationmean], which is the opposite of the average action of neighboring agents. When
the target agent performs poisoned action a′, it can be expected to accelerate alone and
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change direction rapidly in situations where neighboring agents are driving in a similar
direction without strong acceleration. This may cause the target agent to receive a reward
lower than the average reward for its neighboring agents at a certain time step t.

4.3.2. Human-like Disruptive Action

The MARL-based autonomous driving model encounters human drivers on the road
after training. In the presence of other drivers or pedestrians, unexpected actions from
human drivers, such as turning the steering wheel sharply, sudden braking, or accelerating
in anger, can be difficult for machine learning models to interpret and predict. Therefore,
we propose an attacker’s target action that mimics a human driver’s disruptive action in
order to confuse neighboring agents.

The Attacker calculates weighted sum vneighbor with high weight on one agent in the
neighbor set {i1, i2, . . . , iN} and with the hyperparameter α, β, ϵ chosen by the attacker, and
the target action of the target agent it is manipulated as follows, where vit is velocity of
target agent and vneighbor is the velocity of its neighbors.

cos(θ) =
vneighbor · vit

∥vneighbor∥∥vit∥
(7)

steeringit = α × cos(θ), accelerationit = β × 1
1 + |cos(θ)| (8)

Target action vector a∗it = [steeringit , accelerationit ] is a dynamic target action that
adjusts according to the cosine similarity between vtarget and vneighbor and hyperparameters.
It simulates a human driver’s disruptive action by accelerating more when neighbors move
similarly, and steering more when neighbors move dissimilarly, to disturb the alignment of
traffic flow.

4.3.3. Random Action

Since the proposed method targets the MARL-based autonomous driving model with
a continuous action space, the action space is randomly selected from points divided at
regular intervals for convenience. Steering and acceleration, which are components action
ain = [steeringin , accelerationin ] of a agent in with index n, are real numbers between –1 and
1, and the interval from –1 is divided into 500 points including both endpoints. The target
action of the target agent is randomly selected from 500 points, which may be the same as
or similar to normal actions updated by the policy before the attacker manipulates them
with a low probability, meaning the random action will have a different value from normal
actions and act as an adversarial target action that can lower the local rewards. Thus, we
define this as one of the target actions chosen by attacker.

5. Experiments
5.1. Environmental Settings

We selected the three victim models proposed by Peng et al. [29] for our attack:
modified IPPO, MFPO, and CoPO. The IPPO algorithm maximizes only an individual’s
objective function, and each agent’s policy is updated in a direction that takes selfish
actions in autonomous driving simulations. However, our proposed attack replaces only
one agent’s actions with adversarial target actions to interfere with the decision making of
neighboring agents and undermine the performance of the entire model. Therefore, we
believe that the original IPPO algorithm, which only maximizes individual objectives, will
not be affected by our attack. In contrast, Peng et al. [29] also proposed the modification
of the IPPO algorithm to maximize the reward of neighboring agents within a certain
radius, including individuals, and we selected this modified IPPO algorithm as one of our
victim models.

The deployment of various rewards constitutes a fundamental element in training the
target models. Agents receive a reward of 10 when they successfully reach their destination
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without any accidents. In contrast, a penalty of 10 is imposed if they collide with other
agents or deviate from the road. Additionally, a safe driving reward of 1 is awarded at each
time step, and a further reward of 0.1 is granted based on the speed of the agent. Therefore,
each agent learns the behavior of efficiently reaching their destination without getting off
the road or colliding with another agent.

The victim model was trained in a Metadrive simulator environment, which supports
several maps for generalizable studies in multi-agent autonomous driving systems and
provides realistic physical simulations that can be operated on lightweight hardware
configurations. To conduct our attacks in various environments, we used intersection,
roundabout, and bottleneck road environments implemented by MetaDrive.

• Intersection: An environment where four lanes cross in the center and there are no
signs to control traffic signals. Vehicles can pass through both directions and make
U-turns at intersections, and 30 agents were created when the map was initialized.

• Roundabout: Two-lane round-trip environment with four crossing roads. Agents
on the road were allowed to freely join or leave the intersection, and 40 agents were
created when the map was initialized. This system can accommodate a relatively large
amount of traffic.

• Bottleneck: In the middle of the map, traffic flow is slowed down because of the
reduced width of the road, and all vehicles must yield to each other to pass through
the bottleneck. When the map was initialized, 20 agents were created.

The CoPO and modified IPPO models were trained for one million-time steps in the
intersection, roundabout, and bottleneck environments, whereas the MFPO model was
trained for 0.8-million-time steps in the same environments. The SGD minibatch was set to
512 with a learning rate of 0.0003, and the LiDAR radius determining the neighboring agent
was set to 10 m before training, following the settings used in [32]. We designated one
agent as the target agent, performed target actions in an environment with 20 to 40 agents,
and trained the victim model. We then observed the performance changes in the model
before and after the attack to evaluate the influence of the attack.

We set the agent with index 2 as the target agent. During the training phase, the target
agent performed anti-correlated, human-like disruptive and random actions to poison the
episode data whenever more than four neighboring vehicles were detected in its LiDAR.
The SGD mini-batch was set to 512, the learning rate was set to 0.0003, and the determining
radius of the neighboring agent was set to 10 m, similar to the settings of the victim model.

5.2. Evaluation Metric

The attacker aims to manipulate the action of a target agent and observe the resulting
impact on the remaining agents and victim model. The success rate, crash rate, and out
rate are used as evaluation metrics to compare the performances of victim models trained
without attacks with those trained with poisoned data. The success rate, crash rate, and
output rate indicate the percentage of episodes in which each agent either reached the
destination or failed to do so owing to a crash or road-departure accident. The goal of the
attacker is to decrease the success rate of the victim model, while increasing the crash and
output rates.

5.3. Experimental Results
5.3.1. Locality-Based Action-Poisoning Attack on CoPO

The results of the locality-based action-poisoning attack on the victim model CoPO are
presented in Table 1 and Figure 3, showing a success rate of up to one million-time steps.
Figure 3a–c show graphs of the success rates of the CoPO model according to the learning
time steps for the intersection, roundabout, and bottleneck maps, respectively. In graph
(a), (b), and (c), the x-axis represents the time steps from 0 to one million, and the y-axis
represents the success rate. (d), (e), and (f) display graphs showing the success, out, and
crash rates at one million time steps of the victim model for the intersection, roundabout,
and bottleneck maps.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Performance Graphs of locality-based action-poisoning attack in CoPO.

In the case of the CoPO model trained in the intersection environment, the model
exhibited the best training performance when the target agent executed a benign action and
the worst training performance when the target agent executed a human-like disruptive ac-
tion. Both random and anti-correlated actions were successful in attacking the model, with
anti-correlated actions being slightly more effective than random actions. In addition, the
human-like disruptive action resulted in the most significant reduction in the performance
of the victim model, as the out rate significantly increased compared to other actions, and
the anti-correlated action significantly increased the crash rate.

In a roundabout environment, the model showed the best performance in terms of
the success rate when the target agent executed a benign action, and the worst training
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performance was observed when the target agent executed a human-like disruptive action.
Because both random and anti-correlated actions successfully reduced the success rate
of the victim model, all three target actions can be seen as hindering the training of the
victim model.

Table 1. Locality-based action-poisoning attack performance for different target actions in CoPO.

Intersection Roundabout Bottleneck

Success Crash Out Success Crash Out Success Crash Out

Benign Action 0.7398 0.2141 0.0458 0.6378 0.2355 0.0807 0.6562 0.2230 0.1154
Random Action 0.6501 0.2636 0.0852 0.4035 0.1907 0.1249 0.1845 0.6462 0.1739

Anti-correlated Action 0.5402 0.4578 0.1126 0.3626 0.3947 0.1746 0.1443 0.5500 0.3082
Human-like Disruptive Action 0.3838 0.3260 0.2922 0.2750 0.1817 0.5373 0.0276 0.6416 0.3397

Additionally, it can be observed that human-like disruptive actions significantly in-
creased the out rate, whereas anti-correlated actions significantly increased the crash rate.
The locality-based action-poisoning attack on the CoPO model had the greatest effect on
the bottleneck environment. The performance of the original model in a bottleneck environ-
ment was significantly reduced by approximately 97% when the target agent performed a
human-like disruptive action. Attacks using random and anti-correlated actions success-
fully reduced the training performance of the victim model. In the case of human-like
disruptive actions, the crash and out rates were the highest. Because a bottleneck environ-
ment has a narrower road section than other maps, if the target agent performs a target
action in a narrow lane, the impact will be more fatal than that in other environments,
leading to a higher crash rate. The success, crash, and out rates achieved by the target
action are shown in Figure 3, and in all of the three environments, the crash and out rates
increased, whereas the success rate decreased (Figure 3).

Compared to the other target algorithms considered in this study, CoPO was more
vulnerable to locality-based action-poisoning attacks. The CoPO algorithm incorporates
the local coordination factor (LCF), which determines whether the agent acts in a selfish
or collaborative manner during the training process. There is a possibility that the LCF
may be disturbed when an action performs the target action chosen by the attacker. This
finding indicates that even a well-designed algorithm can be vulnerable to the proposed
attack method, underscoring the need for robust defense methods against potential attacks
as agents become increasingly sensitive to the information of their neighbors.

5.3.2. Locality-Based Action-Poisoning Attack on IPPO

The results of the locality-based black-box action-poisoning attack on the modified
IPPO victim model are presented in Table 2 and Figure 4, which shows the success, crash,
and out rates at one million training time steps. Figure 4a–c show graphs of the success rates
of the IPPO model according to the learning time steps for the intersection, roundabout,
and bottleneck maps, respectively. In graph (a), (b), and (c), the x-axis represents the time
step from 0 to one million, and the y-axis represents the success rate. (d), (e), and (f) display
graphs showing the success, out, and crash rates at one million time steps of the victim
model for the intersection, roundabout, and bottleneck maps.

In the intersection environment, the human-like disruptive action showed a slightly
higher performance than the original model, with success rates of 0.6998 and 0.6627,
respectively, indicating that the attack was unsuccessful for the corresponding target action.
However, random and anticorrelated actions successfully attacked the original model, thus
reducing its success rate. The anti-correlated action was the most effective in increasing the
crash rate, whereas the random action was the most effective in increasing the out rate.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Performance graphs of locality-based action-poisoning attack in IPPO.

Table 2. Locality-based action-poisoning attack on IPPO.

Intersection Roundabout Bottleneck

Success Crash Out Success Crash Out Success Crash Out

Benign Action 0.6627 0.3153 0.0226 0.5981 0.3335 0.0689 0.0452 0.6647 0.2939
Random Action 0.4002 0.4738 0.1270 0.3760 0.4850 0.1391 0.0379 0.6780 0.2937

Anti-correlated Action 0.2771 0.6137 0.1109 0.4324 0.3324 0.1545 0.0457 0.7159 0.2559
Human-like Disruptive Action 0.6998 0.2456 0.0556 0.4725 0.3929 0.1362 0.0298 0.7395 0.2357

In a roundabout environment, all three target actions forced the victim model to learn
a suboptimal policy, resulting in a lower success rate compared to the original model.
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In a bottleneck environment, evaluating the performance of the proposed attacks was
difficult because the original model trained without the attack exhibited poor performance.
However, while training, we observed that the peak of the success rate of the original model
were higher than those of the poisoned model. Therefore, we can infer that the original
model is more likely to perform better than the poisoned model. However, considering
the success rate graph, the original model is likely to find a better action compared to the
poisoned model because the peak of the graph of the original model is higher than that of
the poisoned model.

5.3.3. Locality-Based Action-Poisoning Attack on MFPO

For the locality-based black-box action-poisoning attack on the MFPO model, the
success, crash, and out rates at 800,000 training time steps are shown in Table 3 and
Figure 5. Figure 5a–c show graphs of the success rates of the MFPO model according to
the learning time steps for the intersection, roundabout, and bottleneck maps, respectively.
In graph (a), (b), and (c), the x-axis represents the time steps from 0 to 800,000, and the
y-axis represents the success rate from 0 to 1. Graph (d), (e), and (f) display graphs showing
the success, out, and crash rates at one million time steps of the victim model for the
intersection, roundabout, and bottleneck maps. Although the number of time steps is
different due to differences in the models, we trained the same number of episodes as
CoPO and IPPO. In the intersection environment, the success rates of the random and
human-like disruptive actions executed by the target agent were similar to those of the
original model; therefore, the attack was unsuccessful. However, the anti-correlated action
effectively reduced the success rate by 28.88%. For all the target actions, the out rate
increased to a similar level, and the anticorrelated action significantly increased the crash
rate of the victim model. In the roundabout environments, anticorrelated and human-like
disruptive actions were effective attack methods. In the bottleneck environment, all three
target actions can be used for effective attacks. Although the original model’s performance
is lower, the graph in Figure 5 indicates a higher peak, suggesting that the original model
may learn more rapidly compared to the poisoned model.

In diverse driving environments like intersection, roundabout, and bottleneck, the
unpredictable nature of agent interactions poses a significant challenge. The introduction
of unpredictable actions of target agent in these settings adds to the complexity, making
it difficult for other agents to respond effectively. This not only disrupts their immediate
decision making but also hampers the overall learning process of the multi-agent system.
Such disruptions impede the agents’ ability to adapt and converge towards optimal driving
behaviors, thereby affecting the safety of the autonomous driving system.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

Figure 5. Performance Graphs of locality-based action-poisoning attack in MFPO.

Table 3. Locality-based action-poisoning attack performance by target actions in MFPO

Intersection Roundabout Bottleneck

Success Crash Out Success Crash Out Success Crash Out

Benign Action 0.7085 0.2530 0.0393 0.5595 0.3372 0.1042 0.1788 0.5673 0.2619
Random Action 0.7079 0.2170 0.0714 0.4525 0.2798 0.1192 0.0499 0.6634 0.3075

Anti-correlated Action 0.5048 0.4165 0.0796 0.4394 0.3927 0.1238 0.0387 0.7163 0.2526
Human-like Disruptive Action 0.7175 0.2142 0.0737 0.5296 0.2239 0.1257 0.0205 0.7663 0.2206

6. Discussion

Our study has several limitations, including an investigation into only specific types of
attack methods. therefore, it may be insufficient to capture the potential attack scenarios and
risks of autonomous driving models. In addition, we did not simulate a situation in which
an attacker attacks multiple agents simultaneously using the proposed method. MARL
algorithms, which are less sensitive to state information from local rewards or neighboring
agents, can be robust to locality-based action-poisoning attacks based on the premise
that neighboring agents will be disturbed by the unexpected action of the target agent.
Despite these limitations, the possibility of diminished learning performance due to attacks
underscores the need for research into defensive strategies against the proposed methods.

Adversarial training is the first method to mitigate the locality-based action-poisoning
attack proposed in this study. Adversarial training is a technique that intentionally adds
difficult or misleading examples to the training data to make the model more robust.
During this process, the AI system was exposed to adversarial examples, which are inputs
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specifically designed to confuse the model, alongside correct responses, so that the model
can learn to withstand the types of attacks proposed in this study. By learning from these
maliciously modified inputs, the model becomes less susceptible to malicious inputs that
can lead to incorrect outputs. The second method is to train a robust model. Robust model
training includes machine-learning algorithms and techniques that are less sensitive to
noisy data. This can include incorporating regularization methods that penalize complexity
to prevent overfitting to poisoned data. Robust training can also use bootstrapping methods
and ensemble learning, where multiple models or multiple versions of a dataset are used.
The third method is anomaly detection, which involves identifying data points or patterns
within a dataset that deviate significantly from the norm. To protect AI models from
poisoning attacks, anomaly-detection systems are designed to discover and flag unusual or
suspicious inputs that may indicate tampering or manipulation of the data. If patterns can
be identified in the behavioral data of an adversarial agent that deviate significantly from
the norm for neighboring agents and that agent’s data can be excluded from training, this
system may be able to mitigate the risk of the proposed attack.

In addition, it is important to recognize that autonomous driving systems are vulner-
able to a wider array of attacks beyond those we have focused on. These include sensor
spoofing, cyber–physical system attacks, data tampering, network-based attacks, system
malfunctions, and human factors, each posing significant risks to safety and reliability.
Understanding and mitigating these broader risks are crucial for the advancement of au-
tonomous driving technologies, necessitating ongoing research and development to bolster
system security and resilience.

7. Conclusions

Despite the growing awareness of the vulnerability of reinforcement learning to
adversarial attacks, studies on adversarial attacks against MARL model are still insufficient,
particularly in the absence of previous studies on action-poisoning attacks in MARL models
with a continuous action space that can be applied to the continuous control systems
of autonomous driving models. Therefore, we propose a novel attack method called
the “locality-based action-poisoning attack” to evaluate the vulnerability of autonomous
driving models. In contrast to previous action-poisoning attack studies that only covered
single-agent settings or assumed that the attacker was allowed white-box access to the
victim model, we propose a black-box action-poisoning attack on the MARL model with a
continuous action space using a simple idea.

The core contribution of our work lies in demonstrating that even without in-depth access
to the model’s internal workings, an attacker can significantly disrupt the learning process and
force the target model to learn wrong action patterns. The actions we proposed—diverging from
neighboring agents, mimicking disruptive human behavior, and random actions—each
highlight potential weaknesses in MARL systems. This insight is pivotal, as it suggests
that MARL systems, despite their complexity and sophistication, can still be susceptible to
relatively straightforward adversarial strategies.

The proposed attack method was tested through a simulation using three algorithms,
CoPO, IPPO, and MFPO, in three driving environments, intersections, roundabouts, and
bottlenecks, to ensure some level of generalization across different driving scenarios and
algorithms. Although the performance of the attack method varies depending on the target
algorithm and environment, our results demonstrate that the proposed attack method is
significant. We expect that this study will serve as a fundamental basis for analyzing the
potential risks of autonomous driving models. As shown in related studies and experiments,
the developer of a MARL model needs to develop various defense methods that consider
the characteristics of the learning algorithm.

From a practical standpoint, our study acts as a pivotal alert for the autonomous
driving sector, highlighting the imperative for advanced defensive mechanisms against
such poisoning attacks. This underlines that security in autonomous driving necessitates
not only physical safeguards but also requires equally strong digital defence systems.
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Future research should focus on developing countermeasures that can detect and mitigate
the effects of such attacks in real-time, ensuring that autonomous vehicles remain safe and
reliable even in situations where they may be exposed to adversarial attacks. Additionally,
while our study was conducted within a limited range of scenarios, this highlights the
opportunity and necessity for future research to explore simulations of more diverse and
sophisticated poisoning attack methods. This approach will further enhance understanding
against potential vulnerabilities in autonomous driving systems.
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