Optimal Mesh Pore Size Combined with Periodic Air Mass Load (AML) for Effective Operation of a Self-Forming Dynamic Membrane BioReactor (SFD MBR) for Sustainable Treatment of Municipal Wastewater
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Activated Sludge Characteristics
3.2. Performance of the SFD MBR Tests
4. Discussion
4.1. Activated Sludge Characteristics
4.2. Permeate Quality in the Different SFD MBR Tests
4.3. Effects of the Mesh Pore Size and the AML on SFD MBR Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Friha, I.; Karray, F.; Feki, F.; Jlaiel, L.; Sayadi, S. Treatment of cosmetic industry wastewater by submerged membrane bioreactor with consideration of microbial community dynamics. Int. Biodeterior. Biodegrad. 2014, 88, 125–133. [Google Scholar] [CrossRef]
- Hoinkis, J.; Gukelberger, E.; Atiye, T.; Galiano, F.; Figoli, A.; Gabriele, B.; Mancuso, R.; Mamo, J.; Clough, S.; Hoevenaars, K. Membrane Bioreactor (MBR) Treated Domestic Wastewater for Reuse in a Recirculating Aquaculture System (RAS). In Water-Energy-Nexus in the Ecological Transition: Natural-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability; Naddeo, V., Choo, K.-H., Ksibi, M., Eds.; Advances in Science, Technology & Innovation; Springer International Publishing: Cham, Switzerland, 2022; pp. 153–155. [Google Scholar] [CrossRef]
- Vergine, P.; Amalfitano, S.; Salerno, C.; Berardi, G.; Pollice, A. Reuse of ultrafiltered effluents for crop irrigation: On-site flow cytometry unveiled microbial removal patterns across a full-scale tertiary treatment. Sci. Total Environ. 2020, 718, 137298. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.B.; Zhang, Z.; Vu, M.T.; Mohammed, J.A.H.; Pathak, N.; Nghiem, L.D.; Nguyen, L.N. Membrane Bioreactor for Wastewater Treatment: Current Status, Novel Configurations and Cost Analysis. In Cost-Efficient Wastewater Treatment Technologies: Engineered Systems; Nasr, M., Negm, A.M., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2023; pp. 147–167. [Google Scholar] [CrossRef]
- Judd, S.J.; Le-Clech, P.; Taha, T.; Cui, Z.F. Theoretical and experimental representation of a submerged membrane bio-reactor system. Membr. Technol. 2001, 2001, 4–9. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, X.; Wen, X.; Chen, F. Function of dynamic membrane in self-forming dynamic membrane coupled bioreactor. Water Sci. Technol. 2005, 51, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Borea, L.; Castrogiovanni, F.; Ferro, G.; Hasan, S.W.; Belgiorno, V.; Naddeo, V. Hydrogen Production in Electro Membrane Bioreactors. In Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability; Naddeo, V., Balakrishnan, M., Choo, K.-H., Eds.; Advances in Science, Technology & Innovation; Springer International Publishing: Cham, Switzerland, 2020; pp. 85–87. [Google Scholar]
- Hasan, S.W.; Elektorowicz, M.; Oleszkiewicz, J.A. Correlations between trans-membrane pressure (TMP) and sludge properties in submerged membrane electro-bioreactor (SMEBR) and conventional membrane bioreactor (MBR). Bioresour. Technol. 2012, 120, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Chae, S.-R.; Drews, A.; Kraume, M.; Shin, H.-S.; Yang, F. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Res. 2009, 43, 1489–1512. [Google Scholar] [CrossRef]
- Le-Clech, P.; Chen, V.; Fane, T.A.G. Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 2006, 284, 17–53. [Google Scholar] [CrossRef]
- Judd, S.; Judd, C. (Eds.) The MBR Book, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2011. [Google Scholar] [CrossRef]
- Field, R.W.; Pearce, G.K. Critical, sustainable and threshold fluxes for membrane filtration with water industry applications. Adv. Colloid Interface Sci. 2011, 164, 38–44. [Google Scholar] [CrossRef]
- Stoller, M.; Bravi, M.; Chianese, A. Threshold flux measurements of a nanofiltration membrane module by critical flux data conversion. Desalination 2013, 315, 142–148. [Google Scholar] [CrossRef]
- Xie, W.; Li, J.; Sun, F.; Dong, W.; Dong, Z. Strategy study of critical flux/threshold flux on alleviating protein fouling of PVDF-TiO2 modified membrane. J. Environ. Chem. Eng. 2021, 9, 106148. [Google Scholar] [CrossRef]
- Wei, C.-H.; Huang, X.; Ben Aim, R.; Yamamoto, K.; Amy, G. Critical flux and chemical cleaning-in-place during the long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment. Water Res. 2011, 45, 863–871. [Google Scholar] [CrossRef]
- Moattari, R.M.; Mohammadi, T.; Rajabzadeh, S.; Dabiryan, H.; Matsuyama, H. Reinforced hollow fiber membranes: A comprehensive review. J. Taiwan Inst. Chem. Eng. 2021, 122, 284–310. [Google Scholar] [CrossRef]
- Mohan, S.M.; Nagalakshmi, S. A review on aerobic self-forming dynamic membrane bioreactor: Formation, performance, fouling and cleaning. J. Water Process Eng. 2020, 37, 101541. [Google Scholar] [CrossRef]
- Xiao, T.; Zhu, Z.; Li, L.; Shi, J.; Li, Z.; Zuo, X. Membrane fouling and cleaning strategies in microfiltration/ultrafiltration and dynamic membrane. Sep. Purif. Technol. 2023, 318, 123977. [Google Scholar] [CrossRef]
- Ersahin, M.E.; Ozgun, H.; Dereli, R.K.; Ozturk, I.; Roest, K.; Van Lier, J.B. A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresour. Technol. 2012, 122, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Salerno, C.; Berardi, G.; Casale, B.; Pollice, A. Comparison of fine bubble scouring, backwash, and mass air load supply for dynamic membrane maintenance and steady operation in SFD MBR for wastewater treatment. J. Water Process Eng. 2023, 53, 103846. [Google Scholar] [CrossRef]
- How, S.W.; Kang, C.; Min, S.; Carrera, P.; Siddiqui, M.A.; Chen, G.; Wu, D. 13 – Self-Forming Dynamic Membrane BioReactors (SFDMBRs) for wastewater treatment. In Current Developments in Biotechnology and Bioengineering: Membrane Technology for Sustainable Water and Energy Management; Bui, X.-T., Guo, W., Chiemchaisri, C., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 293–311. [Google Scholar] [CrossRef]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 24th ed.; Lipps, W., Braun-Howland, E., Baxter, T., Eds.; APHA Press: Washington, DC, USA, 2023; Available online: https://www.standardmethods.org/ (accessed on 16 November 2023).
- Kim, Y.; Yeom, H.; Choi, S.; Bae, H.; Kim, C. Sludge settleability detection using automated SV30 measurement and comparisons of feature extraction methods. Korean J. Chem. Eng. 2010, 27, 886–892. [Google Scholar] [CrossRef]
- Han, H.; Wu, X.; Ge, L.; Qiao, J. A sludge volume index (SVI) model based on the multivariate local quadratic polynomial regression method. Chin. J. Chem. Eng. 2018, 26, 1071–1077. [Google Scholar] [CrossRef]
- Jenkins, D.; Richard, M.G.; Daigger, G.T. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Chen, X.; Kong, F.; Fu, Y.; Si, C.; Fatehi, P. Improvements on activated sludge settling and flocculation using biomass-based fly ash as activator. Sci. Rep. 2019, 9, 14590. [Google Scholar] [CrossRef]
- Maltos, R.A.; Holloway, R.W.; Cath, T.Y. Enhancement of activated sludge wastewater treatment with hydraulic selection. Sep. Purif. Technol. 2020, 250, 117214. [Google Scholar] [CrossRef]
- Nittami, T.; Batinovic, S. Recent advances in understanding the ecology of the filamentous bacteria responsible for activated sludge bulking. Lett. Appl. Microbiol. 2022, 75, 759–775. [Google Scholar] [CrossRef]
- Gerardi, M.H. Appendix I: F/M, HRT, MCRT, MLVSS, Sludge Age, SVI. In Settleability Problems and Loss of Solids in the Activated Sludge Process; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002; pp. 153–156. [Google Scholar] [CrossRef]
- Zhao, W.; Bi, X.; Bai, M.; Wang, Y. Research advances of ammonia oxidation microorganisms in wastewater: Metabolic characteristics, microbial community, influencing factors and process applications. Bioprocess Biosyst. Eng. 2023, 46, 621–633. [Google Scholar] [CrossRef]
- Vivar, M.; Fuentes, M.; Torres, J.; Rodrigo, M.J. Solar disinfection as a direct tertiary treatment of a wastewater plant using a photochemical-photovoltaic hybrid system. J. Water Process Eng. 2021, 42, 102196. [Google Scholar] [CrossRef]
- Vergine, P.; Salerno, C.; Casale, B.; Berardi, G.; Pollice, A. Role of Mesh Pore Size in Dynamic Membrane Bioreactors. Int. J. Environ. Res. Public. Health 2021, 18, 1472. [Google Scholar] [CrossRef]
- Cai, D.; Huang, J.; Liu, G.; Li, M.; Yu, Y.; Meng, F. Effect of support material pore size on the filtration behavior of dynamic membrane bioreactor. Bioresour. Technol. 2018, 255, 359–363. [Google Scholar] [CrossRef]
- Saleem, M.; Masut, E.; Spagni, A.; Lavagnolo, M.C. Exploring dynamic membrane as an alternative for conventional membrane for the treatment of old landfill leachate. J. Environ. Manag. 2019, 246, 658–667. [Google Scholar] [CrossRef]
- Sreeda, P.; Sathya, A.B.; Sivasubramanian, V. Novel application of high-density polyethylene mesh as self-forming dynamic membrane integrated into a bioreactor for wastewater treatment. Environ. Technol. 2018, 39, 51–58. [Google Scholar] [CrossRef]
- Chuang, S.-H.; Lin, P.-K.; Chang, W.-C. Dynamic fouling behaviors of submerged nonwoven bioreactor for filtration of activated sludge with different SRT. Bioresour. Technol. 2011, 102, 7768–7776. [Google Scholar] [CrossRef] [PubMed]
- Vergine, P.; Salerno, C.; Berardi, G.; Pollice, A. Self-Forming Dynamic Membrane BioReactors (SFD MBR) for municipal wastewater treatment: Relevance of solids retention time and biological process stability. Sep. Purif. Technol. 2021, 255, 117735. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Tang, C.Y.; Kimura, K.; Wang, Q.; Han, X. Membrane cleaning in membrane bioreactors: A review. Membr. Clean. Membr. Bioreact. Rev. 2014, 468, 276–307. [Google Scholar] [CrossRef]
- Guan, D.; Dai, J.; Ahmar Siddiqui, M.; Chen, G. Comparison of different chemical cleaning reagents on fouling recovery in a Self-Forming dynamic membrane bioreactor (SFDMBR). Sep. Purif. Technol. 2018, 206, 158–165. [Google Scholar] [CrossRef]
- Rezvani, F.; Mehrnia, M.R.; Poostchi, A.A. Optimal operating strategies of SFDM formation for MBR application. Sep. Purif. Technol. 2014, 124, 124–133. [Google Scholar] [CrossRef]
Parameter | Test A | Test B | Test C |
---|---|---|---|
SRT | 30 days | 30 days | 30 days |
Volume | 16.0 L | 16.0 L | 16.0 L |
Filtering area | 0.0072 m2 | 0.0072 m2 | 0.0072 m2 |
Target flux | 73 L m−2 h−1 | 73 L m−2 h−1 | 73 L m−2 h−1 |
Mesh pore size | 50 µm | 20 µm | 20 µm |
Periodic maintenance * | AML | AML | relaxation |
No suction time distribution | 3′ break + 5′ AML + 3′ break | 3′ break + 5′ AML + 3′ break | 11′ break |
Parameter | Unit | Average ± St.Dev. |
---|---|---|
TSS | mg L−1 | 248.8 ± 103.6 |
VSS | mg L−1 | 243.2 ± 95.9 |
COD | mg L−1 | 460.0 ± 22.6 |
soluble COD | mg L−1 | 112.3 ± 49.0 |
TN | mg L−1 | 65.5 ± 17.3 |
N-NH4+ | mg L−1 | 42.0 ± 11.1 |
N-NO2− | mg L−1 | 0.1 ± 0.0 |
N-NO3− | mg L−1 | 0.2 ± 0.2 |
pH | - | 7.4 ± 0.2 |
Electr. conductivity | mS cm−1 | 1.3 ± 0.5 |
Tot. coliforms | MPN 100 mL−1 | 2.5 × 107 (median); 2.0 × 106 (min); 7.9 × 107 (max) |
E. coli | MPN 100 mL−1 | 7.9 × 106 (median); 3.0 × 105 (min); 2.9 × 107 (max) |
Parameter | Unit | Test A | Test B | Test C |
---|---|---|---|---|
MLSS | g L−1 | 3.4 ± 1.2 | 4.4 ± 1.3 | 2.9 ± 1.6 |
MLVSS | g L−1 | 3.0 ± 1.0 | 3.8 ± 1.1 | 2.6 ± 1.4 |
SVI30 | mL g−1 | 64.3 ± 14.1 | 92.1 ± 8.6 | 43.9 ± 9.9 |
Temperature | °C | 20.0 ± 0.6 | 20.2 ± 0.2 | 22.5 ± 0.8 |
DO | mg L−1 | 6.3 ± 1.1 | 4.1 ± 1.2 | 6.2 ± 1.8 |
ORP | mV | 305.5 ± 39.1 | 294.6 ± 6.2 | 314.8 ± 9.7 |
pH | - | 6.8 ± 0.5 | 7.1 ± 0.5 | 7.0 ± 0.8 |
Parameter | Unit | Test A | Test B | Test C |
---|---|---|---|---|
TSS | mg L−1 | 366.7 ± 78.5 | 4.7 ± 1.9 | 6.4 ± 6.2 |
COD | mg L−1 | 103.0 ± 86.7 | 30.4 ± 5.0 | 32.8 ± 6.2 |
TN | mg L−1 | 98.7 ± 52.1 | 55.1 ± 5.3 | 41.3 ± 8.8 |
N-NH4+ | mg L−1 | 1.0 ± 2.3 | 0.1 ± 0.1 | 0.3 ± 0.3 |
N-NO2− | mg L−1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 1.6 ± 0.9 |
N-NO3− | mg L−1 | 24.7 ± 5.1 | 35.7 ± 6.7 | 27.1 ± 7.3 |
Electr. conductivity | mS cm−1 | 1.0 ± 0.1 | 0.8 ± 0.0 | 1.1 ± 0.0 |
pH | - | 7.1 ± 0.8 | 7.4 ± 0.3 | 7.3 ± 0.3 |
Tot. coliforms | MPN 100 mL−1 | 1.6 × 105 (median) | 4.4 × 105 (median) | 1.6 × 104 (median) |
1.3 × 105 (min) | 5.0 × 104 (min) | 1.0 × 104 (min) | ||
1.9 × 105 (max) | 4.6 × 105 (max) | 2.2 × 104 (max | ||
E. coli | MPN 100 mL−1 | 6.0 × 104 (median) | 1.0 × 105 (median) | 8.2 × 103 (median) |
5.8 × 104 (min) | 2.0 × 104 (min) | 6.3 × 103 (min) | ||
6.3 × 104 (max) | 2.2 × 105 (max) | 1.0 × 104 (max) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boulerial, S.; Salerno, C.; Castrogiovanni, F.; Tumolo, M.; Berardi, G.; Debab, A.; Haddou, B.; Benhamou, A.; Pollice, A. Optimal Mesh Pore Size Combined with Periodic Air Mass Load (AML) for Effective Operation of a Self-Forming Dynamic Membrane BioReactor (SFD MBR) for Sustainable Treatment of Municipal Wastewater. Processes 2024, 12, 323. https://doi.org/10.3390/pr12020323
Boulerial S, Salerno C, Castrogiovanni F, Tumolo M, Berardi G, Debab A, Haddou B, Benhamou A, Pollice A. Optimal Mesh Pore Size Combined with Periodic Air Mass Load (AML) for Effective Operation of a Self-Forming Dynamic Membrane BioReactor (SFD MBR) for Sustainable Treatment of Municipal Wastewater. Processes. 2024; 12(2):323. https://doi.org/10.3390/pr12020323
Chicago/Turabian StyleBoulerial, Senouci, Carlo Salerno, Fabiano Castrogiovanni, Marina Tumolo, Giovanni Berardi, Abdelkader Debab, Boumediene Haddou, Abdellah Benhamou, and Alfieri Pollice. 2024. "Optimal Mesh Pore Size Combined with Periodic Air Mass Load (AML) for Effective Operation of a Self-Forming Dynamic Membrane BioReactor (SFD MBR) for Sustainable Treatment of Municipal Wastewater" Processes 12, no. 2: 323. https://doi.org/10.3390/pr12020323
APA StyleBoulerial, S., Salerno, C., Castrogiovanni, F., Tumolo, M., Berardi, G., Debab, A., Haddou, B., Benhamou, A., & Pollice, A. (2024). Optimal Mesh Pore Size Combined with Periodic Air Mass Load (AML) for Effective Operation of a Self-Forming Dynamic Membrane BioReactor (SFD MBR) for Sustainable Treatment of Municipal Wastewater. Processes, 12(2), 323. https://doi.org/10.3390/pr12020323