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Abstract: Since the discovery of the vast Jimusaer shale oilfield in the southeastern Junggar Basin
in 2012, there has been considerable interest in neighboring areas around Bogeda Mountain that
have shale oil potential. The primary productive interval in the basin, the Middle Permian Lucaogou
Formation (P2l), is well-developed in the areas of Qitai, Mulei, Shiqiantan, Chaiwopu, and Miquan.
In this study, we conducted an assessment of the hydrocarbon generation potential of the P2l in these
five areas and compared it with that of the P2l in the Jimusaer oilfield, which were determined by
GC-MS, total organic carbon (TOC) and vitrinite reflectance (Ro) measurements, Rock-Eval pyrolysis,
and organic petrology to investigate the type, origin, thermal maturity, hydrocarbon potential, and
oil/gas proneness of organic matter in the P2l. Additionally, we applied open-system pyrolysis of
hydrocarbon generation kinetics to explore differences in hydrocarbon generation and expulsion
across various P2l mudstone/shale in the southeastern Junggar Basin. The findings of this study
revealed that the P2l shale in Qitai and Miquan areas contains more abundant and lower thermally
mature organic matter (early mature–mature stage), characterized by primarily Type II1–I kerogen,
similar to that found in the P2l shale of the Jimusaer oilfield. Conversely, the P2l shale in Mulei,
Shiqiantan, and Chaiwopu contains less abundant and more thermally mature organic matter (mainly
mature–highly mature stage), dominated by Type II2–III kerogen. Consequently, shale in these areas
is considerably less desirable for oil exploration compared to the Jimusaer shale. The semi-deep to
deep lake facies in Miquan and Qitai exhibit the most promising exploration potential. This study
can serve as a guide for shale oil exploration in the southeastern Junggar Basin.

Keywords: hydrocarbon generation potential; thermal history; kinetics modeling; Lucaogou Formation;
Bogeda Mountain; Junggar Basin

1. Introduction

The southeastern Junggar Basin is an important field of oil and gas exploration [1–5].
Within this basin, the Upper Permian Lucaogou Formation (P2l), with organic-rich source
rocks (a TOC content of up to 20 wt.%), is a primary target for shale oil exploration in the
Bogeda Piedmont Depression. Significant commercial tight oil reservoirs were discovered
in the P2l shale in the Jimusaer and Qitai areas of the Junggar Basin [4,6,7]. In the Jimusaer
area, the estimated shale oil resources amount to approximately 370 million tons, while
wells Qi 1 and Bocan 1 confirm the presence of the P2l source rock [3,8,9]. It is worth
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noting that although the P2l mainly comprises laterally extensive lake facies, its source
rock qualities vary across different areas of the basin. The development characteristics and
lateral facies variation of the P2l source rocks remain unclear. Furthermore, the southeastern
Junggar Basin presents the potential for late secondary hydrocarbon generation; however,
due to the absence of relevant reports, target evaluation and exploration optimization
are hindered.

Due to the influence of the Hercynian Movement, the Yanshan Movement, the Hi-
malayan Movement, and other strong orogenic movements, the degree of thermal evolution
is quite different. Differences in tectonic evolution have led to the different hydrocarbon
generation and thermal evolution patterns of P2l source rocks in different regions [10].
However, few reports concerning the organic geochemistry and petrology of the P2l shale
have been published to date [1,3,8,9]. Therefore, this study aims to investigate the types,
origin, maturity, hydrocarbon potential, and oil/gas proneness of the organic matter within
P2l source rocks using bulk and organic geochemistry, TOC and vitrinite reflectance mea-
surements, Rock-Eval pyrolysis, and organic petrology. By integrating these analyses
with data on source rock development and depositional environment, we can predict the
distribution of favorable source rocks in the southeastern Junggar Basin.

The P2l source rocks in the southeastern Junggar Basin are primarily at the low-
maturity to maturity stage (Ro < 1.0%) [11]. In order to assess the potential and conditions
for secondary hydrocarbon generation in the basin, an open-system pyrolysis approach
was employed to analyze the kinetics of hydrocarbon generation. This study has important
practical implications for the exploration of the P2l oil shale reservoirs in the vicinity of
Bogeda Mountain and the identification of promising hydrocarbon targets.

2. Geological Setting
2.1. Tectono-Sedimentary Characteristics

The Bogeda orogenic belt is located in the southeastern Junggar Basin. It is bordered
by the fault belt that forms the northern margin of the Turpan Basin to the south, the
Urumqi-Jimusaer Sag to the north, and the Yilinheibiergen tectonic belt to the southwest
and connects with the Harrick tectonic belt to the east. Several residual sedimentary basins,
namely, the Shiqiantan and Mulei sags in the east, the Qitai Uplift in the center, the Miquan
Structure in the west, and the Chaiwopu Sag in the south, are present in the periphery of
the Bogeda orogenic belt (Figure 1a).

The Bogeda orogenic belt evolved from a volcanic rift in the Junggar–Turpan mi-
croplate. Since the Late Paleozoic, the Bogeda region has experienced rifting, depres-
sion, and foreland basin evolution. In the southeastern Junggar Basin, the Upper, Mid-
dle, and Lower Permian systems are well-developed but greatly variable. The Lower
Permian mainly occurred in the Chaiwopu and Miquan areas. The Middle Permian is
very widespread across the entire southeastern Junggar Basin; the Upper Permian is also
widespread (Figure 1b).

The Middle Permian deposits include three stratigraphic units of organic-rich mud-
stones: the Jingjingzigou, Lucaogou (P2l), and Hongyanchi Formations [1]. The P2l has a
much higher TOC and hydrogen index (HI) content than the other two Middle Permian for-
mations and hosts good petroleum reservoirs. Based on outcrop evidence from Hongyanchi
(HYC), Jingjingzigou (JJZG), Yaomoushan (YMS), Dahuangshan (DHS), Xiaolongkou (XLK),
and Guodikeng (GDK), and drilling cores from the Qi-1 and Xinjican-1 wells, the P2l is
divided into four members, namely, P2l1, P2l2, P2l3, and P2l4, from bottom to top. In
the eastern Junggar Basin, the stratigraphic unit correlative to the P2l is the Pingdiquan
Formation (P2p) (Figure 2) [5,11].
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Figure 1. (a) Geological map outlining the regional tectonic elements of the southeastern Junggar 
Basin and the (b) EW−trending profile through Bogeda Mountain showing the stratigraphic frame-
work of Junggar Basin (Mulei area: Wells Mulei−1, Mulei−2, and Mucan−1; Shiqiantan area: Well 
Qian−1; Qitai area: Wells Xinjican−1, Qi-1, Bocan−1, XLK, SXG, XDLK, DHS, XG, and BYG outcrops; 
Miquan area: SGH, MEG, YMS, JJZG, HYC, QJG, and CFG outcrops, Well Miquan−1; Chaiwopu 
area: Wells Chai1−HF, Chai−2, Chai−3, Bancan−1, Da−1, GDK, BCG, XPCG, and AWE outcrops). 

Figure 1. (a) Geological map outlining the regional tectonic elements of the southeastern Junggar Basin
and the (b) EW−trending profile through Bogeda Mountain showing the stratigraphic framework
of Junggar Basin (Mulei area: Wells Mulei−1, Mulei−2, and Mucan−1; Shiqiantan area: Well
Qian−1; Qitai area: Wells Xinjican−1, Qi-1, Bocan−1, XLK, SXG, XDLK, DHS, XG, and BYG outcrops;
Miquan area: SGH, MEG, YMS, JJZG, HYC, QJG, and CFG outcrops, Well Miquan−1; Chaiwopu area:
Wells Chai1−HF, Chai−2, Chai−3, Bancan−1, Da−1, GDK, BCG, XPCG, and AWE outcrops).
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Figure 2. Chronostratigraphic chart showing the stratigraphic correlation between the areas of
Miquan, Chaiwopu, Qitai, and Mulei in the southeastern Junggar Basin.

2.2. Tectonic Evolution

Due to the influence of the Hercynian Movement, the Yanshan Movement, the Hi-
malayan Movement, and other strong orogenic movements, the degree of thermal evolution
is quite different [10]. Differences in tectonic evolution have led to the different hydro-
carbon generation and thermal evolution patterns of P2l source rocks in different regions
(Figure 3).

According to the regional unconformity surface, the tectonic sedimentary evolution
of the SE Junggar Basin during Permian is divided into two periods and three stages:
(1) Early Permian–Middle Permian marine–continental transitional compressional basin
stage (including Early Permian marine compressional stage and Middle Permian continen-
tal compressional basin stage); (2) Late Permian–Paleogene intracontinental compression
basin period (Late Permian–Early Triassic intracontinental compression depression stage)
(Figure 3).
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pled from six wells across the area of study (Mucan-1, Mulei-1, Qi-1, Xinjican-1, Bocan-1, 
and Chaican-1), and 176 rock samples were collected from four outcrops in the northeast-
ern Junggar Basin, namely, JJZG and HYC (Miquan area), DHS (Qitai area), and GDK 
(Chaiwopu area) (Figure 1a). Those samples underwent the following analyses: TOC con-
tent, Rock-Eval pyrolysis, vitrinite reflectance, organic petrography, column chromatog-
raphy, Gas chromatography–mass spectrometry, organic elements, and open-system hy-
drocarbon generation kinetics pyrolysis (18 samples), and some of the data were collected 
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Dongying, China. 
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Figure 3. The NS-trending cross-sections of the Chaiwopu, Miquan, and Jimusaer areas show
stratigraphic development of the studied area.

3. Sampling and Methods
3.1. Sample Selection and Preparation

To investigate the organic geochemistry, hydrocarbon potential, and hydrocarbon
generation and expulsion characteristics of the P2l source rocks, 80 rock cores were sam-
pled from six wells across the area of study (Mucan-1, Mulei-1, Qi-1, Xinjican-1, Bocan-1,
and Chaican-1), and 176 rock samples were collected from four outcrops in the northeast-
ern Junggar Basin, namely, JJZG and HYC (Miquan area), DHS (Qitai area), and GDK
(Chaiwopu area) (Figure 1a). Those samples underwent the following analyses: TOC
content, Rock-Eval pyrolysis, vitrinite reflectance, organic petrography, column chromatog-
raphy, Gas chromatography–mass spectrometry, organic elements, and open-system hy-
drocarbon generation kinetics pyrolysis (18 samples), and some of the data were collected
from published works [3,4,6,7,9,12–16] and new data from Shengli Oil Company, Sinopec,
Dongying, China.

3.2. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis

GC-MS was used to study the geochemical characteristics of the source rock samples
of the Lucaogou Formation from the southeastern Junggar Basin and to compare the
parameters of various biomarkers and analyze the characteristics of the mass chromatogram,
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so as to provide useful information for the evaluation of the source rock in this area. The
GC-MS analysis was performed on 18 source rock samples and two crude oil samples,
using an Agilent 7890A GC/5977MSD instrument. Other analytical conditions are the same
as in Ref. [17].

3.3. Organic Petrographic Analysis

To measure the vitrinite reflectance (Ro) and analyze the maceral composition, we
conducted the organic petrographic examination on 39 samples from five wells, using
a Zeiss Axioplan II microscope (Jena, Germany) and following the laboratory methods
described by Ref. [18]. Maceral analysis was performed with an LABORLUX 12 POL
fluorescence microscope. More than 300 points were counted for each sample [19–21].

3.4. Open-System Hydrocarbon Kinetic Pyrolysis

To study the hydrocarbon production efficiency of the source rock, the 18 samples from
the JJZG (Miquan), DHS (Qitai), HYC (Miquan), and GDK (Chaiwopu) profiles and Well
Qi-1 were treated to generate kerogen. The kinetic pyrolysis of hydrocarbon generation
was conducted using the Rock-Eval 6 analyzer. The heating procedure was as follows:
The temperature in the analyzer was raised quickly to 300 ◦C and kept constant for 3 min
to remove free hydrocarbons. Then, the temperature was raised to 600 ◦C at the rate of
10 ◦C/min, 30 ◦C/min, 40 ◦C/min, and 50 ◦C/min, to acquire the samples’ hydrocarbon
production efficiency curves at different heating rates. These curves are necessary for the
calculation of the hydrocarbon generation kinetics.

The kinetic parameters of hydrocarbon generation were determined using Kinetics
2000 software. This software was also used to derive the distribution of activation energy
from the input data (time, temperature, and transformation rate for the generation of
gaseous hydrocarbons) measured in the course of pyrolysis at the four experimental heating
rates. The thermal decomposition of kerogen in a source rock sample was approximated
by a series of independent and parallel first-order chemical reactions. The temperature
dependency of the reaction rate was quantified by applying Arrhenius’ law with a discrete
activation energy distribution, as described by many other authors [22–24].

4. Results
4.1. Organic Matter Abundance

In this study, the organic matter abundance was determined by the plot of TOC ver-
sus the HI (mg HC/g rock) (Figure 4) and the boxplots of TOC, hydrocarbon potential
(S1 + S2), chloroform bitumen “A”, and the hydrocarbon generation potential index
(GPI = (S1 + S2)/TOC) (Figure 5). The geochemical evaluation criteria for terrestrial source
rocks are given in Table 1.

The boxplots of TOC, S1 + S2, chloroform bitumen “A”, and GPI indicate a gradual
increase in the abundance of organic matter from Mulei to Shiqiantan, Chaiwopu, Miquan,
and Qitai. The P2l shale in Qitai, Miquan, and the adjacent area of Jimusaer exhibits higher
organic matter abundance compared to the corresponding shale in Mulei, Shiqiantan, and
Chaiwopu. In each of the last three areas, the average value of chloroform bitumen “A” is
0.0095, 0.0469, and 0.0868%, respectively. These results suggest that the P2l shale in Mulei,
Shiqiantan, and Chaiwopu is a poor to fair source rock with low hydrocarbon generation
capacity. On the other hand, the average chloroform bitumen “A” value of the P2l shale
in Miquan and Qitai is 0.1679 and 0.1751%, respectively, indicating that most of the P2l
shale in these two areas is a good to excellent source rock (Figure 5c). The P2l shale in
adjacent Jimusaer has the highest organic matter abundance among the studied sites and a
chloroform bitumen “A” content from 0.0150 to 4.6550% (average: 0.6225%). Overall, the
values of TOC, S1 + S2, chloroform bitumen “A”, and GPI demonstrate that the P2l shale in
Miquan and Qitai has an organic matter abundance equivalent to that in Jimusaer, whereas
the P2l shales in Chaiwopu, Shiqiantan, and Mulei have an organic matter abundance much
lower than that in Jimusaer.
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Table 1. Geochemical evaluation criteria for terrestrial source rocks (SY/T 5735-2019).

Organic matter
abundance

Source Rock Type Evaluation Index Non-Source Rock
Source Rocks
Poor Moderate Good Best

Siliceous mudstone

TOC/%
Immature–mature

I–II1 <0.3 0.3–0.5 0.5–1.0 1.0–2.0 >2.0
II2–III <0.5 0.5–1.0 1.0–2.5 2.5–4.0 >4.0

Mature–Post-mature
I–II1 <0.2 0.2–0.4 0.4–0.8 0.8–1.2 >1.2
II2–III <0.35 0.35–0.6 0.6–1.5 1.5–3.0 >3.0

Chloroform bitumen “A”/% <0.015 0.015–0.05 0.05–0.1 0.1–0.2 >0.2
HC/10−6 <100.0 100.0–200.0 200.0–500.0 500.0–1000.0 >1000.0
S1 + S2/(mg/g) <0.5 0.5–2.0 2.0–6.0 6.0–20.0 >20.0

Thermal maturity

Stage Ro/% TTI Tmax (◦C) C29 RS 20S/(20S + 20R) C29 RS ββ/(ββ + αα)

Immature 0.5 <15 <435 <0.2 <0.2
Low mature 0.5–0.7 15–75 435–440 0.2–0.4 0.20–0.45
Mature 0.7–1.3 75–160 >440–450 >0.4 >0.45
High mature 1.3–2.0 160–1500 >450–580 Equilibrium (0.52–0.55) Equilibrium (0.67–0.71)
Post-mature >2.0 >1500 >580

Type of kerogen

Type
Maceral examination Rock pyrolysis

Exinite (%) Vitrinite (%) TI H/C O/C HI

Type I >70–90 <10 >80 >1.5 <0.1 >700
Type II1 70–50 10–20 80–40 1.2–1.5 0.1–0.2 700–350
Type II2 <50–10 >20–70 40–0 0.8–1.2 0.2–0.3 350–150
Type III <10 >70–90 <0 <0.8 >0.2 <150

Type
Bulk composition Molecular biomarkers

Sat (%) Ash + Res (%) Sat/Aro C27 RS/C29 RS Main peak carbon

Type I 40–60 20–40 >3 >2.0 Front-high unimodal (C17–C19)
Type II1 30–40 40–60 3.0–1.6 2.0–1.2 Front-high bimodal (C17–C19, C21–C23)
Type II2 20–30 60–70 1.6–1.0 <1.2–0.8 Post-high bimodal (C17–C19, C27–C29)
Type III <20 70–80 <1.0 <0.8 Post-high unimodal (C25, C27, C29)
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4.2. Kerogen Type
4.2.1. Organic Elemental Analysis

A van Krevelen diagram was employed to analyze the kerogen type in the P2l source
rock [25]. As demonstrated by Figure 6 and Table 2, the kerogen in the P2l shale ranges
from gas-prone (Type III) to oil-prone (Type I), with Type III–II2 in Chaiwopu, Type II2 in
Mulei and Shiqiantan, Type II1–II2 in Miquan, and Type II1–I in Qitai.
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Table 2. Comprehensively statistical table of organic element analysis, maceral compositions, vitrinite reflectance, and selected biomarkers of Lucaogou For-
mation (P2l) in southeastern Junggar Basin to determine the thermal maturity, organic matter (organic matter) abundance, and kerogen type of source rocks.
(min~max/avg.(no.)); PI = S1/(S1 + S2); TI (%) = (Sapropelic (%) × 100 + Exinite (%) × 50 − Vitrinite (%) × 75 − Inertinite (%) × 100)/100); GPI = (S1 + S2)/TOC.

Area C29ββ/(ββ + αα) C2920S/(20S + 20R) Ts/(Ts + Tm) Roave (%) Tmax (◦C) PI Thermal Maturity
Stage

Chaiwopu 0.22~0.53/0.375 (58) 0.06~0.60/0.388 0.15~0.62/0.395 0.60~1.71/1.082 (45) 300~591/452.271 (124) 0.000~0.600/0.1531 (129) Mature–post-mature
Miquan 0.19~0.53/0.277 (26) 0.13~0.75/0.335 0.04~0.76/0.372 0.40~1.38/0.679 (52) 389~538/442.621 (233) 0.000~0.377/0.0621 (295) Early mature–mature
Mulei 0.33~0.53/0.449 (10) 0.25~0.55/0.389 0.05~0.72/0.349 0.60~1.06/0.860 (26) 434~506/461.081 (62) 0.000~0.250/0.146 (62) Mature–post-mature

Qitai 0.16~0.54/0.279 (45) 0.06~0.49/0.230 0.11~0.61/0.236 0.46~1.24/0.777 (67) 300~538/439.492 (429) 0.001~0.601/0.0592 (509) Immature–early
mature

Shiqiantan 0.30~0.33/0.315 (2) 0.04~0.26/0.150 0.23~0.35/0.290 0.55~1.19/0.957 (3) / / Early mature–mature
Jimusaer 0.19~0.48/0.297 (66) 0.25~0.51/0.418 / 0.52~1.24/0.740 (49) 374~454/436.975 (40) 0.027~0.728/0.289 (40) Early mature–mature

Area H/C O/C Vitrinite (avg. %) Inertinite
(avg. %)

Liptinite
TI (%) HI (mg HC/g TOC) Kerogen typeSapropelic

(avg. %) Exinite (avg. %)

Chaiwopu 0.638~1.996/0.984 (36) 0.120~1.494/0.351 41.061 15.501 16.687 26.751 7.279 (50) 10.296~903.784/213.571 (117) Type III–II2
Miquan 0.723~1.276/1.0825 (37) 0.107~0.290/0.164 10.405 17.583 50.737 21.275 28.581 (26) 3.175~2690.910/404.785 (290) Type II1–II2
Mulei 0.749~1.247/0.983 (7) 0.149~0.296/0.213 51.104 6.640 20.600 21.656 1.134 (25) 23.810~64.257/44.224 (9) Type II2
Qitai 0.908~1.621/1.031 (32) 0.087~0.168/0.134 21.003 5.811 67.438 5.748 50.234 (64) 18.452~1437.396/515.579 (497) Type II1–I
Shiqiantan 0.794~1.236/0.977 (3) 0.136~0.346/0.254 100.000 0.000 0.000 0.000 −1.125 (3) / Type II2
Jimusaer / / 4.000 0.500 66.000 29.500 77.250 (28) 110.119~621.984/398.250 (20) Type II1–I

Area Pr/Ph TOC (wt.%) S1 + S2 (mg HC/g Rock) GPI HC (mg/g) DBT/(DBT + DBF + Fl) Chloroform Bitumen “A” Organic matter
abundance

Chaiwopu 0.16~1.75/0.767 (58) 0.012~10.31/1.801 (121) 0.0328~83.810/5.502 (129) 0.154~10.986/2.562 (117) 0.497~868.000/68.930 (107) 0.003~0.92/0.404 (14) 0.0025~0.5777/0.0868 (42) Poor to fair
Miquan 0.44~1.23/0.990 (26) 0.0026~14.45/3.148 (308) 0.027~72.545/12.257 (306) 0.037~27.454/4.317 (290) 0.623~503.846/47.477 (188) 0.04~0.97/0.597 (23) 0.0030~0.6600/0.1679 (81) Fair to good
Mulei 0.13~1.37/0.804 (10) 0.310~1.58/0.707 (26) 0.05~1.930/0.319 (62) 0.270~0.803/0.516 (9) 5.358~16.064/11.410 (5) 0.27~0.36/0.315 (2) 0.0011~0.0306/0.0095 (16) Poor to fair
Qitai 0.28~2.67/0.920 (45) 0.017~39.72/4.529 (543) 0.16~312.348/27.339 (509) 0.202~14.654/5.367 (497) 2.296~597.360/33.235 (338) 0.07~0.88/0.520 (19) 0.0076~1.2449/0.1751 (182) Good to excellent
Shiqiantan 0.55~0.73/0.640 (2) / / / / 0.20~0.33/0.265 (2) 0.0153~0.0786/0.0469 (2) Poor to fair
Jimusaer 0.56~1.36/0.907 (66) 0.840~8.49/3.744 (20) 0.07~40.690/12.029 (40) 1.363~7.571/4.455 (20) / / 0.0150~4.6550/0.6225 (53) Good to excellent
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4.2.2. Rock Pyrolysis Analysis

The cross-plots of TOC and Tmax versus HI (Figure 4) provide further evidence that in
different areas of the southeastern Junggar Basin, the P2l contains different kerogen types.
The main types of organic matter in Mulei and Chaiwopu are III and II2–III, which are
mainly gas-prone sources. The organic matter in Miquan and Jimusaer is mainly Type
II1–III and II1–II2, which are mainly gas- to oil-prone sources, whereas, in Qitai, the organic
matter type ranges from I to III (with part of it even being oil shale)—a mixture of gas- and
oil-prone sources.

4.2.3. Molecular Biomarker Characteristics

Representative mass chromatograms of n-alkane from core extracts of the studied sites
are presented in Figure 7 and Table 2. The n-alkane series observed in Chaiwopu and Mulei
exhibit a bimodal distribution, indicating that in these areas, organic compounds in the P2l
shale are likely derived from a mixed source of bacteria, algae, and higher plants. The n-
alkane series of Qitai and Miquan exhibit an unimodal distribution with a predominance of
lower carbon numbers (<C22), suggesting bacterial and algal–detrital sources. β-Carotene
is a completely saturated, C40 dicyclic alkane whose presence is commonly associated with
algae in anoxic saline lake environments [26–29]. The P2l shales in Mulei, Chaiwopu, and
Jimusaer are rich in β-carotene, suggesting a greater contribution of algae to the genera-
tion of oil in these areas (Figure 7a,e,f). In addition, the strong odd–even predominance
implies that the source rocks in the Shiqiantan area are still in the low-maturity stage
(Figure 7b).

The Pr/n-C17 versus Ph/n-C18 cross-plot provides valuable insights into the organic
matter sources and paleoenvironmental conditions [30–32]. This relationship indicates
that in Qitai, Chaiwopu, Jimusaer, and Mulei, the P2l received a predominantly mixed
input of organic matter (Type II–III). Most samples from Miquan fell within the salifer-
ous (Type II) organic matter zone (Figure 8), indicating that in the southeastern Junggar
Basin, the P2l source rocks originated from a saliferous terrigenous environment [33].
Reference [11] found that the δ13C values of the P2p in the eastern Junggar Basin and P2l in
the southern Junggar Basin were mainly lower than −26.0‰. This indicates the organic
matter in the P2l shale had a predominately aquatic origin, with only minor input from
terrestrial organisms.

4.2.4. Organic Petrology

Based on analysis of optical properties and genetic characteristics conducted through
organic petrological analysis, the maceral composition is distinguished into several types
(liptinite, vitrinite, inertinite, matrix-bituminite), each corresponding to a distinct kerogen
typology [34,35].

The ternary maceral plot and the boxplot of the kerogen type index (TI) demonstrate
that the kerogen type in the P2l shale varies across the southern Junggar Basin, from gas-
prone Type III to oil-prone Type I; the P2l shale is characterized by Type III–II2 kerogen in
Chaiwopu, Type II2 kerogen in Mulei and Shiqiantan, Type II1–II2 kerogen in Miquan, and
Type II1–I kerogen in Qitai (Figure 9 and Table 2).

As illustrated in Table 2 and Figure 9a,b, vitrinite and inertinite are the dominant
maceral compositions in the P2l shale of Shiqiantan, Mulei, and Chaiwopu. The average
kerogen TI values for these areas are −1.13, 1.13, and 7.28, respectively, indicating mainly
Type III (TI < 0.0) and Type II2 kerogen (TI < 40.0). In Miquan and Qitai, the dominant
maceral composition of the P2l shale is liptinite, with average kerogen TI values of 28.58
and 50.23, respectively, belonging to Type II1 (40.0 < TI < 80.0) and a small amount of Type
I kerogen (TI > 80.0), which are equivalent to the that of Jimusaer Sag (average on 77.25).

Representative photomicrographs show that in Mulei, Shiqiantan, and Chaiwopu,
the maceral composition of the P2l shale is characterized by massive-detrital, grey, ho-
mogeneous vitrinite with no fluorescence (Figure 10a–c). Some alginite and lamalginite
with yellow fluorescence can be observed in Chaiwopu. In Qitai and Miquan, the maceral
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composition is primarily comprised of liptinite, including filamentous algae, sporophyte,
and lamalginite with yellow fluorescence, fusinite with white fluorescence, and matrix-
bituminite with orange fluorescence (Figure 10d,e). These observations demonstrate that
the P2l in the Qitai and Miquan areas contains kerogen of a type more advantageous than
that of the P2l in Mulei, Shiqiantan, and Chaiwopu.
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Previous studies found that the maceral composition of the P2l shale in Jimusaer
comprises mainly amorphous saprolite, fungus sporophyte, sporopollen, and suberinite,
with a lower content of vitrinite and inertinite. The main kerogen types are I and II1
(Figure 10f; [6,7]). Our analysis further confirms that the kerogen type of the Miquan and
Qitai P2l shale is equivalent to that of the Jimusaer P2l shale, whereas the kerogen type of
the Chaiwopu and Mulei P2l shale is of much lower quality.
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Figure 10. Representative photomicrographs show the maceral composition of the P2l Formation in
different regions using transmitted light, reflected white light, and fluorescence blue light. Conditions:
polished thin section, immersion oil objective, 500× (Notes: V: vitrinite; Alg: alginite; Exi: exinite).
(a) Mulei, (b) Chaiwopu, (c) Shiqiantan, (d) Miquan, (e) Qitai, and (f) Jimusae.
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4.3. Thermal Maturity

The boxplots of vitrinite reflectance (Ro, %) and maximum pyrolysis peak temperature
(Tmax) reveal that in the sampled areas, the thermal maturity of the organic matter is
distributed as follows (in ascending order): Qitai (Ro = 0.46–1.24%; average: 0.78%),
Miquan (Ro = 0.40–1.38%; average: 0.68%), Shiqiantan (Ro = 0.55–1.19%; average: 0.96%),
Mulei (Ro = 0.60–1.06%; average: 0.86%), and Chaiwopu (Ro = 0.60–1.71%; average: 1.082%)
(Figure 11a, Table 2). Additionally, Tmax values indicate that in Chaiwopu and Mulei, the
P2l shale has reached the mature–highly mature stage, whereas in Shiqiantan, Miquan,
and Qitai (Figure 11b, Table 2), it is in the early mature–mature stage (very low Tmax
values). The Ro and Tmax boxplots demonstrate that the thermal maturity of the P2l shale
is equivalent to that in Jimusaer (Ro = 0.52–1.24%; average: 0.74%) in Miquan and Qitai;
whereas that in Chaiwopu and Mulei, it is much higher.
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(Tmax) show the differences in thermal maturity between different regions.

It is widely accepted that the ratio of isomers effectively reflects the thermal maturity
of the organic matter [36–38]. In this study, the cross-plots of C29 RS ββ/(αα + ββ) versus
C29 RS 20S/(20S + 20R) were used to characterize the thermal maturity (Figure 12). The
analysis reveals that the majority of P2l samples from Miquan, Shiqiantan, Jimusaer, and
Qitai fall within the early mature–mature zone, whereas those from Mulei and Chaiwopu
show abnormal post-maturity, potentially due to weathering and oxidation.
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4.4. Kinetics of Petroleum Generation

As mentioned above, the vitrinite reflectance and Tmax (430–445 ◦C) indicate that
the majority of the samples were in a range from thermally immature to mature. There-
fore, these samples were deemed suitable for investigating petroleum generation
kinetics [7,39]. The bulk kinetic parameters (activation energy, Ea, and frequency fac-
tor, A) for the kerogen-to-hydrocarbon conversion were calculated from a mathematical
routine [7,24,39–42]. Assuming parallel first-order reactions with the same frequency factor
and activation energy, different heating rates were employed to achieve optimal conversion.
The optimal results were the ones that presented the best fit between the calculated and
experimental curves. Eighteen samples of P2l mudstone and shale of different maturity
and from different southeastern Junggar Basin sites were chosen for this analysis (Table 3).

Table 3. Eighteen mudstone and shale samples with different maturities and regions were chosen for
kinetics of petroleum generation analysis of P2l in the southeastern Junggar Basin.

Sample No. S1 (mg/g) S2 (mg/g) Tmax (◦C) PI TOC (%) Kerogen
Type

S1 + S2 (mg
HC/g Rock)

HI (mg
HC/g TOC)

GDK-27 0.02 0.06 444 0.08 0.42 III 0.08 14

GDK-19 0.04 0.29 438 0.33 0.4 III 0.33 72

HYC-48 0.05 0.86 437 0.91 1.17 III 0.91 73

GDK-7 0.08 0.2 591 0.28 0.45 III 0.28 44

JJZG-2 0.23 5.17 443 5.4 2.72 II2 5.4 190

HYC-Y11 0.23 6.88 442 7.11 3.27 II2 7.11 210

HYC-17 0.25 10.4 438 10.65 3.53 II1 10.65 295

JJZG-36 0.5 8.57 448 9.07 3.21 II2 9.07 267

JJZG-9 0.55 17.23 446 17.78 3.72 II1 17.78 463

DHS-10 0.94 32.22 440 33.16 8.36 II1 33.16 385

JJZG-43 0.96 1.69 447 2.65 1.45 III 2.65 117

HYC-Y13 1.16 25.91 436 27.07 6.37 II1 27.07 406

JJZG-37 1.38 57.02 446 58.4 13.96 II1 58.4 408

DHS-51 1.46 34.68 430 36.14 11.51 II1 36.14 301

DHS-57 1.74 3.13 465 4.87 6.33 II2 4.87 49

DHS-31 2.51 23.76 440 26.27 4.07 I 26.27 585

DHS-20 3.35 30.82 430 34.17 7.57 II1 34.17 407

Figure 13 shows the values obtained from the parallel first-order reaction model,
with a heating rate of 30 ◦C. The model fit curves for all the data are given in Table 3.
The maximum yield of hydrocarbon generation ranged from 10 to 40 mg/g and var-
ied between different types of organic source rock and across the sampled sites. As
seen in Figure 13, the order of maximum hydrocarbon generation yield was as follows:
Type I > Type II1 > Type II2 > Type III (Table 3).

The activation energy of different types of P2l source rock also differed across the
different sampled sites. Type I and II1 organic matter exhibited a lower activation energy
with a more concentrated distribution, suggesting that in Type I and II1 organic matter,
the hydrocarbon-generating components are relatively single, and hydrocarbon generation
occurs earlier. The kinetic parameters of the parallel first-order reaction model show that
the activation energy distribution in each sample was characterized by dominant activation
energies (Figure 14): from 32 to 50 kJ/cal and from 50 to 68 kJ/cal in the upper and lower
part of the P2l stratigraphy, respectively. This observation implies that the chemical bonds
in lacustrine Type I kerogen remain unchanged during the hydrocarbon generation process.
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5. Discussion
Mechanism of Organic Matter Enrichment in the P2l Mudstone/Shale: Implications for Shale
Oil Exploration

The method of quantifying hydrocarbon generation and expulsion, known as the
hydrocarbon generation potential method based on the material balance principle, has
proven to be an effective approach [43–46].

Typically, the TOC value that corresponds to the turning point of the S1/TOC trendline
(the onset of S1/TOC value reduction) is considered as the base limit for high-quality
hydrocarbon source rocks [43,47]. In Figure 15a,b, it can be observed that the TOC base
limit in the P2l is about 0.80 wt.%. The cross-plot of TOC versus S1 + S2 reveals that in the
P2l, the S1 + S2 base limit is about 1.97 mg/g (Figure 15c). Due to the lack of vitrinite in the
P2l mudstone/shale intervals, we combined the measured and calculated Ro (based on the
Tmax, and derived from artificial neural networks) to determine the hydrocarbon expulsion
threshold. Based on the pyrolysis and basin modeling results (Figure 15d), we established a
hydrocarbon generation and expulsion model for the P2l shale in the southeastern Junggar
Basin (Figure 15d). According to this model, the hydrocarbon expulsion threshold in the
P2l shale is reached at Ro~0.75%.
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The cross-section of P2l TOC distribution around Bogeda Mountain is shown in
Figure 16. In Miquan and Qitai, the primary maceral components of the Member P2l1–2

source rock consisted mainly of terrigenous organic clastics with more vitrinite and inertite
and a weaker fluorescence than the other P2l members. In member P2l2, the sapropelic
components had a higher alginite content and a stronger fluorescence than those in P2l1. In
members P2l3–4, the relative abundance of sapropelic and exinite groups increased further,
and fluorescence was the strongest among the sampled members. Moreover, based on the
geochemical profiles of the 10 wells and outcrops analyzed in this study (Figure 16), it is
suggested that the hydrocarbon generation potential of the lower P2l members (P2l1–2: light
gray silty mudstone) is lower than that of the upper P2l members (P2l3–4: dark mudstone
and shale). A large set of shale with abundant organic matter in these P2l3–4 members
makes them a promising target interval.

In this study, a principal component (PC) was extracted based on the evaluation
parameters of thermal maturity, organic matter abundance, and kerogen type as follows:
PC = −0.172 × C29ββ/(ββ + αα) − 0.030 × C2920S/(20S + 20R) − 0.146 × Roave + 0.179
× Sapropelic + 0.026 × Exinite + 0.170 × TI + 0.186 × TOC + 0.180 × (S1 + S2) + 0.124 ×
Bitumen “A”. The extracted PC value was positively proportional to the organic matter
abundance and kerogen-type indicators and negatively correlated to the maturity pa-
rameters, indicating that the higher the PC value, the better the hydrocarbon generation
potential of the source rock. As shown in Figure 17, from Mulei, Shiqiantan, Chaiwopu,
to Miquan, Jimusaer, and then to the Qitai area, the hydrocarbon generation potential of
the source rocks gradually improved. In addition, the contour distribution of (Figure 18a)
P2l3–4 sedimentary facies, (Figure 18b) mudstone thickness, and (Figure 18c) TOC around
Bogeda Mountain reveals that the semi-deep to deep lake facies of the Miquan area, with
a maximum mudstone thickness of 900 m and a maximum TOC content of 8.0%, have
the highest exploration potential. Moreover, the contour map of Ro values (Figure 18d)
demonstrates that the P2l source rock in the Miquan area has entered the mature stage
(Ro > 0.7%). Notably, both the Miquan and Qitai areas, characterized by semi-deep to deep
lake facies, have the most promising exploration potential. The results of this study provide
valuable guidance for shale oil exploration in the southeastern Junggar Basin.
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6. Conclusions

In the six areas of study, the organic matter abundance increases in the following
order: Mulei, Shiqiantan, Chaiwopu, Miquan, Jimusaer, and Qitai. The distribution of
organic matter kerogen type, in order of decreasing quality, is as follows: Chaiwopu, Mulei,
Shiqiantan, Miquan, Jimusaer, and Qitai. In order of increasing thermal maturity of the
organic matter, the sites are ranked as follows: Qitai, Jimusaer, Miquan, Shiqiantan, Mulei,
and Chaiwopu.

In Miquan and Qitai, the P2l shale exhibits an organic matter abundance and kerogen
type equivalent to those in the P2l shale in the Jimusaer oilfield; however, in Chaiwopu,
Shiqiantan, and Mulei, the organic matter abundance is much lower and the kerogen type
much less advantageous than those of the Jimusaer shale.

From a vertical perspective, the P2l3–4 members of the P2l shale formation present a
promising target interval due to their abundant organic matter. Horizontally, the semi-deep
to deep lake facies of the Miquan and Qitai areas show the highest shale oil exploration
potential in the southeastern Junggar Basin.

The comprehensive analysis indicates that, in the six areas of the southeastern Junggar
Basin, the Qitai area holds the highest potential for shale oil exploration, even surpassing
that of the Jimusaer area, followed by the Miquan and Chaiwopu areas, and the resource
potential of shale oil in the Shiqiantan and Mulei areas is the worst.
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