Numerical Study of the Buckling Response of Stiffened FG Graphene-Reinforced Multilayer Composite Cylindrical Panels
Abstract
:1. Introduction
2. Theoretical Formulation
2.1. Geometrical and Mechanical Properties
2.2. Mathematical Problem
3. Finite Element Modeling
4. Numerical Investigation
4.1. Validation
4.2. Numerical Results
4.2.1. Convergence Study
4.2.2. Numerical Results of Present Investigation
5. Conclusions
- (a)
- The maximum and minimum values of the buckling load stem from a GPL-X and GPL-O distribution, respectively.
- (b)
- The maximum variation in the buckling load for different GPL patterns and weight fractions is approximately equal to 40% and 400%, respectively.
- (c)
- The buckling load of the structure tends to increase for increased reinforcement weight fractions, especially for a GPL-X pattern, compared to other GPL distributions.
- (d)
- A CC boundary condition provides higher buckling loads (of approximately 15%) compared to the results from a SS boundary condition.
- (e)
- The buckling load can be increased by about 15% for each fixed boundary condition, for an increased number of rings and stringers from five to ten.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mollaei, S.; Babaei, M.; Asemi, K. Torsional buckling of functionally graded graphene reinforced composite laminated cylindrical panel. Arch. Appl. Mech. 2023, 93, 427–435. [Google Scholar] [CrossRef]
- Kiani, Y. Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment. Compos. Part B Eng. 2019, 156, 128–137. [Google Scholar] [CrossRef]
- Lei, Z.; Su, Q.; Zeng, H.; Zhang, Y.; Yu, C. Parametric studies on buckling behavior of functionally graded graphene-reinforced composites laminated plates in thermal environment. Compos. Struct. 2018, 202, 695–709. [Google Scholar] [CrossRef]
- Shahgholian-Ghahfarokhi, D.; Safarpour, M.; Rahimi, A. Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mech. Based Des. Struct. Mach. 2021, 49, 81–102. [Google Scholar] [CrossRef]
- Shahgholian-Ghahfarokhi, D.; Rahimi, G.; Khodadadi, A.; Salehipour, H.; Afrand, M. Buckling analyses of FG porous nanocomposite cylindrical shells with graphene platelet reinforcement subjected to uniform external lateral pressure. Mech. Based Des. Struct. Mach. 2021, 49, 1059–1079. [Google Scholar] [CrossRef]
- Dong, Y.H.; He, L.W.; Wang, L.; Li, Y.H.; Yang, J. Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: An analytical study. Aerosp. Sci. Technol. 2018, 82, 466–478. [Google Scholar] [CrossRef]
- Chen, D.; Yang, J.; Kitipornchai, S. Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 2017, 142, 235–245. [Google Scholar] [CrossRef]
- Kitipornchai, S.; Chen, D.; Yang, J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 2017, 116, 656–665. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, C.; Wang, Y. Thermo-mechanical analysis of porous functionally graded graphene reinforced cylindrical panels using an improved third order shear deformable model. Appl. Math. Model. 2023, 118, 453–473. [Google Scholar] [CrossRef]
- Sobhani, E.; Arbabian, A.; Civalek, Ö.; Avcar, M. The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells. Eng. Comput. 2021, 38, 3125–3152.
- Yang, J.; Chen, D.; Kitipornchai, S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos. Struct. 2018, 193, 281–294. [Google Scholar] [CrossRef]
- Zhou, Z.; Ni, Y.; Tong, Z.; Zhu, S.; Sun, J.; Xu, X. Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells. Int. J. Mech. Sci. 2019, 151, 537–550. [Google Scholar] [CrossRef]
- Ansari, R.; Hassani, R.; Gholami, R.; Rouhi, H. Buckling and Postbuckling of Plates Made of FG-GPL-Reinforced Porous Nanocomposite with Various Shapes and Boundary Conditions. Int. J. Struct. Stab. Dyn. 2021, 21, 2150063. [Google Scholar] [CrossRef]
- Yaghoobi, H.; Taheri, F. Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Compos. Struct. 2020, 252, 112700. [Google Scholar] [CrossRef]
- Tao, C.; Dai, T. Isogeometric analysis for postbuckling of sandwich cylindrical shell panels with graphene platelet reinforced functionally graded porous core. Compos. Struct. 2021, 260, 113258. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Nguyen, L.B.; Nguyen, H.B.; Nguyen-Xuan, H. A three-variable high order shear deformation theory for isogeometric free vibration, buckling and instability analysis of FG porous plates reinforced by graphene platelets. Compos. Struct. 2020, 245, 112321. [Google Scholar] [CrossRef]
- Priyanka, R.; Twinkle, C.M.; Pitchaimani, J. Stability and dynamic behavior of porous FGM beam: Influence of graded porosity, graphene platelets, and axially varying loads. Eng. Comput. 2021, 38, 4347–4366. [Google Scholar] [CrossRef]
- Barati, M.R.; Zenkour, A.M. Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection. Mech. Adv. Mater. Struct. 2019, 26, 503–511. [Google Scholar] [CrossRef]
- Anirudh, B.; Ganapathi, M.; Anant, C.; Polit, O. A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling. Compos. Struct. 2019, 222, 110899. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, J. Nonlinear stability of the encased functionally graded porous cylinders reinforced by graphene nanofillers subjected to pressure loading under thermal effect. Compos. Struct. 2020, 233, 111584. [Google Scholar] [CrossRef]
- Twinkle, C.M.; Pitchaimani, J. Free vibration and stability of graphene platelet reinforced porous nano-composite cylindrical panel: Influence of grading, porosity and non-uniform edge loads. Eng. Struct. 2021, 230, 111670. [Google Scholar]
- Tornabene, F.; Viscoti, M.; Dimitri, R. Higher order theories for the modal analysis of anisotropic doubly-curved shells with a three-dimensional variation of the material properties. Eng. Anal. Bound. Elem. 2024, 158, 486–519. [Google Scholar] [CrossRef]
- Wang, Z.W.; Tang, J.; Li, S.C.; He, X.H.; Zhou, C.Y. Research on Elastic and Elastics-Plastic Buckling Load of Cylindrical Shell with an Inclined through Crack under Axial Compressive Load. Materials 2023, 16, 6123. [Google Scholar] [CrossRef] [PubMed]
- Yas, M.H.; Rahimi, S. Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene platelets using Generalized differential quadrature method. Aerosp. Sci. Technol. 2020, 107, 106261. [Google Scholar] [CrossRef]
- Gao, K.; Do, D.M.; Li, R.; Kitipornchai, S.; Yang, J. Probabilistic stability analysis of functionally graded graphene reinforced porous beams. Aerosp. Sci. Technol. 2020, 98, 105738. [Google Scholar] [CrossRef]
- Alimoradzadeh, M.; Tornabene, F.; Dimitri, R. Nonlinear axial-lateral coupled vibration of functionally graded-fiber reinforced composite laminated (FG-FRCL) beams subjected to aero-thermal loads. Int. J. Non-Linear Mech. 2024, 159, 104612. [Google Scholar] [CrossRef]
- Salmani, R.; Gholami, R.; Ansari, R.; Fakhraie, M. Analytical investigation on the nonlinear postbuckling of functionally graded porous cylindrical shells reinforced with graphene nanoplatelets. Eur. Phys. J. Plus 2021, 136, 53. [CrossRef]
- Li, Z.; Zhang, Q.; Shen, H.; Xiao, X.; Kuai, H.; Zheng, J. Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure. Thin-Walled Struct. 2023, 183, 110370. [Google Scholar] [CrossRef]
- Shahani, A.R.; Kiarasi, F. Numerical and Experimental Investigation on Post-buckling Behavior of Stiffened Cylindrical Shells with Cutout subject to Uniform Axial Compression. J. Appl. Comput. Mech. 2023, 9, 25–44. [Google Scholar]
- Wu, Q.; Hu, S.; Tang, X.; Liu, X.; Chen, Z.; Xiong, J. Compressive buckling and post-buckling behaviors of J-type composite stiffened panel before and after impact load. Compos. Struct. 2023, 304, 116339. [Google Scholar] [CrossRef]
- Tran, K.L.; Douthe, C.; Sab, K.; Dallot, J.; Davaine, L. Buckling of stiffened curved panels under uniform axial compression. J. Constr. Steel Res. 2014, 103, 140–147. [Google Scholar] [CrossRef]
- Grondin, G.Y.; Elwi, A.E.; Cheng, J.J.R. Buckling of stiffened steel plates—A parametric study. J. Constr. Steel Res. 1999, 50, 151–175. [Google Scholar] [CrossRef]
- Reddy, J.N.; Starnes, J.H., Jr. General buckling of stiffened circular cylindrical shells according to a layerwise theory. Comput. Struct. 1993, 49, 605–616. [Google Scholar] [CrossRef]
- Ni, X.Y.; Prusty, B.G.; Hellier, A.K. Buckling and post-buckling of isotropic and composite stiffened panels: A review on optimisation (2000–2015). Int. J. Marit. Eng. 2016, 158, A-251–A-267. [Google Scholar] [CrossRef]
- Wodesenbet, E.; Kidane, S.; Pang, S.S. Optimization for buckling loads of grid stiffened composite panels. Compos. Struct. 2003, 60, 159–169. [Google Scholar] [CrossRef]
- Ni, X.Y.; Prusty, B.G.; Hellier, A.K. Buckling and post-buckling of isotropic and composite stiffened panels: A review on analysis and experiment (2000–2012). Int. J. Marit. Eng. 2015, 157. [Google Scholar] [CrossRef]
- Kidane, S.; Li, G.; Helms, J.; Pang, S.S.; Woldesenbet, E. Buckling load analysis of grid stiffened composite cylinders. Compos. Part B Eng. 2003, 34, 1–9. [Google Scholar] [CrossRef]
- Wang, D.; Abdalla, M.M.; Zhang, W. Buckling optimization design of curved stiffeners for grid-stiffened composite structures. Compos. Struct. 2017, 159, 656–666. [Google Scholar] [CrossRef]
- Patel, S.N.; Datta, P.K.; Sheikh, A.H. Buckling and dynamic instability analysis of stiffened shell panels. Thin-Walled Struct. 2006, 44, 321–333. [Google Scholar] [CrossRef]
- Ifayefunmi, O.; Ruan, D. Buckling of Stiffened Cone–Cylinder Structures Under Axial Compression. Int. J. Appl. Mech. 2022, 14, 2250075. [Google Scholar] [CrossRef]
- Zarei, M.; Rahimi, G.H.; Hemmatnezhad, M. On the buckling resistance of grid-stiffened composite conical shells under compression. Eng. Struct. 2021, 237, 112213. [Google Scholar] [CrossRef]
- Yoon, J.W.; Bray, G.H.; Valente RA, F.; Childs, T.E.R. Buckling analysis for an integrally stiffened panel structure with a friction stir weld. Thin-Walled Struct. 2009, 47, 1608–1622. [Google Scholar] [CrossRef]
- Duc, N.D.; Thang, P.T. Nonlinear buckling of imperfect eccentrically stiffened metal–ceramic–metal S-FGM thin circular cylindrical shells with temperature-dependent properties in thermal environments. Int. J. Mech. Sci. 2014, 81, 17–25. [Google Scholar] [CrossRef]
- Duc, N.D.; Thang, P.T. Nonlinear response of imperfect eccentrically stiffened ceramic–metal–ceramic FGM thin circular cylindrical shells surrounded on elastic foundations and subjected to axial compression. Compos. Struct. 2014, 110, 200–206. [Google Scholar] [CrossRef]
- Duc, N.D. Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation. Compos. Struct. 2013, 99, 88–96. [Google Scholar] [CrossRef]
- Duc, N.D.; Cong, P.H. Nonlinear thermal stability of eccentrically stiffened functionally graded truncated conical shells surrounded on elastic foundations. Eur. J. Mech.-A/Solids 2015, 50, 120–131. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, K.; Fu, T.; Shi, C. Bending and elastic vibration of a novel functionally graded polymer nanocomposite beam reinforced by graphene nanoplatelets. Nanomaterials 2019, 9, 1690. [Google Scholar] [CrossRef] [PubMed]
- Liu, D. Free vibration of functionally graded graphene platelets reinforced magnetic nanocomposite beams resting on elastic foundation. Nanomaterials 2020, 10, 2193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lv, Y.; Li, L. Dynamic Instability of Functionally Graded Graphene Platelet-Reinforced Porous Beams on an Elastic Foundation in a Thermal Environment. Nanomaterials 2022, 12, 4098. [Google Scholar] [CrossRef]
- Babaei, M.; Kiarasi, F.; Asemi, K.; Dimitri, R.; Tornabene, F. Transient Thermal Stresses in FG Porous Rotating Truncated Cones Reinforced by Graphene Platelets. Appl. Sci. 2022, 12, 3932. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Y.; Zhang, S.; Dimitri, R.; Tornabene, F.; Asemi, K. Numerical Study on the Buckling Behavior of FG Porous Spherical Caps Reinforced by Graphene Platelets. Nanomaterials 2023, 13, 1205. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.T.; Van Dung, D. A third-order shear deformation theory for nonlinear vibration analysis of stiffened functionally graded material sandwich doubly curved shallow shells with four material models. J. Sandw. Struct. Mater. 2019, 21, 1316–1356. [Google Scholar] [CrossRef]
- Blooriyan, S.; Ansari, R.; Darvizeh, A.; Gholami, R.; Rouhi, H. Postbuckling analysis of functionally graded graphene platelet-reinforced polymer composite cylindrical shells using an analytical solution approach. Appl. Math. Mech. 2019, 40, 1001–1016. [Google Scholar] [CrossRef]
Buckling Load | ||||||
---|---|---|---|---|---|---|
Commercial code | 10.171 | 10.19 | 10.40 | 10.451 | 10.910 | 11.261 |
Present | 10.175 | 10.20 | 10.42 | 10.458 | 10.977 | 11.299 |
∆ | 0 | 0.1 | 0.2 | 0.3 | 0.5 | 0.8 | 1 |
---|---|---|---|---|---|---|---|
Present (UD) | 21.53 | 39.19 | 56.75 | 74.38 | 109.40 | 161.75 | 196.60 |
[53] (UD) | 21.58 | 39.22 | 56.83 | 74.41 | 109.48 | 161.87 | 196.65 |
Present (FG-X) | 21.53 | 44.80 | 67.52 | 90.15 | 135.25 | 202.50 | 247.21 |
[53] (FG-X) | 21.58 | 44.82 | 67.59 | 90.23 | 135.30 | 202.59 | 247.27 |
Present (FG-O) | 21.53 | 31.93 | 41.40 | 50.35 | 67.70 | 92.95 | 109.53 |
[53] (FG-O) | 21.58 | 31.99 | 41.42 | 50.42 | 67.76 | 93.01 | 109.56 |
Number of Ements (nθ × nx) | 10 × 15 | 15 × 25 | 20 × 30 | 25 × 35 | 30 × 45 |
Buckling load | 70.02 | 66.18 | 60.12 | 55.22 | 54.69 |
GPL Pattern | % | ||||||
---|---|---|---|---|---|---|---|
0 | 10.175 | 10.20 | 10.42 | 10.458 | 10.977 | 11.299 | |
GPL-X | 0.5 | 31.222 | 31.270 | 32.086 | 32.096 | 35.129 | 35.176 |
1 | 54.699 | 54.776 | 56.103 | 56.119 | 59.421 | 61.046 | |
0 | 10.175 | 10.20 | 10.42 | 10.458 | 10.977 | 11.299 | |
GPL-A | 0.5 | 25.318 | 25.348 | 25.876 | 25.882 | 27.194 | 27.999 |
1 | 41.118 | 41.168 | 42.025 | 42.035 | 44.166 | 45.474 | |
GPL-UD | 0 | 10.175 | 10.20 | 10.42 | 10.458 | 10.977 | 11.299 |
0.5 | 27.050 | 27.083 | 27.646 | 27.653 | 29.055 | 29.915 | |
1 | 43.931 | 43.984 | 44.899 | 44.910 | 47.187 | 48.584 | |
0 | 10.175 | 10.20 | 10.42 | 10.458 | 10.977 | 11.299 | |
GPL-O | 0.5 | 24.345 | 24.374 | 24.881 | 24.887 | 26.149 | 26.923 |
1 | 39.537 | 39.585 | 40.409 | 40.419 | 42.468 | 43.725 |
GPL Pattern | Boundary Condition | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
CC | 61.625 | 61.698 | 64.257 | 64.266 | 68.720 | 71.201 | |
GPL-X | SS | 54.699 | 54.776 | 56.103 | 56.119 | 59.421 | 61.046 |
CC | 47.120 | 47.789 | 51.749 | 51.798 | 53.942 | 53.980 | |
GPL-UD | SS | 43.931 | 43.984 | 44.899 | 44.910 | 47.187 | 48.584 |
CC | 45.102 | 45.121 | 46.201 | 46.211 | 48.070 | 49.924 | |
GPL-O | SS | 39.537 | 39.585 | 40.409 | 40.419 | 42.468 | 43.725 |
CC | 46.505 | 46.521 | 47.782 | 47.788 | 49.225 | 51.025 | |
GPL-A | SS | 41.118 | 41.168 | 42.025 | 42.035 | 44.166 | 45.474 |
Boundary Condition | Number of Rings and Stringers | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|---|
Ss = 0.378, Sr = 0.5 or Nr = Ns = 5 | 47.120 | 47.789 | 51.749 | 51.798 | 53.942 | 53.980 | |
CC | Ss = 0.19, Sr = 0.25 or Nr = Ns = 10 | 52.953 | 53.194 | 57.373 | 59.296 | 60.925 | 60.996 |
Ss = 0.378, Sr = 0.5 or Nr = Ns = 5 | 43.931 | 43.984 | 44.899 | 44.910 | 47.187 | 48.584 | |
SS | Ss = 0.19, Sr = 0.25 or Nr = Ns = 10 | 49.112 | 49.799 | 51.473 | 52.307 | 53.725 | 53.908 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Tornabene, F.; Dimitri, R.; Babaei, M. Numerical Study of the Buckling Response of Stiffened FG Graphene-Reinforced Multilayer Composite Cylindrical Panels. Processes 2024, 12, 430. https://doi.org/10.3390/pr12030430
Liu Z, Tornabene F, Dimitri R, Babaei M. Numerical Study of the Buckling Response of Stiffened FG Graphene-Reinforced Multilayer Composite Cylindrical Panels. Processes. 2024; 12(3):430. https://doi.org/10.3390/pr12030430
Chicago/Turabian StyleLiu, Zhihong, Francesco Tornabene, Rossana Dimitri, and Masoud Babaei. 2024. "Numerical Study of the Buckling Response of Stiffened FG Graphene-Reinforced Multilayer Composite Cylindrical Panels" Processes 12, no. 3: 430. https://doi.org/10.3390/pr12030430
APA StyleLiu, Z., Tornabene, F., Dimitri, R., & Babaei, M. (2024). Numerical Study of the Buckling Response of Stiffened FG Graphene-Reinforced Multilayer Composite Cylindrical Panels. Processes, 12(3), 430. https://doi.org/10.3390/pr12030430