Microwave Drying of Sewage Sludge: Process Performance and Energy Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determining Moisture in the Sample Based on the Changes of Mass and Heat via TGA
2.3. Experimental Equipment and Methods
3. Results and Discussion
3.1. Changes of Temperature and Moisture Content in the Sludge Drying Process
3.2. Heat and Mass Transfer Process in Sludge
3.3. Microwave Drying Kinetics in Sludge
3.3.1. Constant-Rate Stage
3.3.2. Decreasing-Rate Stage
3.4. Analysis of Energy Consumption
3.4.1. Energy Transfer Process Analysis
3.4.2. Efficiency of Heat and Energy Consumption
4. Conclusions
- (1)
- A precise method for identifying the types of moisture in sludge is proposed, allowing accurate measurement of changes in free water and bound water content during the microwave drying process. Free water is primarily removed during the preheating and constant-rate stages, while bound water is primarily removed during the decreasing-rate stage.
- (2)
- The microwave drying of sludge can be described in three stages: preheating, constant-rate, and decreasing-rate drying stages. During the preheating stage, the temperature rises sharply to 100 °C, and the drying rate accelerates rapidly. The constant-rate stage maintains a stable temperature and consistent drying rate. The decreasing-rate stage sees a temperature rise again, and the drying rate gradually decreases.
- (3)
- Various models, including the Lewis model, Page model, modified Page I model, and modified Page II model, are applied to fit the drying data. Although some models show reasonable agreement, the linear model proves to be the best fit in the constant-rate stage, and the modified Page I model is optimal for the decreasing-rate stage. The apparent activation energy of moisture evaporation in the decreasing-rate stage is 4.68 W/g.
- (4)
- Heat efficiency and energy consumption are consistent with microwave power changes. Heat efficiency in the constant-rate drying stage ranges from 60.33% to 71.01%, which is lower than that in the preheating stage but higher than that in the decreasing-rate stage. Energy consumption in the constant-rate drying stage ranges from 3.84 kJ/g to 8.20 kJ/g, which is significantly lower than in the other two stages.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
P (W) | P0 (W) |
---|---|
500 | 329 |
600 | 364 |
700 | 399 |
800 | 437 |
P (W) | mc (g) | mw (g) | Ti (°C) | Tf (°C) | t (s) | Preal (W) |
---|---|---|---|---|---|---|
500 | 270 | 1000 | 10 | 20 | 314 | 138 |
600 | 270 | 999 | 10 | 20 | 217 | 200 |
700 | 270 | 1000 | 10 | 20 | 175 | 248 |
800 | 270 | 1001 | 10 | 21 | 133 | 359 |
References
- Chen, Z.; Afzal, M.T.; Salema, A.A. Microwave Drying of Wastewater Sewage Sludge. J. Clean Energy Technol. 2014, 2, 282–286. [Google Scholar] [CrossRef]
- Guo, H.; Tan, Z.; Li, H.; Long, Y.; Ji, A.; Liu, L. Dynamic Characteristics Analysis of Metallurgical Waste Heat Radiative Drying of Thin Layers of Sewage Sludge. Processes 2023, 11, 2535. [Google Scholar] [CrossRef]
- Djandja, O.S.; Wang, Z.; Wang, F.; Xu, Y.P.; Duan, P.G. Pyrolysis of Municipal Sewage Sludge for Biofuel Production: A Review. Ind. Eng. Chem. Res. 2020, 59, 16939–16956. [Google Scholar] [CrossRef]
- Migliaccio, R.; Brachi, P.; Montagnaro, F.; Papa, S.; Urciuolo, M. Sewage Sludge Gasification in a Fluidized Bed: Experimental Investigation and Modeling. Ind. Eng. Chem. Res. 2021, 60, 5034–5047. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Li, R.; Wu, Y. Hydrothermal Carbonization and Liquefaction of Sludge for Harmless and Resource Purposes: A Review. Energy Fuel 2020, 34, 13268–13290. [Google Scholar] [CrossRef]
- Norinaga, K.; Kumagai, H.; Hayashi, J.; Chiba, T. Classification of Water Sorbed in Coal on the Basis of Congelation Characteristics. Energy Fuel 1998, 12, 574–579. [Google Scholar] [CrossRef]
- Allardice, D.J.; Evans, D.G. The-brown coal/water system. Part 2. Water sorption isotherms on bed-moist Yallourn brown coal. Fuel 1971, 50, 236–253. [Google Scholar] [CrossRef]
- Karthikeyan, M.; Wu, Z.; Mujumdar, A.S. Low-Rank Coal Drying Technologies—Current Status and New Developments. Dry. Technol. 2009, 27, 403–415. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, Y.; Jiang, X.; Ma, Z.; Yan, J.; Cen, K.; Yu, X.; Liao, H.; Zhao, H. The effect of anionic dispersants on the moisture distribution of a coal water slurry. Fuel Process Technol. 2014, 126, 122–130. [Google Scholar] [CrossRef]
- Vaxelaire, J.; Cézac, P. Moisture distribution in activated sludges: A review. Water Res. 2004, 38, 2215–2230. [Google Scholar] [CrossRef]
- Robinson, J.; Knocke, W.R. Use of dilatometric and drying techniques for assessing sludge dewatering characteristics. Water Environ. Res. 1992, 64, 60–68. [Google Scholar] [CrossRef]
- Tsang, K.R.; Vesilind, P.A. Moisture distribution in sludges. Waterence Technol. 1990, 22, 135–142. [Google Scholar] [CrossRef]
- Smollen, M. Evaluation of municipal sludge drying and dewatering with respect to sludge volume reduction. Waterence Technol. 1990, 22, 153–161. [Google Scholar] [CrossRef]
- Deng, W.; Li, X.; Yan, J.; Wang, F.; Chi, Y.; Cen, K. Moisture distribution in sludges based on different testing methods. J. Environ. Sci. 2011, 23, 6. [Google Scholar] [CrossRef]
- Fraikin, L.; Salmon, T.; Herbreteau, B.; Levasseur, J.P.; Nicol, F.; Crine, M.; Léonard, A. Impact of Storage Duration on the Gaseous Emissions during Convective Drying of Urban Residual Sludges. Chem. Eng. Technol. 2011, 34, 1172–1176. [Google Scholar] [CrossRef]
- Deng, W.Y.; Yan, J.H.; Li, X.D.; Wang, F.; Lu, S.Y.; Chi, Y.; Cen, K.F. Measurement and simulation of the contact drying of sewage sludge in a Nara-type paddle dryer. Chem. Eng. Sci. 2009, 64, 5117–5124. [Google Scholar] [CrossRef]
- Ferrasse, J.H.; Arlabosse, P.; Lecomte, D. Heat, momentum, and mass transfer measurements in indirect agitated sludge dryer. Dry. Technol. 2002, 20, 749–769. [Google Scholar] [CrossRef]
- Yan, J.H.; Deng, W.Y.; Li, X.D.; Wang, F.; Chi, Y.; Lu, S.Y.; Cen, K.F. Experimental and Theoretical Study of Agitated Contact Drying of Sewage Sludge under Partial Vacuum Conditions. Dry. Technol. 2009, 27, 787–796. [Google Scholar] [CrossRef]
- Cieslik, B.M.; Namiesnik, J.; Konieczka, P. Review of sewage sludge management: Standards, regulations and analytical methods. J. Clean. Prod. 2015, 90, 1–15. [Google Scholar] [CrossRef]
- Pickles, C.A.; Gao, F.; Kelebek, S. Microwave drying of a low-rank sub-bituminous coal. Miner. Eng. 2014, 62, 31–42. [Google Scholar] [CrossRef]
- Xinzhi, Z.; Lun, S.; Ke, C.; Yang, Y.; Yu, Z.; Ruobin, Z. Research on multi-stage power control system of lignite microwave drying production line. CIESC J. 2018, 69, 274–282. [Google Scholar]
- Bennamoun, L.; Chen, Z.; Afzal, M.T. Microwave drying of wastewater sludge: Experimental and modeling study. Dry. Technol. 2016, 34, 235–243. [Google Scholar] [CrossRef]
- Song, Z.; Jing, C.; Yao, L.; Zhao, X.; Wang, W.; Mao, Y.; Ma, C. Microwave drying performance of single-particle coal slime and energy consumption analyses. Fuel Process Technol. 2016, 143, 69–78. [Google Scholar] [CrossRef]
- Song, Z.; Yao, L.; Jing, C.; Zhao, X.; Wang, W.; Sun, J.; Mao, Y.; Ma, C. Elucidation of the Pumping Effect during Microwave Drying of Lignite. Ind. Eng. Chem. Res. 2016, 55, 3167–3176. [Google Scholar] [CrossRef]
- Fu, B.A.; Chen, M.Q.; Song, J.J. Investigation on the microwave drying kinetics and pumping phenomenon of lignite spheres. Appl. Therm. Eng. 2017, 124, 371–380. [Google Scholar] [CrossRef]
- Elenga, R.G.; Massamba, D.; Niéré, R.R.; Maniongui, J.G.; Dirras, G. Convective and Microwave Dryings of Raffia Fruit: Modeling and Effects on Color and Hardness. Res. J. Appl. Sci. Eng. Technol. 2013, 6, 2715–2723. [Google Scholar] [CrossRef]
- Bantle, M.; K Fer, T.; Eikevik, T.M. Model and process simulation of microwave assisted convective drying of clipfish. Appl. Therm. Eng. 2013, 59, 675–682. [Google Scholar] [CrossRef]
- Domínguez, A.; Menéndez, J.A.; Inguanzo, M.; Pis, J.J. Sewage sludge drying using microwave energy and characterization by IRTF. Afinidad 2004, 61, 280–285. [Google Scholar]
- Fang, L.; Li, S.; Zhai, T.; Zhao, X.; Sun, H. A comparative study on the drying process of sewage sludge: Microwave and air-blast. In Proceedings of the International Conference on Civil, Transportation and Environmental Engineering (CTEE 12), Kuala Lumpur, Malaysia, 1–2 December 2013. [Google Scholar]
- Song, Z.L.; Yao, L.S.; Jing, C.M.; Zhao, X.Q.; Wang, W.L.; Ma, C.Y. Drying behavior of lignite under microwave heating. Dry. Technol. 2017, 35, 433–443. [Google Scholar] [CrossRef]
- Shen, L.Y.; Zhu, Y.; Liu, C.H.; Wang, L.; Liu, H.; Kamruzzaman, M.; Liu, C.; Zhang, Y.P.; Zheng, X.Z. Modelling of moving drying process and analysis of drying characteristics for germinated brown rice under continuous microwave drying. Biosyst. Eng. 2020, 195, 64–88. [Google Scholar] [CrossRef]
- Wei, Q.Y.; Huang, J.P.; Zhang, Z.Y.; Lia, D.J.; Liu, C.Q.; Xiao, Y.D.; Lagnika, C.; Zhang, M. Effects of different combined drying methods on drying uniformity and quality of dried taro slices. Dry. Technol. 2019, 37, 322–330. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Mujumdar, A.S.; Mothibe, K.J.; Roknul Azam, S.M. Study of drying uniformity in pulsed spouted microwave–vacuum drying of stem lettuce slices with regard to product quality. Dry. Technol. 2013, 31, 91–101. [Google Scholar] [CrossRef]
- Hii, C.L.; Ong, S.P.; Yap, J.Y.; Putranto, A.; Mangindaan, D. Hybrid drying of food and bioproducts: A review. Dry. Technol. 2021, 39, 1554–1576. [Google Scholar] [CrossRef]
- Tahmasebi, A.; Yu, J.; Han, Y.; Zhao, H.; Bhattacharya, S. A kinetic study of microwave and fluidized-bed drying of a Chinese lignite. Chem. Eng. Res. Des. 2014, 92, 54–65. [Google Scholar] [CrossRef]
- Li, L.; Jiang, X.; Qin, X.; Yan, K.; Chen, J.; Feng, T.; Wang, F.; Song, Z.; Zhao, X. Experimental study and energy analysis on microwave-assisted lignite drying. Dry. Technol. 2019, 37, 962–975. [Google Scholar] [CrossRef]
- Ge, J.; He, Y.; Zhu, Y.; Wang, Z.; Zhang, K.; Huang, Z.; Cen, K. Combined conventional thermal and microwave drying process for typical Chinese lignite. Dry. Technol. 2019, 37, 813–823. [Google Scholar] [CrossRef]
- Li, L.; Xiaowei, J.; Zhiguo, B.; Jianwei, W.; Fumao, W.; Zhanlong, S.; Xiqiang, Z.; Chunyuan, M. Microwave drying performance of lignite with the assistance of biomass-derived char. Dry. Technol. 2019, 37, 173–185. [Google Scholar] [CrossRef]
- Idris, A.; Khalid, K.; Omar, W. Drying of silica sludge using microwave heating. Appl. Therm. Eng. 2004, 24, 905–918. [Google Scholar] [CrossRef]
- Mawioo, P.M.; Rweyemamu, A.; Garcia, H.A.; Hooijmans, C.M.; Brdjanovic, D. Evaluation of a microwave based reactor for the treatment of blackwater sludge. Sci. Total Environ. 2016, 548, 72–81. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, C.; Qu, W.; He, Z.; Gao, J.; Jia, L.; Ji, S.; Ruan, R. Effect of Temperature and Microwave Power Levels on Microwave Drying Kinetics of Zhaotong Lignite. Processes 2019, 7, 74. [Google Scholar] [CrossRef]
- Fu, B.A.; Chen, M.Q.; Huang, Y.W.; Luo, H.F. Combined effects of additives and power levels on microwave drying performance of lignite thin layer. Dry. Technol. 2017, 35, 227–239. [Google Scholar] [CrossRef]
- Lin, B.; Cao, X.; Liu, T.; Ni, Z.; Wang, Z. Experimental Research on Water Migration-Damage Characteristics of Lignite under Microwave Heating. Energy Fuel 2021, 35, 1058–1069. [Google Scholar]
- Wang, Z.; Sun, J.; Chen, F.; Liao, X.; Hu, X. Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. J. Food Eng. 2007, 80, 536–544. [Google Scholar] [CrossRef]
- Ni, H.; Datta, A.K.; Torrance, K.E. Moisture transport in intensive microwave heating of biomaterials: A multiphase porous media model. Int. J. Heat. Mass. Transf. 1999, 42, 1501–1512. [Google Scholar] [CrossRef]
- Dincov, D.D.; Parrott, K.A.; Pericleous, K.A. Heat and mass transfer in two-phase porous materials under intensive microwave heating. J. Food Eng. 2004, 65, 403–412. [Google Scholar] [CrossRef]
- Wang, B.H. Review of drying kinetics. Dry. Technol. Equip. 2009, 7, 6. [Google Scholar]
- Han, R.; Zhou, A.; Zhang, N.; Li, Z. A review of kinetic studies on evaporative dehydration of lignite. Fuel 2022, 329, 125445–125457. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, J.; Wu, J.; Cheng, J.; Zhou, J.; Cen, K. Thin-layer drying characteristics and modeling of Ximeng lignite under microwave irradiation. Fuel Process Technol. 2015, 130, 62–70. [Google Scholar] [CrossRef]
- Araszkiewicz, M.; Koziol, A.; Lupinska, A.; Lupinski, M. Temperature distribution in a single sphere dried with microwaves and hot Air. Dry. Technol. 2006, 24, 1381–1386. [Google Scholar] [CrossRef]
- Cui, Z.; Xu, S.; Sun, D.; Chen, W. Temperature changes during microwave-vacuum drying of sliced carrots. Dry. Technol. 2005, 23, 1057–1074. [Google Scholar] [CrossRef]
- Putranto, A.; Chen, X.D. Reaction engineering approach modeling of intensified drying of fruits and vegetables using microwave, ultrasonic and infrared-heating. Dry. Technol. 2020, 38, 747–757. [Google Scholar] [CrossRef]
- Putranto, A.; Chen, X.D. Multiphase modeling of intermittent drying using the spatial reaction engineering approach (S-REA). Chem. Eng. Process. Process Intensif. 2013, 70, 169–183. [Google Scholar]
- Putranto, A.; Chen, X.D. A simple and effective model for modeling of convective drying of sewage sludge: The reaction engineering approach (REA). Procedia Chem. 2014, 9, 77–87. [Google Scholar] [CrossRef]
- Putranto, A.; Chen, X.D. Microwave drying at various conditions modeled using the reaction engineering approach (REA). Dry. Technol. 2016, 34, 1654–1663. [Google Scholar] [CrossRef]
- Hatibaruah, D.; Baruah, D.C.; Sanyal, A.S. Microwave drying characteristics of assam CTC tea (Camellia assamica). J. Food Process Pres. 2013, 37, 366–370. [Google Scholar] [CrossRef]
- Kantrong, H.; Tansakul, A.; Mittal, G.S. Drying characteristics and quality of shiitake mushroom undergoing microwave-vacuum drying and microwave-vacuum combined with infrared drying. J. Food Sci. Technol. 2014, 51, 3594–3608. [Google Scholar]
- Arslan, D.; Zcan, M.M. Study the effect of sun, oven and microwave drying on quality of onion slices. LWT Food Sci. Technol. 2010, 43, 1121–1127. [Google Scholar] [CrossRef]
- Hacifazlioglu, H. Comparison of Efficiencies of Microwave and Conventional Electric Ovens in the Drying of Slime-Coal Agglomerates. Int. J. Coal Prep. Util. 2017, 37, 169–178. [Google Scholar] [CrossRef]
- Guo, J.; Zheng, L.; Li, Z. Microwave drying behavior, energy consumption, and mathematical modeling of sewage sludge in a novel pilot-scale microwave drying system. Sci. Total Environ. 2021, 777, 146109–146118. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Li, W.; Li, Y.; Yang, Y.; Li, Y.; Cheng, Y.; Song, D. Thermal analysis and decomposition kinetics of the dehydration of copper sulfate pentahydrate. J. Therm. Anal. Calorim. 2019, 135, 2697–2703. [Google Scholar] [CrossRef]
- Li, C.; Liao, J.; Yin, Y.; Mo, Q.; Chang, L.; Bao, W. Kinetic analysis on the microwave drying of different forms of water in lignite. Fuel Process Technol. 2018, 176, 174–181. [Google Scholar] [CrossRef]
- Zarein, M.; Samadi, S.H.; Ghobadian, B. Investigation of microwave dryer effect on energy efficiency during drying of apple slices. J. Saudi Soc. Agric. Sci. 2015, 14, 41–47. [Google Scholar] [CrossRef]
- Guo, Z.; Li, F.; Su, G.; Zhai, D.; Liu, C. Microwave drying of nickel-containing residue: Dielectric properties, kinetics, and energy aspects. Green. Process Synth. 2019, 8, 814–824. [Google Scholar] [CrossRef]
- Zhu, B.C.; Song, W.D.; Fang, D.Y.; Lu, D.Q. Multicomponent diffusion model of porous catalyst efficiency factor (I) Multicomponent diffusion model and numerical calculation method. CIESC J. 1984, 1, 33–40. [Google Scholar]
- Özbek, B.; Dadali, G. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J. Food Eng. 2007, 83, 541–549. [Google Scholar] [CrossRef]
- Song, Z.; Jing, C.; Yao, L.; Zhao, X.; Sun, J.; Wang, W.; Mao, Y.; Ma, C. Coal slime hot air/microwave combined drying characteristics and energy analysis. Fuel Process Technol. 2017, 156, 491–499. [Google Scholar] [CrossRef]
Sample | Proximate Analysis (wt.%, ad) | |||
---|---|---|---|---|
Moisture | Ash | Volatile Matter | Fixed Carbon | |
1 | 1.99 | 63.72 | 30.47 | 3.82 |
2 | 1.87 | 63.81 | 30.73 | 3.59 |
3 | 1.82 | 63.83 | 30.84 | 3.51 |
4 | 1.76 | 63.83 | 31.03 | 3.38 |
5 | 1.75 | 63.85 | 30.83 | 3.57 |
average | 1.84 ± 0.09 | 63.81 ± 0.05 | 30.78 ± 0.20 | 3.57 ± 0.16 |
Model | Model Equation | P/W | R2 | χ2 | RSS | Coefficients |
---|---|---|---|---|---|---|
Lewis | MR = exp(−kt) | 500 | 0.798 | 0.008 | 0.153 | k = 0.033 |
600 | 0.820 | 0.007 | 0.097 | k = 0.050 | ||
700 | 0.811 | 0.007 | 0.080 | k = 0.057 | ||
800 | 0.796 | 0.007 | 0.053 | k = 0.078 | ||
Page | MR = exp(−ktn) | 500 | 0.998 | 4.833 × 10−5 | 8.699 × 10−4 | k = 0.002, n = 1.905 |
600 | 0.998 | 6.537 × 10−5 | 7.845 × 10−4 | k = 0.004, n = 1.914 | ||
700 | 0.998 | 4.656 × 10−5 | 4.510 × 10−4 | k = 0.005, n = 2.008 | ||
800 | 0.998 | 6.096 × 10−5 | 3.657 × 10−4 | k = 0.006, n = 2.155 | ||
Modified Page I | MR = exp(−(kt)n) | 500 | 0.998 | 4.533 × 10−5 | 8.099 × 10−4 | k = 0.042, n = 1.905 |
600 | 0.998 | 6.537 × 10−5 | 7.145 × 10−4 | k = 0.062, n = 1.914 | ||
700 | 0.998 | 4.178 × 10−5 | 4.225 × 10−4 | k = 0.073, n = 2.008 | ||
800 | 0.998 | 6.596 × 10−5 | 3.988 × 10−4 | k = 0.098, n = 2.155 | ||
Modified Page II | MR = aexp(−ktn) | 500 | 0.999 | 3.479 × 10−5 | 5.914 × 10−4 | a = 1.034, k = 0.002, n = 1.848 |
600 | 0.998 | 6.589 × 10−5 | 7.248 × 10−4 | a = 1.017, k = 0.004, n = 1.871 | ||
700 | 0.998 | 5.988 × 10−5 | 4.784 × 10−4 | a = 0.997, k = 0.005, n = 2.018 | ||
800 | 0.998 | 3.997 × 10−5 | 1.998 × 10−4 | a = 0.958, k = 0.006, n = 2.154 | ||
Linear | MR = at + b | 500 | 0.999 | 1.658 × 10−5 | 2.984 × 10−4 | a = −0.033, b = 1.172 |
600 | 0.999 | 1.031 × 10−5 | 1.238 × 10−4 | a = −0.048, b = 1.148 | ||
700 | 0.999 | 1.156 × 10−6 | 1.545 × 10−5 | a = −0.059, b = 1.133 | ||
800 | 0.999 | 1.559 × 10−5 | 9.356 × 10−5 | a = −0.078, b = 1.167 |
Model | Model Equation | P/W | R2 | χ2 | RSS | Coefficients |
---|---|---|---|---|---|---|
Lewis | MR = exp(−kt) | 500 | 0.620 | 0.002 | 0.029 | k = 0.067 |
600 | 0.550 | 0.002 | 0.024 | k = 0.094 | ||
700 | 0.712 | 0.001 | 0.016 | k = 0.121 | ||
800 | 0.529 | 0.002 | 0.015 | k = 0.143 | ||
Page | MR = exp(−ktn) | 500 | 0.995 | 2.852 × 10−5 | 3.708 × 10−4 | k = 6.875 × 10−5, n = 1.789 |
600 | 0.992 | 5.366 × 10−5 | 4.293 × 10−4 | k = 7.059 × 10−5, n = 3.155 | ||
700 | 0.991 | 4.956 × 10−5 | 4.255 × 10−4 | k = 1.217 × 10−4, n = 3.324 | ||
800 | 0.998 | 1.449 × 10−5 | 5.798 × 10−5 | k = 1.749 × 10−4, n = 3.414 | ||
Modified Page I | MR = exp(−(kt)n) | 500 | 0.995 | 2.784 × 10−5 | 3.618 × 10−4 | k = 0.040, n = 2.759 |
600 | 0.993 | 4.386 × 10−5 | 3.070 × 10−4 | k = 0.053, n = 3.254 | ||
700 | 0.995 | 3.018 × 10−5 | 2.652 × 10−4 | k = 0.066, n = 3.316 | ||
800 | 0.997 | 1.417 × 10−5 | 5.669 × 10−5 | k = 0.081, n = 3.442 | ||
Modified Page II | MR = aexp(−ktn) | 500 | 0.992 | 4.880 × 10−5 | 5.856 × 10−4 | a = 2.636, k = 0.001, n = 2.210 |
600 | 0.986 | 1.044 × 10−4 | 7.307 × 10−4 | a = 2.494, k = 0.002, n = 2.241 | ||
700 | 0.992 | 5.485 × 10−5 | 1.985 × 10−4 | a = 2.021, k = 0.003, n = 2.805 | ||
800 | 0.996 | 3.664 × 10−5 | 1.099 × 10−4 | a = 1.582, k = 0.004, n = 2.809 | ||
Linear | MR = at + b | 500 | 0.955 | 2.483 × 10−4 | 0.003 | a = -0.016, b = 0.667 |
600 | 0.953 | 3.136 × 10−4 | 0.002 | a = −0.024, b = 0.721 | ||
700 | 0.930 | 4.956 × 10−4 | 0.003 | a = −0.027, b = 0.642 | ||
800 | 0.946 | 4.252 × 10−4 | 0.002 | a = −0.041, b = 0.774 |
P (W) | P0 (W) | Preal (W) | (%) |
---|---|---|---|
500 | 329 | 138 | 41.9 |
600 | 364 | 200 | 54.9 |
700 | 399 | 248 | 62.1 |
800 | 437 | 359 | 82.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Zhang, K.; Huang, B.; Zhang, K.; Chao, C. Microwave Drying of Sewage Sludge: Process Performance and Energy Consumption. Processes 2024, 12, 432. https://doi.org/10.3390/pr12030432
Wang G, Zhang K, Huang B, Zhang K, Chao C. Microwave Drying of Sewage Sludge: Process Performance and Energy Consumption. Processes. 2024; 12(3):432. https://doi.org/10.3390/pr12030432
Chicago/Turabian StyleWang, Guangyu, Kai Zhang, Bocheng Huang, Kaihua Zhang, and Cong Chao. 2024. "Microwave Drying of Sewage Sludge: Process Performance and Energy Consumption" Processes 12, no. 3: 432. https://doi.org/10.3390/pr12030432
APA StyleWang, G., Zhang, K., Huang, B., Zhang, K., & Chao, C. (2024). Microwave Drying of Sewage Sludge: Process Performance and Energy Consumption. Processes, 12(3), 432. https://doi.org/10.3390/pr12030432