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Abstract: In this paper, a hybrid three-stage methodology based on in vitro experiments, simulations,
and metaheuristic optimization is presented to enhance the corrosion resistance of hydroxyapatite
(HA)-coated magnesium implants in biomedical applications. In the first stage, we add cerium (Ce) to
HA and present a new coating (named HA+Ce) to improve the resistance of the coating to corrosion.
Then, various HA+Ce compounds with different factors (e.g., concentration, pH, immersion time,
and temperature) are generated and their propensity for corrosion is examined in a physiological
environment using EIS and DC polarization tests in a simulated body fluid solution. Eventually, a
comprehensive dataset comprising 1024 HA+Ce coating samples is collected. In the second stage,
machine learning using random forest (RF) is used to learn the relation between the input factors
of the coating and its corrosion resistance. In the third stage, a metaheuristic algorithm based on
the whale optimization algorithm (WOA) is utilized to find the best HA+Ce compound with the
maximum corrosion resistance, while the objective function of WOA for a new unseen coating solution
is estimated using the trained RF model. Finally, the morphology and composition of the best coating
solution are inspected using FE-SEM. According to the obtained results, the HA+Ce coating with an
immersion time of 60 min, concentrations of 0.9 for Ce and 1.2 for HA, pH of 4.1 for solution, and
temperature of 70 °C demonstrated the highest level of corrosion resistance among all experiments
and simulations. The final optimized HA+Ce coating solution has obtained a corrosion resistance of
14,050 Q)-cm?, which resulted in a gain of 14.9% compared to the HA-coated Mg implants.

Keywords: magnesium implants; hydroxyapatite; cerium; coatings; corrosion resistance; random
forest; whale optimization algorithm (WOA)

1. Introduction

Magnesium (Mg) and its alloys are widely used in various industries, like automotive,
aerospace, and defense, due to their lightweight nature and impressive mechanical strength
relative to their weight [1,2]. Mg boasts a Young’s modulus of 44 Gigapascals and a density
of 1740 kg/m?, which makes it a sought after alternative to aluminum, aiding in fuel
consumption reduction. Its biocompatibility, biodegradability, density, and modulus akin
to natural bone, have spurred interest in its use for medical implants, potentially replacing
biodegradable polymeric ones [3]. Furthermore, its ability to dissolve in body fluid elimi-
nates the need for secondary surgery to remove the implant [4]. Mg implants present a host
of advantages in the realm of medical applications [5-8]. Their exceptional biocompatibility
ensures seamless integration with the body’s biological systems, minimizing the risk of
adverse reactions or rejection. Moreover, Mg implants degrade gradually within the body,
eliminating the need for additional removal surgeries and reducing patient discomfort
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and healthcare expenses. With mechanical properties closely resembling natural bone, Mg
and its alloys offer improved load-bearing capabilities and diminished stress shielding
effects, potentially leading to enhanced patient outcomes [9]. Additionally, Mg’s low den-
sity contributes to the lightweight nature of implants, alleviating stress on surrounding
tissues and enhancing patient comfort, particularly in orthopedic applications. Overall, Mg
implants offer a compelling combination of biocompatibility, biodegradability, mechanical
properties, and corrosion resistance, making them an attractive choice for various medical
applications.

However, despite the advantages of Mg, it faces some limitations due to its weak
corrosion resistance. Its susceptibility to corrosion with a standard potential of —2.34 V vs.
NHE in corrosive environments impedes its wider utilization, leading to rapid degradation
when exposed to such conditions [10]. Therefore, it is crucial to address this challenge
to maximize its potential in various applications. In recent years, several strategies have
emerged to control the corrosion of Mg and its alloys [11]. These techniques include altering
alloy composition or microstructure to create high-purity alloys, surface modifications,
designing structures to prevent galvanic pair formation, and the use of protective coatings
like chemical conversion and polymer coatings [12-17].

Hydroxyapatite (HA), a biocompatible and biodegradable chemical coating from
the calcium phosphate family (Cas(PO4)3OH), has gained attention as a new chemical
coating generation in medical applications [18]. The main advantage of HA is its bone-like
composition, aiding in bone bonding. Studies on HA-coated Mg alloys prove its interesting
compatibility with bodily conditions [19]. However, HA coatings have some limitations,
such as their insufficient density and purity to offer long-term corrosion protection. They
tend to be brittle and susceptible to breakage from hydrogen gases produced during the
corrosion process [20]. Therefore, recent research has focused on enhancing HA coatings by
modifying factors and experimenting with different polymers to improve density, purity,
uniformity, and adhesion to the Mg substrate, to ultimately increase corrosion resistance.
Proper pretreatment of the Mg surface plays a crucial role, either by facilitating the creation
of a dense and uniform HA coating or by blocking corrosive elements, thereby shielding
the magnesium surface from corrosion.

The emergence of Industry 4.0 has led to an increased utilization of machine learning
techniques in the fields of industrial chemistry and the development of chemical prod-
ucts [21]. Supervised learning methods are the most commonly employed techniques in
the chemical industry, constituting approximately 70% of the total methods utilized, while
hybrid, unsupervised learning, and combinatorial methods are less frequently employed
compared to supervised learning [22]. In recent years, supervised machine learning and
deep learning methods have been successfully applied to address various chemical design
problems, including modeling, optimization, control and monitoring, design and discovery,
support for sensory analysis, and reaction prediction [23-26].

Recently, researchers have been advancing the use of rare metal conversion coatings,
such as cerium (Ce) coatings, known for their eco-friendliness, on metals like aluminum
and Mg alloys [27-29]. This study explores leveraging Ce to enhance the HA coatings,
leading to a novel coating called HA+Ce. Our motivation is to enhance the corrosion
resistance of Mg implants by introducing a novel coating, termed HA+Ce, which com-
bines HA nanoparticles with Ce coatings. This innovative approach represents the first
instance of incorporating Ce into HA-coated Mg implants, leveraging Ce’s known eco-
friendliness and corrosion-resistant properties. To optimize the HA+Ce compound solution,
a hybrid artificial intelligence technique is employed, merging machine learning models
with metaheuristic-driven optimization algorithms. This integrated approach, utilizing a
combination of random forest (RF) and whale optimization algorithm (WOA), facilitates
the search for the most effective HA+Ce compound. Through extensive experimenta-
tion and evaluation, involving the generation and in vitro assessment of over a thousand
HA+Ce compounds, comprehensive data is collected to train the RF model and guide
the optimization process. The corrosion resistance of the final optimized HA+Ce coating
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solution is thoroughly evaluated using electrochemical impedance tests, while the surface
quality is scrutinized via FE-SEM tests, ultimately providing insights into the efficacy
and performance of the innovative coating formulation. We have specifically selected the
WOA algorithm as the metaheuristic component of our solution method. This algorithm
possesses numerous advantages, such as rapid convergence, a well-balanced approach
to both exploring and exploiting the problem space, simplicity, flexibility, and robustness.
These favorable characteristics make the WOA algorithm a highly promising approach for
optimizing problems with continuous parameters [30].
Overall, our key contributions can be mentioned as follows:

e Introducing a new HA-based coating through adding Ce to the solution containing HA
nanoparticles (called HA+Ce), to improve its performance against corrosion. This is
the first time that Ce has been added to HA-coated Mg implants.

e  Presenting a combined machine learning-metaheuristic solution method based on RF
and WOA to search for the best HA+Ce compound. To the best of our knowledge,
this is the first study to utilize a hybrid technique based on machine learning and
metaheuristic algorithms for coating optimization.

e Collecting a comprehensive dataset through generating and in vitro evaluating
1024 HA-Ce compounds with different coating factors (e.g., concentration, pH, immer-
sion time, and temperature) using EIS and DC polarization tests.

e Training an RF model on the collected dataset and utilizing WOA to optimize the
HA+Ce coating solution utilizing the RF model as the objective function. The WOA
calls RF to estimate the corrosion resistance of new unseen coating solutions.

e Evaluating the corrosion resistance of the final optimized HA+Ce coating solution
found by WOA-RF model using electrochemical impedance tests. Also, FE-SEM tests
are used to investigate the quality of the surface of the final HA+Ce coating solution.

In the rest of this paper, Section 2 reviews the existing literature on HA-coated Mg
implants. Our experimental design for the HA+Ce coating is illustrated in Section 3.
The proposed hybrid three-stage methodology to optimize the proposed HA+Ce solution
is described in Section 4. Experimental results and simulations are provided in Section 5.
Finally, the concluding remarks and possible future research directions are discussed in
Section 6.

2. Literature Review

Numerous studies have been conducted on the modification methods of Mg surface to
improve the performance of coatings such as HA. For instance, Kazemi et al. [31] utilized a
zirconium-based conversion coating for this purpose and demonstrated that the corrosion
resistance in simulated body fluid (SBF) environment significantly improves in the presence
of this conversion coating. In another study, AhadiParsa et al. [32] used silane compounds
to modify the Mg surface and showed that these silane compounds alter the chemistry and
physics of the surface and lead to better performance of the HA coating.

Over the past years, the application of conversion coatings made from rare metals by
researchers has been progressing. Among them, Ce conversion coating has emerged as
an environmentally friendly solution, which has been used on various metals including
aluminum and Mg alloys [27]. A main positive feature of the Ce oxide layer deposited on
the surface of an oxidizable metal is its self-healing ability after damage. Ce conversion
coatings apparently work similarly to old conversion coatings (such as chromate), although
their efficiency is not as high as chromate conversion coatings [27-29].

Lee et al. [33] investigated the formation mechanism and corrosion protection proper-
ties of stannate and Ce conversion coatings on AZ91D magnesium alloys. They prepared
the alloy samples and applied the coatings using specific chemical solutions after surface
treatments. Various analytical techniques were used to examine the coated samples, reveal-
ing that the stannate coating formed a dense and uniform layer of tin oxide compounds,
providing corrosion resistance through a physical barrier. The Ce-based coating formed an
irregular structure of Ce oxide compounds, offering corrosion protection through barrier
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properties and self-healing mechanisms. They discussed the influence of coating parame-
ters and highlighted the improved corrosion resistance of the coated samples compared to
uncoated AZ91D alloy.

In this paper, we introduce a new improved HA+Ce coating solution through the
addition of Ce to HA coating, aiming at increasing its resistance to corrosion. Furthermore,
to obtain the best achievable HA+Ce compound, we present the use of a hybrid technique
utilizing machine learning empowered metaheuristic optimization algorithms to optimize
the HA+Ce coating solution.

3. Experimental Design

In our experiments, a 10 wt.% suspension of HA in water were sourced from Padideh
Zisti Nano in Tehran, Iran. The selection of a 10 wt.% suspension of HA was based on
practical considerations aimed at optimizing the performance of the coating. This concen-
tration was chosen as it strikes a balance between ensuring adequate HA incorporation
for corrosion resistance enhancement and maintaining the mechanical integrity of the coat-
ing [34]. Higher concentrations of HA may lead to increased brittleness or reduced adhesion
strength of the coating, compromising its effectiveness and longevity. Conversely, lower
concentrations may not provide sufficient corrosion protection. Therefore, the 10 wt.% sus-
pension was deemed optimal to achieve the desired corrosion resistance while preserving
the coating’s mechanical properties, ensuring the practical viability and effectiveness of the
HA+Ce Mg implant coating solution.

Other materials include nitric acid (HNO3) in a 65 vol.% solution, potassium hydroxide
(KOH) with a molecular weight of 74.55 g-mol~!, sodium hydroxide (NaOH) with a
molecular weight of 40 g-:mol~!, acetic acid (CH3COOH) with a molecular weight of
60.05 g'-mol~!, and Ce nitrate purchased from Merck Company, Rahway, NJ, USA.

3.1. Surface Preparation

Initially, AZ31 Mg alloy samples, comprising 2.5-3.5 wt.% Al, 0.2-1 wt.% Mn,
0.7-1.3 wt.% Zn, and the remaining portion being Mg, were cut into 20 x 20 x 5 mm?
pieces. These pieces underwent polishing using silicon carbide sandpapers of 400, 800,
and 1200 grit, followed by cleaning with acetone. Then, the samples underwent specific
chemical treatments: immersion in a 1 wt.% HNOj solution for 20 s to remove oxides,
soaking in a 10 wt.% KOH solution for 5 min to eliminate grease, and immersion in a
1 M CH3COOH solution for 10 s to activate the Mg AZ31 surface. All treatments were
conducted at room temperature (23 = 2 °C), with the samples being rinsed with deionized
water after each step.

3.2. Coatings Preparation

In formulating the HA+Ce coating, initially, AZ31 samples were coated with HA
following optimal conditions from [35]: a solution concentration of 1 g-L_l, pH of 4.3,
temperature at 75 £ 5 °C, for 60 min, stirring at 400 rpm. Subsequently, Ce was introduced
into the HA+Ce solution to alter the electrochemical properties of the HA coating. This in-
volved adding Ce nitrate (at 1 g-L ! concentration) to the HA solution, adjusting the pH
to 4.3 using HNO3; and NaOH, and maintaining the solution temperature at 75 & 5 °C.
The AZ31 Mg substrates were then immersed for 15, 30, and 60 min at a stirrer speed
of 400 rpm in the solution containing both Ce and HA. To create a dataset for training a
machine learning model (outlined in Section 4.1), various HA+Ce coating solutions with
different input parameters were prepared in the subsequent step.

For the examination of the conversion coatings’ microstructure, field emission scan-
ning electron microscopy (FE-SEM) was employed, utilizing the TESCAN Mira III Model.
This instrument is also equipped with energy dispersive X-ray spectrum (EDAX) capabili-
ties, allowing for the determination of the elemental composition of various samples coated
with Ce and HA.
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3.3. Anticorrosion Performance Evaluation

To understand the impacts of adding HA and Ce coatings, an uncoated AZ31 Mg
piece served as a reference sample. Comprehensive studies on the corrosion behavior of
the coated samples were conducted via DC polarization and electrochemical impedance
spectroscopy (EIS) using the Autolab PGSTAT 302 N. EIS investigations employed a 10 mV
amplitude and a frequency range of 100 kHz to 10 mHz. During EIS testing, each sample
was immersed for 3 min, while DC polarization involved a 10 min immersion. Each
sample underwent three tests for consistency. Zsimp (Ver. 3.5) software was employed
to analyze the collected data. To ensure test consistency, a specific area of the AZ31 Mg
alloy’s treated surface was sealed with a hot melt mixture of beeswax and colophony
resin for electrochemical tests. These tests were performed in a three-electrode cell using
SBF solution (50 + 2 mL), where the specimen acted as the working electrode (1 cm?),
while Ag/AgCl and platinum served as the reference and counter electrodes, respectively.
Accordingly, Table 1 provides the composition of the SBF used in the experiment, which is
based on [35].

Table 1. Composition of SBF used in our experiments [35].

S. No. Reagents Amount in 1000 mL
1 NaCl 8.035 g
2 (HOCH,)3CNH, 6.118 g
3 NaHCO3 0.355¢g
4 MgCl,-6H,O 0.311g
5 CaCl, 0292 ¢
6 Kl 0.225¢g
7 KyHPO4-3H,0 0.231¢g
8 NapSO4 0.072 g
9 1.0MHCl 39.0 mL
10 1.0 M HCl pH~74

To explore how coated samples interact in physiological environments, they were
submerged in SBF media for three weeks. Electrochemical impedance spectroscopy (EIS)
was conducted at different exposure durations (1 h, 1 day, 7 days, 21 days) at a temperature
of 37 £ 1 °C. The SBF solution used closely mimicked the pH levels and ion concentrations
found in human blood plasma. Alongside, visual documentation of the samples immersed
in the SBF solution was carried out. The Field Emission Scanning Electron Microscope—
FE-SEM (TESCAN Vega II and Mira III Models, TESCAN, Brno, Czech Republic) captured
images of gold-coated samples before and after a one-week immersion in the SBF solu-
tion. Additionally, the RONTEC QuanTax 200 Software-driven Energy-dispersive X-ray
spectrum analysis was employed to further scrutinize sample composition. To monitor
hydrogen evolution, substrates were placed in the SBF solution at 37 °C under an inverted
funnel connected to a graduated burette. The water level in the burette was periodically
checked for 180 h while ensuring full surface exposure of the samples.

4. Optimization Methodology Using WOA-RF

As mentioned above, our strategy for maximizing the resistance of the proposed
HA+Ce coating solution against corrosion is a three-stage method based on in vitro experi-
ments, simulations, and metaheuristic optimization. In the first stage (Section 4.1), various
HA+Ce compounds with different input factors are examined to collect a comprehensive
dataset comprising 1024 coating samples. In the second stage (Section 4.2), this dataset is
used to train the RF-based machine learning model, in order to estimate the corrosion resis-
tance based on the input coating factors. In the third stage (Section 4.3), the WOA-based
metaheuristic algorithm is used to find the best HA+Ce compound that maximizes the
corrosion resistance of the coating. The operation of the proposed WOA-RF methodology
is illustrated in Algorithm 1. In the following, these processes are described in detail.
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Algorithm 1. Combined WOA-RF model for optimizing the HA+Ce coating solution

Inputs:
Collected dataset comprising 1024 HA+Ce coating samples
Parameters of WOA (decision variables and ranges, population size, max iterations, and b)
Parameters of RF (No. DTs, aggregation rule, percentages of train and test data samples)
Data Collection:

1.  for s=1: number of HA+Ce coating samples

2. Generate the corresponding HA+Ce coating solution

3. Evaluate the generated coating solution

4. Save the data sample: inputs (coating factors) and output
(corrosion resistance)

5. Save the input features and output resistance

6. end for

7. Dividing the whole dataset (1024 data samples) into train (70%) and test (30%) datasets
Training Phase:
8. for t=1:number of DTs

9. Train DT ¢ using 50% of training samples (bagging method)

10. end for

11. Save the trained RF model

Test Phase:

12.  for d=1: No. test samples

13. for t =1: number of DTs

14. Calculate the output of DT ¢ for sample d

15. end for

16. Estimate the final output of sample d through aggregating the outputs of all DTs for
sample d

17. end for

18. Generalizability evaluation of the RF model on test samples

Optimization Phase:

19. Utilizing RF to estimate the corrosion resistance of HA+Ce coating solutions

20. Applying WOA to find the best HA+Ce coating solution
Output: Optimized HA+Ce coating solution

4.1. Data Collection

To collect the corresponding HA+Ce data samples for training the RF model, we
considered 1024 experiments by changing the values of the Ce/HA concentration, Ce/HA
pH, Ce/HA temperature, and Ce/HA /HA+Ce immersion time, as summarized in Table 2.
For generating a data sample, each input factor has been considered with a value within its
specified range as provided in Table 2. After some experiments, we have collected a set of
1024 different HA+Ce coating samples, which are used to learn the behavioral pattern of
the HA+Ce coating using a machine learning model.

4.2. Machine Learning Model

After collecting HA+Ce data samples, the full dataset comprising 1024 samples was
divided into 717 training samples (70%) and 307 test samples (30%). To learn the relation
between the coating factors and corrosion resistance, we performed an RF model, which
builds multiple decision trees (DTs) in parallel [36]. In general, DTs can be viewed in two
different ways depending on the characteristics of the input variables (features) and the
output variable (target). When the target variable is numerical and continuous, the problem
is referred to as regression. On the other hand, if the target variable is categorical, it is
considered a classification problem [37]. While there are various types of DT algorithms
described in the literature such as ID3, C4.5, and classification and regression trees (CART),
we specifically employ CART for solving our regression problem, as it is one of the most
commonly referenced algorithms [38]. CART is capable of handling both categorical and
continuous features, and it can generate regression trees that not only predict the class but
also the exact value of the target variable [39]. In the case of regression trees involving
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continuous features, each feature is divided at different points using thresholds, which
can be tuned based on the error between the actual value of the target variable and the
predicted value of the output variable [40].

Table 2. Range of the variable parameters to generate 1024 HA+Ce coating samples.

Sample Parameter Range
CepH 2-6
Ce Concentration (mol/L) 0.01-2
Ce Coating -
Ce Temperature (Celsius) 5-50
Ce Immersion time (seconds) 5-180
HA pH 2-6
HA Concentration (gr/L) 0.1-10
HA Coating
HA Temperature (Celsius) 50-90
HA Immersion time (minutes) 5-120
HA+Ce pH 2-6
HA+Ce Temperature (Celsius) 50-90
HA+Ce Coating HA+Ce Immersion time (minutes) 5-120
Ce Concentration (mol/L) 0.01-2
HA Concentration (gr/L) 0.1-10

The RF technique, first introduced by Breiman in 2021 [41], is a supervised machine
learning approach that utilizes the CART decision tree algorithm and ensemble methods to
address both classification and regression problems. Instead of constructing a single DT
(i.e., CART in our model), the RF method typically generates multiple DTs and combines
their outputs using an aggregation technique. The commonly employed approach for
growing trees in RF is called bagging, which involves sampling rows with replacement
to create different bootstrap samples. The idea behind bagging is to build CART trees
from diverse bootstrap samples, adjust the predictions, and thereby create a diverse set
of predictors. The aggregation step then allows for obtaining a robust and more efficient
predictor [40]. The bagging technique within RF effectively minimizes variance and guards
against overfitting by reinforcing the model through random sample selection for training
individual DTs [42]. After training a collection of DTs, the ultimate prediction for each test
sample is calculated by combining the predictions from all DTs using a simple averaging
approach. This ensures a more robust and reliable outcome by considering the collective
insights of multiple decision trees [43].

As depicted in Figure 1, every coating sample is characterized by a feature vector
of length 9, along with a target output defining its corrosion resistance. Within the RF
model, each DT is trained using the bagging technique under 50% of the training samples.
Following the training phase, the test data samples are employed to assess the model’s
adaptability to new samples. This involves comparing the resistance estimates provided
by the RF model with the actual resistances measured through experimentation. The final
output of the RF model for a test sample “d” can be computed as followsFormu:

1T
Output; = TZ out, (1)
t=1

where out, ; is the estimated resistance by DT ¢ for the data sample d and T is the number
of DTs within the RF model.



Processes 2024, 12, 490

8 of 18

HA+Ce Input Factors:

- Ce Concentration

- HA Concentration

- CepH

- HA pH

- Ce Temperature

- HA Temperature

- Ce Immersion time
- HA Immersion time
- HA+Ce Immersion

out; 4

> Decision Tree 1

outrq

P> Decision Tree 2

Corrosion Resistance:
—p Output,

>—-> oulzq >

Decision Tree 3

1 T
Output,, = - Z out,,
t=1

oulra

Decision Tree T

Figure 1. Estimating the corrosion resistance for a new unseen HA+Ce coating solution using RF
model.

Following the assessment of corrosion resistance in all test data samples via the
RF model, the estimated resistances are juxtaposed against the actual values (measured
experimentally). This comparison relies on metrics including mean absolute error (MAE),
root-mean-square error (RMSE), mean percent error (MPE), and correlation (R), evaluated
in the subsequent manner:

Dest
MAE = Y (|Output, — Actual ) 2)
Test j—1
1 Drest )
RMSE = Y (Output, — Actual ;) (3)
Test j—1
D €s J—
MPE — 1 &' Output, — Actual )
Drest =4 Actual ;
1 DTest - -
Y (|Outputd — Output,| x ‘Actuald - ActualdD
- Drest 4—1
R— 5)
1 Dpst - 2 1 Dest \2
Output , — Output X | =—— Actual , — Actual
\/DTest dgl(‘ P puks]) \/DTest dgl(’ a d’)

where Actual ; is the actual corrosion resistance experimentally measured for the test data
sample d.

4.3. Optimization Procedure Using WOA

We utilize a metaheuristic-driven optimization algorithm based on WOA to optimize
the HA+Ce coating solution. The objective is to find the best input factors of the HA+Ce
coating solution that leads to obtaining the maximum corrosion resistance. WOA is a meta-
heuristic approach introduced by Mirjalili and Lewis [30]. The core process of WOA begins
with an initial population chosen randomly. In each iteration, the algorithm evaluates
the fitness of each whale based on the given objective function. Subsequently, the WOA
population undergoes updates through activities like hunting for prey, encircling prey, and
employing bubble-net attacks [44]. These steps are repeated iteratively until reaching a
predetermined maximum number of iteration counts.

4.3.1. Solution Representation

As seen in Figure 2, a feasible solution (whale) to optimize the HA+Ce coating is
encoded by a vector of length 9. The decision variables include Ce concentration (Ce Con),
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HA concentration (HA Con), Ce pH (Ce pH), HA pH (HA pH), Ce temperature (Ce Tem), HA
temperature (HA Temn), Ce immersion time (Ce ImT), HA immersion time (HA ImT), and
HA+Ce immersion time (HACe ImT).

CeCon | HACon CepH HApH | CeTem | HATem | CelmT | HAImT | HACe ImT

Figure 2. Encoding of a feasible solution for optimizing HA+Ce coating solution.

4.3.2. Objective Function Evaluation

The fitness of each coating solution is considered to maximize the corrosion resistance
of the corresponding HA+Ce solution. For each existing HA+Ce sample, the experimen-
tally measured resistance is considered as the fitness value. However, for the new unseen
HA+Ce samples, the RF model is called to estimate the corrosion resistance of the corre-
sponding solution.

4.3.3. Population Updating

For the updating process of each whale, a random value p within the range of [0, 1]
and a randomly generated vector A are employed. When p is greater than or equal to
1, the solution is updated through bubble-net attacking [45]. If p is less than 0.5 and the
magnitude of vector A is greater than or equal to 1, the whale undergoes an update via
prey search. Alternatively, if the magnitude of A is less than 1, the whale is updated using
the encircling prey method [46].

e  Search for prey: Each whale X may move toward other randomly selected whale, to
emphasize more exploration. This action can be described as moving the whale in the
direction of a randomly chosen whale X;nd as follows:

Xppr = X0 g (2r —1) - |27 - XFAnd _ X, (6)

e  Encircling prey: In each iteration, every whale has the ability to pinpoint the position
of the prey, which represents the best solution found until that point (denoted as
X*). The other whales then attempt to encircle this best solution by employing the
encircling prey operator, as defined in Equation (7). Here, a represents a parameter
that linearly decreases from 2 to 0, r is a randomly generated vector within the range
of [0, 1], and t indicates the current iteration number.

Xip1 =X —a-(2r—1) - |2r- Xs — Xy (7)

e  Bubble-net attacking: The movement pattern of whales, resembling a helix (known
as bubble-net attacking behavior), can be represented using a spiral equation outlined
in Equation (8). Here, [ stands for a parameter chosen uniformly at random from the
range of [—1, 1], while b is a constant typically set between 0 and 1.

X1 = |Xx — Sy - P cos(27]) 4+ Xx (8)

5. Results and Discussion
5.1. Parameter Setting

To set the adjustable parameters of the proposed WOA-RF model, various values were
tested for each parameter. Accordingly, the best values were selected based on their impact
on both convergence speed and the final fitness value, which in this context refers to the
corrosion resistance. These chosen parameter settings were utilized for the final simulations,
delineated in Table 3, outlining the parameter configurations across different phases of both
WOA and RF. In the conducted in vitro experiments, a total of 1024 samples were collected
over a period of 14 days, encompassing the data collection process. The complete dataset
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consisting of 1024 samples was partitioned into a training dataset (70%—717 samples) and
a test dataset (30%—307 samples), as previously mentioned.

Table 3. Parameters of the proposed algorithm in RF and WOA phases.

Phase Parameter Definition Value
D Number of collected HA+Ce data samples 1024
Dyain Number of train data samples 717 (70%)
RF Drst Number of test data samples 307 (30%)
T Number of DTs within RF model 10
PopSize Population of WOA 50
WOA MaxIter ITterations of WOA 100
NumVar Number of decision variables 9

5.2. Results of HA+Ce Coating

After adding the Ce nitrate in the coating solution to modify HA to HA+Ce coating,
the immersion time, as a highly influential parameter in the formation of the coating, was
examined through EIS and SEM tests. Based on cross-section SEM images, the thickness
of the hydroxyapatite coating is about 2 to 30 microns. This change in thickness depends
on the conditions of coating and surface preparation. Figure 3 shows the Nyquist plot for
HA+Ce coatings at different immersion times and film formation of 15, 30, and 60 min.
The EIS curves were fitted by single and double time-constant equivalent circuits shown in
Figure 3, wherein R. and CPE, represent the coating resistance and coating capacitance,
respectively. Furthermore, the obtained parameters are reported in Table 4. According to
Table 4, it is observed that the lowest polarization resistance Rp and absolute impedance at
the frequency of 0.01 Hz (1 Z1| o1 42) belong to the coating at the shortest time. The low
resistance of this sample (Rp = 5020 ohm-cm?) is likely due to insufficient immersion time.
Consequently, it did not have adequate time to interact with the coating solution, resulting
in the inability to form a uniform and complete coverage.

8000 T T T T T T T
O (Ce+HA)15 min
(Ce +HA) 30 min
7000 | (Ce+HA)60min |
6000 1> -
1<
CPEc CpEcx
5000 J\ 1> —o ]
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Figure 3. Obtained Nyquist plot for HA+Ce coatings at different immersion times.
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Table 4. Results of EIS for the HA+Ce coatings at various immersion times.

Sample

Rg
(Q-cm?)

R Ret Rp Yo 1) Yo (2)

(Q-cm?) (Q-cm?) (Q-cm?) m (s"/Q2/cm?) (s"/QY/cm?)

Ce+HA 15 min
Ce+HA 30 min
Ce+HA 60 min

18.5
25.77
26.12

1498 3522 5020 0.78 8.05 0.83 11.43
3472 5680 9152 0.89 12.77 0.81 4.72
3145 4665 7810 0.9 15.2 0.85 7.86

~ 10,000

Estimated Corrosion Resistance (Calculated by RI

9000
8000
7000 |
6000 -
5000
4000
3000
2000

1000

0
0

5.3. Results of RF

This section showcases the outcomes of the RF model applied to 717 training and
307 test samples of HA+Ce. To assess the model’s adaptability to new samples, diverse
performance metrics as formulated in Equations (2)—(5) were computed for both the training
and test datasets, as detailed in Table 5. The slight variance observed in the performance
metrics between the training and test datasets signifies the RF model’s strong capability
to generalize well to new samples. Furthermore, the correlation between estimated and
actual corrosion resistances and the error between the estimated and measured (actual)
values for the test HA+Ce data samples are provided in Figure 4a,b, respectively. A good
match between the estimated corrosion resistances obtained by the RF model and those
measured experimentally indicates that the RF model can be applied for estimating the
corrosion resistance in new unseen (unmeasured experimentally) HA+Ce samples with
new compounds.

Table 5. Performance metrics on training and test HA+Ce samples using RF.

Metric Training Samples Test Samples

MAE 221.7 210.9

RMSE 308.5 296.1
MPE (%) 43 42

R 0.994 0.994

R? 0.986 0.987

1000

®)

800 1
600 -

400 | 1

=200

Error (Actual-Estimated)
°

-400 |

=600 |

-800

-1000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 0 50 100 150 200 250 300
Actual Corrosion Resistance (Experimentally Mecasured) Test HA+Ce Sample

Figure 4. Comparison of estimated and measured corrosion resistances: (a) correlation and (b) error.

To justify the effectiveness of the RF model, we compare it against four machine
learning models: K-nearest neighbors (KNN), naive Bayes (NB), decision trees (DT), and
support vector regression (SVR). To configure the KNN and SVM models, we conducted an
evaluation of various parameter settings. For the KNN model, we explored different values
of K, specifically K € {1, 2, 3, 4, 5, 6, 7}. As for the SVM model, we considered different
kernel functions, namely linear, polynomial, and Gaussian (RBF). Through a process of
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trial and error, we determined that setting K = 5 yielded the optimal performance for the
KNN model, while employing the RBF kernel function resulted in the highest performance
for the SVM model, both in terms of the correlation factor, i.e., R.

Table 6 summarizes the obtained results on test HA+Ce samples. Moreover, Figure 5
graphically provides a comparison of the different techniques in terms of error measures
(MAE and RMSE) and correlation factors (R and R?). According to the obtained results,
the RF (which is an ensemble of multiple DTs) has the best results, and then, DT, and
SVM, are in the second and third orders. As a result, we have considered the trained RF
model as the best machine-learning model for the objective function core embedded in the
WOA algorithm.

Table 6. Comparison of the different machine learning models on test HA+Ce samples.

Metric KNN NB DT SVM RF
MAE 388.2 330.3 265.7 288.6 210.9
RMSE 536.1 468.0 383.4 405.5 296.1
MPE (%) 7.9 7.0 5.6 6.1 4.2
R 0.984 0.987 0.991 0.990 0.994
R? 0.968 0.974 0.982 0.979 0.987
OMAE ORMSE OR OR"N2
550 536 0.995 0.994
(] 0.991 090
500 ] -
468 099 0.987 0.987
430 0.985 0984 ] ]
405 g T 0.982
~ 400 388 383 — = -
> (] ] 5 098 979
% 350 330 2
noa 0.975 0.974
300 988 296 S
265
250 0.97 0.968
210
200 ’_I 0.965
150 0.96
KNN NB DT SVM RF KNN NB DT SVM RF

Figure 5. Comparison of the different machine learning models on the test HA+Ce samples in terms
of error measures of MAE and RMSE (left) and correlation factors of R and R? (right).

5.4. Results of WOA

By applying WOA to search among the whole search space, the convergence curve
of the algorithm has been achieved as seen in Figure 6. It can be seen that the WOA
algorithm starts from the best corrosion resistance of 7263 in the initial population. Then,
the WOA algorithm gradually tries to improve the best corrosion resistance, resulting in the
global best solution with the final optimized HA+Ce coating compound with a corrosion
resistance of 9221 (estimated by RF). The corresponding input factors of the optimized
HA+Ce solution have been obtained as summarized in Table 7. In Section 5.5, this coating
solution is experimentally evaluated to verify its effectiveness, and then, it is compared
with bare Mg, Ce, and HA coating solutions in terms of different performance measures.
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Figure 6. Convergence of WOA: best corrosion resistance vs. iterations.

Table 7. Input factors of the optimized coating solution.

Parameter Optimized Value
Ce Concentration (mol/L) 0.9
HA Concentration (gr/L) 1.2
Ce pH 47
HA pH 41
Ce Temperature (Celsius) 35
HA Temperature (Celsius) 70
Ce Immersion time (seconds) 50
HA Immersion time (minutes) 75
HA-+Ce Immersion time (minutes) 60

5.5. Results of Optimized HA+Ce Coating Solution

After performing WOA-RF methodology, the values of the input factors of the HA+Ce
coating solution have been obtained as mentioned in Table 7. In the following, detailed
simulations on the final optimized HA+Ce coating solution and comparison with bare Mg,
Ce, and HA coatings are provided.

To investigate the anti-corrosion performance of samples, EIS tests were performed
on different samples at specific times. Figure 7 provides the Nyquist plot of the uncoated
Mg, HA, and HA+Ce at different immersion times in SBF solution. The Nyquist plots in
this figure are fitted by an equivalent circuit with two time constants. The results obtained
from the EIS test after fitting are listed in Table 8. It should be noted that the fitting error
of the results is less than 8%. After three weeks of immersion in SBF, the resistance of all
samples has significantly decreased. The decrease in polarization resistance in the HA+Ce
coating is less compared to other coatings, and its value is approximately two times the
polarization resistance of the HA sample with similar immersion times.
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Figure 7. Nyquist plot of the different samples for (a) bare Mg, (b) HA, and (c) HA+Ce (30 min).

Table 8. Obtained Ry, (Q-cm?) by SBF for Bare Mg, HA, and HA+Ce samples after different immer-

sion times.
Immersion Time Bare Mg HA HA+Ce
1h 370 12,229 14,050
1day 506 4265 12,620
1 week 727 4100 9432
2 weeks 510 3215 7830
3 weeks 312 2537 5190

Figure 8 presents the FE-SEM images of the uncoated Mg alloy, HA, and HA+Ce
samples after being immersed in a SBF for one week. As per Figure 8a, after one week
of immersion, corrosion products appear on the surface of the uncoated Mg alloy, and
corrosion cracks become visible on its surface. It should be mentioned that the hydroxyap-
atite coating undergoes chemical interactions after being exposed to the SBF environment.
Parts of the coating are destroyed in the presence of the electrolyte and also new phases
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are formed in contact with the SBF. As a result, the surface roughness of the sample has
changed. As shown in Figure 8b, the surface morphology of the HA coating has changed,
and its cluster-like structures have degraded, which could affect the long-term protection of
this coating. However, for the HA+Ce coatings (Figure 8c), after one week of immersion the
coating surface has undergone minor changes and a series of white deposits have formed
on the coating surface; the coatings have managed to maintain their protective performance
according to the EIS test results.
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Figure 8. FE-SEM micrographs after 1 week immersion time for (a) bare Mg, (b) HA, and (c) HA+Ce
(30 min).

According to the DC polarization measurements, as expected, the Mg sample has
the weakest performance and shows the least resistance to corrosion. The direct current
polarization test shows that the corrosion current density for the bare Mg, HA, and HA+Ce
are 14.01 pA/cm?, 4 pA/cm?, and 1.05 pA /cm?, respectively. The results show a significant
reduction of the current density of the proposed HA+Ce coating solution with a gain of
92.5% and 73.7% against the bare Mg and the HA-coated Mg implant, respectively. It
indicates a better resistance of the proposed HA+Ce coating solution compared to the bare
Mg and HA-coated implants in the corrosive environment.

6. Conclusions

In this study, the role of Ce as a modifier for HA coating has been examined in terms of
corrosion resistance and performance in a SBF environment, resulting in a new improved
HA+Ce coating solution. Initially, the performance of the coatings was evaluated via EIS
and DC polarization and the results indicated the effective performance of Ce as a coating
modifier, which led to an increase in polarization resistance. Then, we presented a hybrid
experimental /simulation/optimization technique to enhance the corrosion resistance of
HA+Ce coated Mg implants. To achieve this goal, we experimentally collected a dataset
of various HA+Ce coating samples. Then, an artificial intelligence approach based on ma-
chine learning (i.e., random forest) and metaheuristic algorithms (i.e., whale optimization
algorithm) has been utilized to maximize the corrosion resistance of the HA+Ce solution.
According to the obtained results, it can be said that when the Ce conversion coating is
placed as an intermediate layer between HA and the Mg surface, it causes better adhe-
sion of the coating to the surface, and when used alongside HA within the coating, by
controlling film formation and changing surface morphology, it can improve the corrosion
resistance performance of the proposed HA+Ce coated Mg implants. The proposed HA+Ce
coating solution can be used to enhance the corrosion resistance in various applications
such as biomedical implants, marine equipment, aerospace structures, automotive parts,
electronic devices, oil and gas infrastructure, infrastructure rehabilitation, and renewable
energy systems.
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In this paper, for the first time, we have introduced the use of artificial intelligence
and optimization techniques to find the best coating compound. As a future research
direction, other artificial intelligence techniques such as various machine learning models,
deep learning networks, and fuzzy sets and systems, could be applied to optimize the
coating solutions. As a potential avenue for future research, it would be beneficial to
explore and assess newer metaheuristic algorithms like fuzzy heuristic ant colony optimiza-
tion (FH-ACO) [47], artificial hummingbird algorithm (AHA) [48], fire hawk optimizer
(FHO) [49], and puma optimizer (PO) [50] to enhance the optimization of coating solutions.
Furthermore, other performance measures of the coating solutions can be investigated and
integrated into multi-objective Pareto-based metaheuristic optimization techniques.
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