Green Plasticizer for Poly(vinyl chloride) Re-Granulate Production: Case Study of Sustainability Concept Implementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Plasticizers Based on Waste PET Glycolysates
2.2.1. Synthesis of Propylene Glycol (PG)
2.2.2. Synthesis of Levulinic Acid (4-Oxopentanoic Acid, LA)
2.2.3. Synthesis of LA/PG/PET/EG/LA and LA/DEG/PET/EG/LA Plasticizers at the Laboratory Level: General Procedure
2.2.4. Synthesis of LA/PG/PET/EG/LA and LA/DEG/PET/EG/LA Plasticizers Using 10 L Home-Made Reactor
2.3. Production of PVC Re-Granulates Using Commercial and “Green” Plasticizers: General Method
- The first zone—hold time 20 s; temperature 140 °C.
- The second zone—30 s; temperature 180 °C.
- The third zone—retention time 15 s; temperature 145 °C.
2.4. Characterization Methods
3. Results and Discussion
3.1. Results of the Functionality and Elemental Analysis
3.2. 1H and 13C NMR Results
3.2.1. Results of 1H and 13C NMR Characterization of Plast 1—LA/DEG/PET/EG/LA
3.2.2. Results of 1H and 13C NMR Characterization of Plast 2—LA/PG/PET/EG/LA
3.3. FTIR Spectroscopy Results
3.3.1. FTIR Analysis of DEG/PET/EG and PG/PET/EG Glycolysates
3.3.2. FTIR Analysis of Plast 1 (LA/DEG/PET/EG/LA) and Plast 2 (LA/PG/PET/EG/LA)
3.4. FESEM Analysis
3.5. Mechanical Properties of PVC Product Obtained from Re-Granulates
3.6. Migration Test
3.7. Differential Scanning Calorimetry
3.8. Dynamic Mechanical Thermal Analysis
3.9. Evaluation of the Successfulness of Sustainable Concept
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smith, R.L.; Takkellapati, S.; Riegerix, R.C. Recycling of Plastics in the United States: Plastic Material Flows and Polyethylene Terephthalate (PET) Recycling Processes. ACS Sustain. Chem. Eng. 2022, 10, 2084–2096. [Google Scholar] [CrossRef] [PubMed]
- Allaf, R.M.; Albarahmieh, E.; Futian, M. Preparation of Sawdust-Filled Recycled-PET Composites via Solid-State Compounding. Processes 2020, 8, 100. [Google Scholar] [CrossRef]
- Bozell, J.J.; Petersen, G.R. Technology Development for the Production of Biobased Products from Biorefinery Carbohydrates—The US Department of Energy’s “Top 10” Revisited. Green Chem. 2010, 12, 539. [Google Scholar] [CrossRef]
- Ledniowska, K.; Nosal-Kovalenko, H.; Janik, W.; Krasuska, A.; Stańczyk, D.; Sabura, E.; Bartoszewicz, M.; Rybak, A. Effective, Environmentally Friendly PVC Plasticizers Based on Succinic Acid. Polymers 2022, 14, 1295. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://echa.europa.eu/hot-topics/phthalates (accessed on 1 February 2024).
- Chaudhary, B.I.; Liotta, C.L.; Cogen, J.M.; Gilbert, M. Plasticized PVC. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Tumu, K.; Vorst, K.; Curtzwiler, G. Endocrine Modulating Chemicals in Food Packaging: A Review of Phthalates and Bisphenols. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1337–1359. [Google Scholar] [CrossRef]
- Nagorka, R.; Birmili, W.; Schulze, J.; Koschorreck, J. Diverging Trends of Plasticizers (Phthalates and Non-Phthalates) in Indoor and Freshwater Environments—Why? Environ. Sci. Eur. 2022, 34, 46. [Google Scholar] [CrossRef]
- Bio Plasticizers Market Size & Share Analysis—Growth Trends & Forecasts (2024–2029). Available online: https://www.mordorintelligence.com/industry-reports/bio-plasticizers-market (accessed on 25 February 2024).
- Mazitova, A.K.; Aminova, G.K.; Vikhareva, I.N. Designing of Green Plasticizers and Assessment of the Effectiveness of Their Use. Polymers 2021, 13, 1761. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Recent Developments of Biobased Plasticizers and Their Effect on Mechanical and Thermal Properties of Poly(Vinyl Chloride): A Review. Ind. Eng. Chem. Res. 2019, 58, 11659–11672. [Google Scholar] [CrossRef]
- Baghaee Moghaddam, T.; Soltani, M.; Karim, M.R. Evaluation of Permanent Deformation Characteristics of Unmodified and Polyethylene Terephthalate Modified Asphalt Mixtures Using Dynamic Creep Test. Mater. Des. 2014, 53, 317–324. [Google Scholar] [CrossRef]
- Akato, K.M.; Nguyen, N.A.; Bonnesen, P.V.; Harper, D.P.; Naskar, A.K. Recycling Waste Polyester via Modification with a Renewable Fatty Acid for Enhanced Processability. ACS Omega 2018, 3, 10709–10715. [Google Scholar] [CrossRef]
- Kilinç, S.; İyim, T.B.; Emik, S.; Özgümüş, S. Recycling of Waste PET: Usage as Secondary Plasticizer for PVC. Polym. Plast. Technol. Eng. 2005, 44, 1379–1388. [Google Scholar] [CrossRef]
- Bäckström, E.; Odelius, K.; Hakkarainen, M. Ultrafast Microwave Assisted Recycling of PET to a Family of Functional Precursors and Materials. Eur. Polym. J. 2021, 151, 110441. [Google Scholar] [CrossRef]
- Nayak, S.; Khuntia, S. kumar Development and Study of Properties of Moringa Oleifera Fruit Fibers/ Polyethylene Terephthalate Composites for Packaging Applications. Compos. Commun. 2019, 15, 113–119. [Google Scholar] [CrossRef]
- Zeng, J.-J.; Ye, Y.-Y.; Gao, W.-Y.; Smith, S.T.; Guo, Y.-C. Stress-Strain Behavior of Polyethylene Terephthalate Fiber-Reinforced Polymer-Confined Normal-, High- and Ultra High-Strength Concrete. J. Build. Eng. 2020, 30, 101243. [Google Scholar] [CrossRef]
- Sinha, V.; Patel, M.R.; Patel, J.V. Pet Waste Management by Chemical Recycling: A Review. J. Polym. Environ. 2010, 18, 8–25. [Google Scholar] [CrossRef]
- Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, 2000415. [Google Scholar] [CrossRef]
- Benyathiar, P.; Kumar, P.; Carpenter, G.; Brace, J.; Mishra, D.K. Polyethylene Terephthalate (PET) Bottle-to-Bottle Recycling for the Beverage Industry: A Review. Polymers 2022, 14, 2366. [Google Scholar] [CrossRef]
- Karayannidis, G.P.; Achilias, D.S. Chemical Recycling of Poly(Ethylene Terephthalate). Macromol. Mater. Eng. 2007, 292, 128–146. [Google Scholar] [CrossRef]
- Ghosal, K.; Nayak, C. Recent Advances in Chemical Recycling of Polyethylene Terephthalate Waste into Value Added Products for Sustainable Coating Solutions—Hope vs. Hype. Mater. Adv. 2022, 3, 1974–1992. [Google Scholar] [CrossRef]
- More, A.P.; Kute, R.A.; Mhaske, S.T. Chemical Conversion of PET Waste Using Ethanolamine to Bis(2-Hydroxyethyl) Terephthalamide (BHETA) through Aminolysis and a Novel Plasticizer for PVC. Iran. Polym. J. 2014, 23, 59–67. [Google Scholar] [CrossRef]
- Cakić, S.M.; Ristić, I.S.; M-Cincović, M.; Nikolić, N.Č.; Ilić, O.Z.; Stojiljković, D.T.; B-Simendić, J.K. Glycolyzed Products from PET Waste and Their Application in Synthesis of Polyurethane Dispersions. Prog. Org. Coat. 2012, 74, 115–124. [Google Scholar] [CrossRef]
- Lim, H.; Hoag, S.W. Plasticizer Effects on Physical–Mechanical Properties of Solvent Cast Soluplus® Films. AAPS PharmSciTech 2013, 14, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Czogała, J.; Pankalla, E.; Turczyn, R. Recent Attempts in the Design of Efficient PVC Plasticizers with Reduced Migration. Materials 2021, 14, 844. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.-Y.; Bo, C.-Y.; Zhang, L.-Q.; Hu, L.-H.; Zhang, M.; Zhou, Y.-H. Synthesis of Castor Oil Based Plasticizers Containing Flame Retarded Group and Their Application in Poly (Vinyl Chloride) as Secondary Plasticizer. J. Ind. Eng. Chem. 2015, 28, 217–224. [Google Scholar] [CrossRef]
- Bocqué, M.; Voirin, C.; Lapinte, V.; Caillol, S.; Robin, J.-J. Petro-Based and Bio-Based Plasticizers: Chemical Structures to Plasticizing Properties. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 11–33. [Google Scholar] [CrossRef]
- Dutt, K.; Soni, R.K. Synthesis and Characterization of Polymeric Plasticizer from PET Waste and Its Applications in Nitrile Rubber and Nitrile–PVC Blend. Iran. Polym. J. 2013, 22, 481–491. [Google Scholar] [CrossRef]
- Langer, E.; Waśkiewicz, S.; Bortel, K.; Lenartowicz-Klik, M.; Jurczyk, S. Application of New Oligomeric Plasticizers Based on Waste Poly(Ethylene Terephthalate) for Poly(Vinyl Chloride) Compositions. Iran. Polym. J. 2017, 26, 115–123. [Google Scholar] [CrossRef]
- Soni, R.K.; Dutt, K.; Jain, A.; Soam, S.; Singh, S. A Novel Route of Synthesis, Characterization of Terephthalic Dihydrazide from Polyethylene Terephthalate Waste and It’s Application in PVC Compounding as Plasticizer. J. Appl. Polym. Sci. 2009, 113, 1090–1096. [Google Scholar] [CrossRef]
- Rusmirovic, J.; Milosevic, D.; Velicic, Z.; Karanac, M.; Kalifa, M.; Nikolic, J.; Marinkovic, A. Production of Rubber Plasticizers Based on Waste PET: Techno-Economical Aspect. Zast. Mater. 2017, 58, 189–197. [Google Scholar] [CrossRef]
- Hirunsit, P.; Luadthong, C.; Faungnawakij, K. Effect of Alumina Hydroxylation on Glycerol Hydrogenolysis to 1,2-Propanediol over Cu/Al2O3: Combined Experiment and DFT Investigation. RSC Adv. 2015, 5, 11188–11197. [Google Scholar] [CrossRef]
- Salih, R.; Veličković, Z.; Milošević, M.; Pavlović, V.P.; Cvijetić, I.; Sofrenić, I.V.; Gržetić, J.D.; Marinković, A. Lignin Based Microspheres for Effective Dyes Removal: Design, Synthesis and Adsorption Mechanism Supported with Theoretical Study. J. Environ. Manag. 2023, 326, 116838. [Google Scholar] [CrossRef] [PubMed]
- Pyo, S.-H.; Glaser, S.J.; Rehnberg, N.; Hatti-Kaul, R. Clean Production of Levulinic Acid from Fructose and Glucose in Salt Water by Heterogeneous Catalytic Dehydration. ACS Omega 2020, 5, 14275–14282. [Google Scholar] [CrossRef] [PubMed]
- Milentijević, G.; Milošević, M.; Milojević, S.; Marković, S.; Rančić, M.; Marinković, A.; Milosavljević, M. One-Pot Syntheses of PET-Based Plasticizer and Tetramethyl Thiuram Monosulfide (TMTS) as Vulcanization Accelerator for Rubber Production. Processes 2023, 11, 1033. [Google Scholar] [CrossRef]
- Ahmed, D.; El-Hiti, G.; Hameed, A.; Yousif, E.; Ahmed, A. New Tetra-Schiff Bases as Efficient Photostabilizers for Poly(Vinyl Chloride). Molecules 2017, 22, 1506. [Google Scholar] [CrossRef] [PubMed]
- Rusmirovic, J.D.; Trifkovic, K.T.; Bugarski, B.; Pavlovic, V.B.; Dzunuzovic, J.; Tomic, M.; Marinkovic, A.D. High Performances Unsaturated Polyester Based Nanocomposites: Effect of Vinyl Modified Nanosilica on Mechanical Properties. Express Polym. Lett. 2016, 10, 139–159. [Google Scholar] [CrossRef]
- Spasojević, P.M.; Panić, V.V.; Džunuzović, J.V.; Marinković, A.D.; Woortman, A.J.J.; Loos, K.; Popović, I.G. High Performance Alkyd Resins Synthesized from Postconsumer PET Bottles. RSC Adv. 2015, 5, 62273–62283. [Google Scholar] [CrossRef]
- Garcia, D.; Balart, R.; Crespo, J.E.; Lopez, J. Mechanical Properties of Recycled PVC Blends with Styrenic Polymers. J. Appl. Polym. Sci. 2006, 101, 2464–2471. [Google Scholar] [CrossRef]
- Coltro, L.; Pitta, J.B.; Madaleno, E. Performance Evaluation of New Plasticizers for Stretch PVC Films. Polym. Test. 2013, 32, 272–278. [Google Scholar] [CrossRef]
- Machacek, E.; Richter, J.L.; Habib, K.; Klossek, P. Recycling of Rare Earths from Fluorescent Lamps: Value Analysis of Closing-the-Loop under Demand and Supply Uncertainties. Resour. Conserv. Recycl. 2015, 104, 76–93. [Google Scholar] [CrossRef]
- Patil, S.S.; Jena, H.M. Performance Assessment of Polyvinyl Chloride Films Plasticized with Citrullus Lanatus Seed Oil Based Novel Plasticizer. Polym. Test. 2021, 101, 107271. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, F.; Fu, Q.; Zhang, X.; Zhu, X. Mechanical Properties of Renewable Plasticizer Based on Ricinoleic Acid for PVC. Polym. Test. 2019, 76, 199–206. [Google Scholar] [CrossRef]
- Fillot, L.; Hajji, P.; Gauthier, C.; Masenelli-Varlot, K. U-PVC Gelation Level Assessment, Part 1: Comparison of Different Techniques. J. Vinyl Addit. Technol. 2006, 12, 98–107. [Google Scholar] [CrossRef]
- Gramann, P.; Cruz, J.R.B. Using Differential Scanning Calorimetry to Determine the Quality of a PVC Part. Eng. Mater. Sci. 2010. [Google Scholar]
- Gilbert, M.; Vyvoda, J.C. Thermal Analysis Technique for Investigating Gelation of Rigid PVC Compounds. Polymer 1981, 22, 1134–1136. [Google Scholar] [CrossRef]
- Potente, H.; Schultheis, S.M. Bestimmung Des Geliergrads von PVC Mit Der DSC. Kunststoffe 1987, 77, 401–404. [Google Scholar]
- Bair, H.E.; Warren, P.C. Morphology of Lightly Plasticized PVC. J. Macromol. Sci. Part B 1981, 20, 381–402. [Google Scholar] [CrossRef]
- Tupý, M.; Císař, J.; Mokrejš, P.; Měřínská, D.; Tesaříková-Svobodová, A. Comparison of Processing Conditions for Plasticized PVC and PVB. Int. Sch. Sci. Res. Innov. 2015, 9, 617–621. [Google Scholar]
- Available online: https://www.anton-paar.com/corp-en/services-support/document-finder/application-reports/mechanical-thermal-behavior-of-pvc-based-strip-doors/ (accessed on 1 February 2024).
- Characterization of Polyvinyl Chloride (PVC) by DMA, TAi Application Report TS-40. Available online: https://www.tainstruments.com/pdf/literature/TS40.pdf (accessed on 1 February 2024).
- Chen, J.; Liu, Z.; Wang, K.; Huang, J.; Li, K.; Nie, X.; Jiang, J. Epoxidized Castor Oil-based Diglycidyl-phthalate Plasticizer: Synthesis and Thermal Stabilizing Effects on Poly(Vinyl Chloride). J. Appl. Polym. Sci. 2019, 136, 47142. [Google Scholar] [CrossRef]
- Sheldon, R.A. The E Factor: Fifteen Years On. Green Chem. 2007, 9, 1273. [Google Scholar] [CrossRef]
- Manahan, S.E. The E-Factor in Green Chemistry. In Green Chemistry and the Ten Commandments of Sustainability; ChemChar Research: Columbia, SC, USA, 2011; pp. 322–323. [Google Scholar]
- Thomas, J.; Patil, R.S.; Patil, M.; John, J. Addressing the Sustainability Conundrums and Challenges within the Polymer Value Chain. Sustainability 2023, 15, 15758. [Google Scholar] [CrossRef]
- Ncube, A.; Borodin, Y. Life Cycle Assessment of Polyethylene Terephthalate Bottle. In Proceedings of the 2012 7th International Forum on Strategic Technology (IFOST), Tomsk, Russia, 18–21 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–6. [Google Scholar]
- Sarda, P.; Hanan, J.C.; Lawrence, J.G.; Allahkarami, M. Sustainability Performance of Polyethylene Terephthalate, Clarifying Challenges and Opportunities. J. Polym. Sci. 2022, 60, 7–31. [Google Scholar] [CrossRef]
- Available online: https://ceykimya.com/en/services-k36-dotp_plant-s53 (accessed on 25 February 2024).
- Anhui Xiangfeng New Materials Co., Ltd. Production Method of Dioctyl Terephthalate. CN102701984A, 3 October 2012. [Google Scholar]
Reactant | G | mol |
---|---|---|
PET | 194 | 1 |
PG/DEG | 76/106 | 1 |
Fascat 4100 | 0.9/0.81 | |
LA | 232 | 2 |
TBT | 2.07/1.95 | |
Ʃ | 692.3/653.1 |
Exp. | HV mg KOH/g | AV mg KOH/g | %C | %H | %O 1 | |
---|---|---|---|---|---|---|
DEG/PET/EG | 162 | 2.4 | Exp. | 56.10 | 6.22 | 37.68 |
Calc. | 56.37 | 6.08 | 37.54 | |||
PG/PET/EG | 172 | 1.9 | Exp. | 58.02 | 6.21 | 35.77 |
Calc. | 58.20 | 6.01 | 35.78 | |||
Plast 1 | 15 | 3.3 | Exp. | 58.04 | 6.25 | 35.71 |
Calc. | 58.29 | 6.12 | 35.59 | |||
Plast 2 | 14 | 4.1 | Exp. | 59.66 | 5.98 | 34.46 |
Calc. | 59.48 | 6.08 | 34.45 |
PVC#1 | PVC#2 | PVC#3 | PVC/DOTP 1 | |
---|---|---|---|---|
Tensile strength (MPa) | 26.2 ± 1.73 | 30.4 ± 1.97 | 34.7 ± 2.05 | 39.7 ± 1.92 |
Elongation (%) | 268 ± 13.2 | 252 ± 10.2 | 240 ± 9.2 | 298 ± 9.2 |
Modulus of elasticity (MPa) | 123 ± 6.15 | 130 ± 7.80 | 141 ± 6.34 | 252 ± 12.8 |
Bending strength (MPa) | 54.5 ± 5.82 | 55.6 ± 6.13 | 56.9 ± 6.44 | 67.4 ± 5.91 |
Compressive strength (MPa) | 51.7 ± 4.63 | 52.2 ± 5.02 | 53.4 ± 5.61 | 58.5 ± 5.95 |
Shore A hardness | 62 ± 3.3 | 66 ± 2.9 | 69 ± 3.4 | 78 ± 4.6 |
Impact strength (kJ m−2) | 2.91 ± 0.27 | 3.23 ± 0.31 | 3.54 ± 0.23 | 4.57 ± 0.42 |
Physical properties | ||||
Density (g cm−3) | 1.33 | 1.36 | 1.35 | 1.30 |
Flammability | SE 2 | SE | SE | SE |
Samples | Weight Loss (%) |
---|---|
PVC#1 | 1.22 ± 0.06 |
PVC#2 | 0.92 ± 0.05 |
PVC#3 | 0.78 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuksanović, M.M.; Milošević, M.; Dimitrijević, I.; Milentijević, G.; Babincev, L.; Gržetić, J.; Marinković, A.; Milosavljević, M. Green Plasticizer for Poly(vinyl chloride) Re-Granulate Production: Case Study of Sustainability Concept Implementation. Processes 2024, 12, 520. https://doi.org/10.3390/pr12030520
Vuksanović MM, Milošević M, Dimitrijević I, Milentijević G, Babincev L, Gržetić J, Marinković A, Milosavljević M. Green Plasticizer for Poly(vinyl chloride) Re-Granulate Production: Case Study of Sustainability Concept Implementation. Processes. 2024; 12(3):520. https://doi.org/10.3390/pr12030520
Chicago/Turabian StyleVuksanović, Marija M., Milena Milošević, Ivan Dimitrijević, Gordana Milentijević, Ljiljana Babincev, Jelena Gržetić, Aleksandar Marinković, and Milutin Milosavljević. 2024. "Green Plasticizer for Poly(vinyl chloride) Re-Granulate Production: Case Study of Sustainability Concept Implementation" Processes 12, no. 3: 520. https://doi.org/10.3390/pr12030520
APA StyleVuksanović, M. M., Milošević, M., Dimitrijević, I., Milentijević, G., Babincev, L., Gržetić, J., Marinković, A., & Milosavljević, M. (2024). Green Plasticizer for Poly(vinyl chloride) Re-Granulate Production: Case Study of Sustainability Concept Implementation. Processes, 12(3), 520. https://doi.org/10.3390/pr12030520