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Abstract: The Sulige gas field is a typical “three lows” (low permeability, low pressure, and low
abundance) tight sandstone gas reservoir, with formation pressures often characterized by abnor-
mally high or low pressures. The complex geological features of the reservoir further deviate from
conventional understanding, impacting the effective implementation of wellbore blockage removal
measures. Therefore, it is imperative to establish the wellbore blockage mechanism, prediction model,
and effective prevention measures for the target area. In this study, based on field data, we first
experimentally analyzed the water quality and types of blockage in the target area. Subsequently,
utilizing a BP neural network model, we established a model for predicting the risk of wellbore
blockage and analyzing mitigation measures in the target reservoir. The model’s prediction results,
consistent with on-site actual results, demonstrate its reliability and accuracy. Experimental results
show that the water quality in the target area is mainly a CaCl2 type, and the predominant scales
produced are CaCO3 and BaSO4. Model calculations reveal that temperature, pressure, and ion con-
centration all influence scaling, with BaSO4 more influenced by pressure and CaCO3 more influenced
by temperature. Under the combined effect of temperature, pressure, and ion concentration, different
types of scales exhibit distinct trends in scaling quantity. Combining scaling quantity calculations
with wellbore contraction ratios, it was found that when the temperature, pressure, and ion concen-
tration are within a certain range, the wellbore contraction rate can be controlled below 4%. At this
point, the wellbore scaling risk is minimal, and preventive measures against wellbore scaling can be
achieved by adjusting production systems, considering practical production conditions. This study
investigates the mechanism of scaling in wellbores of tight sandstone gas reservoirs and proposes a
cost-effective scaling prevention measure. This approach can guide the prediction of scaling risks
and the implementation of scaling prevention measures for gas wells in tight sandstone reservoirs.

Keywords: tight sandstone gas reservoirs; machine learning; scaling mechanism; scale prevention
measures; enhanced oil recovery

1. Introduction

As exploration and development practices in unconventional reservoirs such as shale
and tight sandstones continue to deepen, many limitations and characteristics inconsistent
with actual geological conditions have been exposed in traditional geological understand-
ing. Consequently, numerous scholars have conducted extensive research on how to
improve the recovery factor of such reservoirs. This includes studying the relationship
between pores and fluids from a nanoscale perspective [1,2], researching enhanced oil
recovery methods [3], and reservoir modification through hydraulic fracturing [4], among
other approaches. The Sulige gas field is a typical “three lows” gas field, characterized
by low permeability, low pressure, and low abundance. The reservoir properties are poor,
belonging to low porosity and low permeability sandstone lithology gas reservoirs. This
makes the problem of wellbore plugging particularly prominent in the Sulige gas field,
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especially due to changes in reservoir pressure, physical properties, and lithological char-
acteristics. These changes result in production conditions in the wellbore of gas wells in
the target area being different from those of conventional gas wells. Traditional scale and
corrosion control measures cannot be effectively applied to the target block.

The target block is located in the northern slope of the Shaanbei area of the Ordos
Basin in China, characterized by a monocline structure trending high in the northeast
and low in the southwest. The Upper Paleozoic strata in the area consist of the Permian
and Carboniferous formations, including the Shi’qianfeng Formation, Shi’hezi Formation,
Shanxi Formation, and Taiyuan Formation of the Permian, while the Carboniferous is
predominantly represented by the Benxi Formation. The primary producing reservoir in
the target block is currently the Shan 1 Member of the Shanxi Formation, with the upper
reservoir being the Shi’hezi Formation and the lower reservoir being the Taiyuan Formation.
Currently, the Shanxi Formation in the research block is subdivided into the Shan 1 Member
and the Shan 2 Member, with the latter representing lacustrine deposits, mainly character-
ized by marginal shallow lake sedimentation. The Shan 1 Member primarily consists of
delta-front deposits, subdivided into subaqueous distributary channels and subaqueous
distributary bay microfacies. The lithology is dominated by dark gray mudstone and light
gray sandstone.

The target block’s formation water exhibits elevated concentrations of scale-forming
ions. Additionally, the corrosion and deformation of wellbores in these production wells,
coupled with frequent downhole operations, result in a significant proportion of workover
fluids being retained on the inner walls of the wellbore, leading to complex wellbore condi-
tions. Under the complex conditions in the wellbore, these scaling ions form insoluble scale
deposits, leading to wellbore blockages and causing significant losses [5]. Conventional
methods to address scaling issues mainly involve chemical means to delay or prevent the
formation of scale deposits [6–11], or using mechanical methods to remove scaling deposits
from the pipe walls [12]. The target block once employed a detoxifier primarily composed
of organic sulfonic acid. Three years into production, trace amounts (0.001 mg/L) of organic
sulfonic acid were detected in groundwater quality tests, posing significant health risks
to the local residents and causing environmental damage. Consequently, it is imperative
to grasp the intricacies of scaling and blockage mechanisms within the Sulige gas field,
scrutinize the reasons behind scaling, and devise anti-scaling measures that safeguard the
environment while curbing costs.

Over the years, numerous scholars have conducted in-depth research and analysis on
scaling issues. The earliest study on scaling prediction was the saturation index method
proposed by Langelier [13] in 1936. This method primarily relies on the principles of
dissolution equilibrium theory to calculate the pH of the solution, thereby determining the
tendency for scale formation. As development progresses, the underground water systems
faced by oil wells become increasingly complex. Furthermore, with the deepening of the
wells, the bottom temperatures continue to rise, amplifying the impact of temperature
on scaling. Engineers have gradually become aware of this issue. Therefore, Davis and
Stiff [14], as well as Ryznar [15], based on the saturation index method, made certain
innovations and breakthroughs, mainly by introducing correction coefficients K, ionic
strength, alkalinity, and other parameters to assess scaling trends. This made the method
consistent with the development conditions of oil fields at that time. Skillman [16] used
the thermodynamic solubility method to predict the scaling tendency of calcium sulfate.
Although the prediction results were generally consistent with the actual site conditions,
the method had limitations due to the lack of consideration of pressure and other equilib-
rium effects. By 1994, Oddo and Tomson [17] integrated thermodynamics, ionic strength,
solubility product, and ion association factors based on the saturation index theory and
proposed the Oddo–Tomson saturation index method. They used different equations for
situations with and without a gas phase, making it one of the most widely applied models.
However, as oil and gas field development progressed, and with breakthroughs in theory
and technology, more scholars tended to use complex mathematical models to describe
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scaling issues and solve them using computers. For instance, Hasson et al. [18,19] studied
the formation of CaCO3 scale samples and established an ion diffusion model consider-
ing ion concentration, temperature, and pressure. However, this model only considered
crystalline scale and did not account for particulate scale. Brahim et al. [20] considered
the heat and mass transfer processes in the system based on the Ker–Seanton differential
equation model and established a mathematical model for CaSO4 scaling on the inner wall
of a rectangular cross-section. Xiaoxi Yang et al. [21] established a model for predicting
CaCO3 scaling based on the sediment removal rate calculation model, considering fluid
flow and heat transfer between the fluid and the wall surface. However, this model did
not consider changes in wellhead pressure and wellbore diameter under the influence of
scaling. Liang Z et al. [22] developed a mathematical model considering holdup ratio and
developed corresponding software for scaling prediction. The aforementioned scholars
provided excellent predictions and solutions for scaling issues, but complex theoretical
models struggle to promptly adapt to increasingly complex oil field production conditions.
With the continuous expansion of oil field scale and technological development, a vast
amount of data is generated. Machine learning has shown great advantages in processing
and utilizing data. Therefore, an increasing number of scholars are exploring how to lever-
age machine learning to fully utilize the massive amount of data from oil fields to address
the increasingly complex on-site production conditions. Researchers such as Zhao [23],
Gabetta, G. [24], Paulo A. Paz [25], Wang [26], and Bruno X. Ferreira [27] have integrated
machine learning into scaling considerations and achieved significant results.

Due to the fact that BP neural networks do not require predefined mathematical
equations for the mapping relationship between inputs and outputs and instead learn
certain rules through training to obtain results closest to the expected output when given
input values, this study is based on BP neural networks to investigate scaling problems in
a block of wells in the Sulige gas field. Data from 93 wells were gathered and structured,
with data from 89 wells serving as training data and the remaining four sets reserved as
a validation dataset. A neural network was trained utilizing the compiled data, and an
algorithm was formulated to scrutinize the distribution of major scaling anions (SO4

2−

and HCO3
−) and major scaling cations (Ca2+ and Ba2+) across various temperatures and

pressures. Furthermore, the fluctuation of contraction ratio under diverse input parameters
was examined, and ranges of input parameters capable of keeping the contraction ratio
near or below 4% were outlined. This can aid in forecasting scaling risks and devising
on-site scaling prevention strategies.

2. Data Collection

On-site deposits generally consist of sulfides, oxides, sulfates, and carbonates [28].
However, not all deposits occur in oil and gas fields; it depends on geological conditions,
including parameters such as formation water quality, temperature, and pressure in the
formation and wellbore. Calcium carbonate scale is the most common type of deposit and
is typically widespread in production facilities such as surface pipelines and oil tubing [29].

The study area is a specific block within the Sulige gas field, with a burial depth
ranging from 3500 m to 4160 m and a geothermal gradient of 3 ◦C/100 m. The formation
water in this area is characterized by a CaCl2 type, exhibiting higher production water
yields in the central part and lower yields in the surrounding areas. The average salinity
is 49,708.68 mg/L, with the highest salinity recorded at 93,306.86 mg/L. The entire block
produces an average daily gas output of 237 × 104 m3/d and a daily water production of
650 m3/d. The water–gas ratio is high, measuring 2.74 m3/104 m3 (The typical water-to-gas
ratio in the block is around 0.1 m3/104 m3). The pH of the formation water ranges between
6.2 and 6.5. Table 1 presents the results of the formation water quality analysis in the study
block. (Data from 118 wells have been compiled for statistical analysis.)
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Table 1. Research Zone 118 Wellbore Strata Water Quality Analysis Results Statistics (mg/L).

Data Cl− SO42− HCO3− Mg2+ Ca2+ Sr2+/Ba2+ Na+/K+ Salinity

Minimum 2753 8.23 58.79 9.024 113.5 17.83 2208 6110.5
Maximum 5464.3 269 586.33 173.98 1252.42 4525.56 32,320.8 93,306.86
Average 28,698.35 138.6 322.545 91.502 682.96 2271.7 17,264.4 49,708.68

Analysis of the blockage material composition unveiled that around 20% of the block-
age comprises water and organic compounds (refer to Table 2), while the remaining 80%
comprises inorganic materials. Among the organic compounds, hydrocarbons make up
a minimal percentage, accounting for only 3%. Preliminary conclusions indicate that the
primary culprit behind wellbore blockage is the buildup of inorganic scale deposits. Analy-
sis of scale samples from five gas wells using a D/MAX-2400 X-ray diffractometer from
Rigaku Corporation, Japan, indicates that the predominant scales in the study area are
CaCO3 and BaSO4 (Table 3). Figure 1 displays partial scale samples from the wellbore
along with their X-ray diffraction patterns (Red represents Barite (The image above) and
Siderite (The image below), blue represents Magnetite, and green represents Anhydrite).

Table 2. Determination Results of Water, Oil, and Organic Matter Content.

Well Name Well Depth, m Water Content, % Oil Content, % Organic Matter, %

W1
3000 0.59 1.83 20.94
3600 0.62 3.09 19.81

W2
3500 0.24 0.44 25.33
4100 0.3 2.5 26.99

Table 3. Inorganic Content Determination Results.

Inorganic Mineral Composition, %

Well BaSO4 FeCO3 CaCO3 Fe3O4 MgCO3 SiO2
W1 38.3 4.7 40.6 5.6 7.4 3.4
W2 28.5 4.9 50.6 5.1 6.7 4.2

Figure 1. Scale samples from the target area’s wellbores.
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The scaling issue in gas wells has been extensively studied by numerous scholars.
Currently, a well-established understanding of the influencing factors on scaling includes
pressure, temperature, scaling ion concentration, pH, and flow velocity. However, in the
study block, the gas wells exhibit high production rates (237 × 104 m3/d) and high gas
flow velocities (9.8 m/s). In fact, determining flow velocity is not easy. Considering that
the basic process of scaling involves deposition and detachment of scale, we introduce the
attachment coefficient to comprehensively consider both aspects. This essentially translates
the factor of flow velocity into the selection of the attachment coefficient (further explained
in subsequent sections), hence neglecting the influence of flow velocity. Additionally, the
pH of the formation water in the study area remains stable between 6.2 and 6.5. Therefore,
this study disregards the influences of flow velocity and pH on scaling.

In this study, data from 118 wells were collected, and after processing, data from
93 wells were deemed usable. The data were obtained through on-site experiments of
formation water. The experiments utilized high-temperature and high-pressure reaction
vessels to simulate downhole temperature and pressure, allowing for thorough scaling of
the vessel’s formation water. The total scale deposition was calculated by measuring the
change in concentration of scaling ions in the formation water before and after titration of
the scale. The specific experimental steps are as follows: (1) A certain amount of formation
water was taken according to the experimental requirements and filtered to remove solid-
phase impurities; (2) The concentration of scaling ions (SO4

2−, HCO3
−, Ca2+, and Ba2+)

was determined using ion titration; (3) The processed formation water was introduced into
the reaction vessel, vacuum was applied, methane was added to the designed pressure, and
the reaction vessel was placed in a constant temperature chamber to maintain the design
temperature for 24 h to allow for thorough scaling of the formation water; (4) The reaction
vessel was opened, and the formation water was filtered. The concentration of scaling ions
(SO4

2−, HCO3
−, Ca2+, and Ba2+) in the filtered formation water was determined using

titration. Each experiment was conducted three times and the average value was taken.
The total scale deposition was calculated based on the difference in ion concentration before
and after the reaction. Each well’s formation water sample in the target block underwent
the above steps to conduct experiments and obtain the necessary data for final simulation.
Table 4 presents part of the acquired data.

Table 4. Partial Training Data.

Wells
Ion Concentration, mg/L

T, ◦C P, MPa
Scale Amount, mg/L

Cl− SO42− HCO3− Mg2+ Ca2+ Ba2+ Na+ Salinity BaSO4 CaCO3

1 40,843 198 498 77 338 2247 18,516 62,717 81 11 181.6 106.4
2 43,560 36 511 165 243 216 6742 51,473 89 11 31.5 110.9
3 33,870 83 415 125 281 1992 2643 39,409 81 10 153.2 101.4
4 41,142 193 287 113 1237 1605 8977 53,554 72 10 181.6 106.4
5 45,921 67 475 71 291 3751 3305 53,881 88 11 108.7 50.2
6 46,530 110 301 171 587 3859 23,962 75,520 85 13 182.2 107.4
7 42,149 117 422 74 177 2512 16,919 62,370 77 11 177.7 104.9
8 45,889 195 298 131 889 2883 6378 56,663 78 11 181.6 106.4
9 43,215 35 353 42 128 1977 16,679 62,429 76 11 68.8 21.1

10 53,860 92 322 100 920 1565 11,723 68,582 82 11 172.6 101.5
11 42,090 61 63 156 839 3891 2981 50,081 74 13 207.3 81.2
12 43,591 112 86 52 718 1805 31,391 77,755 73 13 176.9 102.8
13 38,875 241 262 57 503 18 18,654 58,610 85 13 180.3 106.5
14 31,300 135 345 103 1220 3198 23,176 59,477 78 8 181.7 105.7
15 40,432 116 75 76 747 3123 20,271 64,840 72 14 180.4 105.6
16 37,770 28 271 85 873 3046 22,437 64,510 70 11 17.99 66.54
17 41,357 28 285 86 949 3318 24,589 70,612 70 10 26.65 65.53
18 44,943 27 300 87 1026 3591 26,741 76,715 71 12 35.39 64.53
19 48,530 27 314 87 1103 3863 28,892 82,817 75 11 44.24 63.53
20 19,836 30 197 82 489 1684 11,679 33,997 89 13 6.32 70.64
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Table 4. Cont.

Wells
Ion Concentration, mg/L

T, ◦C P, MPa
Scale Amount, mg/L

Cl− SO42− HCO3− Mg2+ Ca2+ Ba2+ Na+ Salinity BaSO4 CaCO3

21 23,423 30 212 82 566 1957 13,831 40,100 89 14 15.8 69.66
22 27,010 29 227 83 642 2229 15,982 46,202 88 13 25.28 68.68
23 30,596 29 241 84 719 2501 18,134 52,305 85 13 34.76 67.69
24 34,183 28 256 85 796 2774 20,286 58,407 85 13 44.27 66.7
25 37,770 28 271 85 873 3046 22,437 64,510 85 13 53.81 65.71
26 41,357 28 285 86 949 3318 24,589 70,612 85 13 63.4 64.71
27 44,943 27 300 87 1026 3591 26,741 76,715 87 15 73.04 63.72
28 48,530 27 314 87 1103 3863 28,892 82,817 85 14 82.73 62.73
29 31,607 31 253 118 748 2657 18,645 54,060 73 12 16.28 73.26
30 35,446 31 271 127 832 2969 20,924 60,601 74 11 28.45 73.44
31 39,286 31 289 137 916 3280 23,203 67,142 74 11 40.63 73.62
32 43,125 31 306 146 1000 3592 25,483 73,683 73 11 52.83 73.79
33 46,965 31 324 155 1084 3903 27,762 80,224 74 12 65.07 73.96
34 50,804 31 341 165 1168 4214 30,041 86,766 70 10 77.35 74.13
35 20,089 31 200 90 496 1723 11,806 34,436 85 14 9.89 71.82
36 23,928 31 218 99 580 2035 14,086 40,977 90 13 22.87 72.01
37 27,768 31 236 109 664 2346 16,365 47,518 90 13 35.78 72.19
38 31,607 31 253 118 748 2657 18,645 54,060 85 14 48.64 72.37
39 35,446 31 271 127 832 2969 20,924 60,601 90 13 61.46 72.55
40 39,286 31 289 137 916 3280 23,203 67,142 85 13 74.27 72.72
41 43,125 31 306 146 1000 3592 25,483 73,683 87 14 87.08 72.89
42 46,965 31 324 155 1084 3903 27,762 80,224 85 15 99.88 73.06
43 50,804 31 341 165 1168 4214 30,041 86,766 90 13 112.69 73.23
44 52,370 27 332 97 1187 4174 31,172 89,358 57 10 38.64 73.97
45 52,622 27 335 105 1194 4213 31,300 89,797 53 9 34.49 72.78

In the end, data from 118 wells were collected on-site. After sorting, data from 93 wells
were deemed suitable for training the neural network. Four wells’ data were reserved as
a validation dataset for the network, and the remaining data were utilized for the neural
network training. Some of the training data are presented in Table 4.

3. Construction of BP Neural Network Model
3.1. Neural Network Model Theory

Artificial Neural Networks (ANNs) are systems designed to replicate the synaptic
structure of biological neural networks in terms of information processing. By imitating
the connections between neurons and their synaptic weights, akin to the neural pathways
in the human brain, these networks possess the capability to filter, analyze, learn, and
make decisions regarding information. Among them, the backpropagation (BP) neural
network utilizes various gradient descent theories. It iteratively adjusts the weights and bias
parameters of network nodes via backpropagation using the chain rule, aiming to minimize
the network’s mean square error [30]. Leveraging these principles, this paper constructs a
BP neural network to simulate the evolving patterns of wellbore scale formation induced
by various factors.

3.2. Model Construction

The factors influencing wellbore scale formation, including Cl−, SO4
2−, HCO3

−, Mg2+,
Ca2+, Ba2+, Na+, salinity, temperature, and pressure, are considered as the input layer of the
neural network. The output layer consists of CaCO3 and BaSO4 scale quantities. Through
comparative calculations, it was determined that the model achieved satisfactory accuracy
with 11 hidden layers. The final constructed neural network structure is illustrated in
Figure 2.
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Figure 2. Neural network training diagram.

Using the data collected from the field, the neural network was trained, and four sets
of test data were reserved to verify the model’s reliability. The learning rate of the model
was set to 0.05, with an error threshold of 0.01, and the iteration step was set to 3000. Three
commonly used transfer functions in BP neural networks are logsig, tansig, and purelin.
The logsig function allows input values to range arbitrarily while constraining output
values between 0 and 1. Tansig permits input values of any magnitude, mapping them to
an output range between −1 and +1. The linear transfer function, purelin, accommodates
arbitrary input and output values. Considering the specifics of the problem domain, this
study opted for purelin as the transfer function for the output layer. Furthermore, we
investigated the adaptability of these three transfer functions to the training data for the
output layer, contrasting the computational accuracy of the models under each function.
The operational outcomes of the model are depicted in the Figure 3. Under the purelin
transfer function, the training efficiency of the model was relatively poor; although the
fitting coefficient reached 0.983, gradient convergence proved elusive. In the case of the
logsig transfer function, the fitting degree reached 0.94, yet both gradient and error failed
to converge, exhibiting divergence. However, with the tansig transfer function, the model
achieved a fitting degree of 0.9834, with gradients and errors gradually converging towards
their minimum values (Figure 3).
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3.3. Model Verification

To assess the accuracy and reliability of the model, four sets of data were set aside from
the compiled dataset of 93 wells for both training and validation purposes. The input layer
of the validation dataset was then supplied to the well-trained network for computations,
yielding the predicted outcomes. Using neural networks trained with the three transfer
functions, calculations were performed on reserved validation data. Simultaneously, under
identical conditions, the scale buildup was computed using the commercial software OLI
ScaleChem (V4.0.3). The final results are presented in Table 5. It is evident that under the
tansig transfer function, the model’s computed results exhibited the highest correlation
coefficient with the experimental results, reaching 0.9982. For the logsig transfer function,
the correlation coefficient was 0.7112, while for the purelin transfer function, it was 0.8405.
The correlation coefficient between the results obtained from the commercial software and
the experimental values was 0.9891. Hence, it can be concluded that the model based on
the tansig function yielded the most accurate computational results.

Table 5. Experimental data and model prediction data.

Scale Experimental Tansig Logsig Purelin Commercial
Software

CaCO3, mg/L

73.62 72.91 68.71 70.26 74.98
73.79 73.04 53.24 65.34 70.21
73.96 72.53 73.56 70.21 75.62
74.13 73.61 65.41 70.53 77.69

BaSO4, mg/L

40.63 38.74 30.23 48.67 38.62
52.83 51.67 68.69 59.74 49.67
65.07 66.1 60.21 60.29 65.01

77.356 76.54 93.41 87.68 77.31

4. Result Analysis

The final depiction of the scale formation mechanism analysis and scale prediction
algorithm process is presented in Figure 4. This algorithm initially utilizes on-site data
from the research area to establish the range of various parameters for the input layer,
based on which an input layer matrix is generated. Subsequently, this input layer matrix
is fed into a pre-trained neural network model, and the output layer matrix is computed.
At this stage, the output layer matrix reflects the scale formation under different input
parameters. The analysis encompasses the diverse trends of scale formation influenced by
varying factors and computes the corresponding wellbore contraction ratio. Ultimately,
this process furnishes preventive measures for scale formation in gas wellbores.
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Figure 4. Illustrates the algorithmic flowchart.

Utilizing the aforementioned algorithm enables the formulation of anti-scaling mea-
sures under various conditions.

4.1. Analysis of Changes in Scaling Amount

(1) Scale anions
This study examines and forecasts scale formation patterns in the Sulige gas field wells

across a range of input parameters, encompassing temperature, pressure, ion concentra-
tions, and water salinity, through the development of algorithms. Here, temperature and
pressure refer to the reservoir conditions, and scale formation quantity represents the scale
concentration in unit volume of formation water at a specified pressure and temperature.
The numerical ranges for temperature, pressure, and scale-forming ion concentrations
are provided in Table 6. Keeping other ion concentrations constant, the study separately
investigates the effects of SO4

2−, HCO3
−, Ba2+, and Ca2+ on scale formation quantity. The

simulation results are depicted in Figures 3–8, where the colors on the scale bar correspond
to the scale formation quantity.

Table 6. Parameter values.

Ion
Ion Concentration, mg/L Temperature,

◦C
Pressure,

MPaCl− Mg2+ Na+ Salinity

Value 16,249 110 10,000 31,000 50–90 5–15

Figure 5 displays the distribution of BaSO4 scale quantities under different SO4
2−

ion concentrations (with an HCO3
− concentration at 300 mg/L, Ca2+ concentration at

700 mg/L, and Ba2+ concentration at 2000 mg/L). From Figure 5, it is evident that the BaSO4
scale quantities exhibit a “diagonal” distribution under varying SO4

2− ion concentrations.
In the high-pressure low-temperature region (top left corner), BaSO4 scale formation is
relatively low, whereas in the high-temperature low-pressure region (bottom right corner),
BaSO4 scale formation is higher. Nonetheless, in both the high-pressure low-temperature
region and the low-pressure high-temperature region, the impact of temperature and
pressure on BaSO4 scale formation appears to be relatively minor. On the other hand,
in the low-pressure low-temperature region (bottom left corner) and the high-pressure
high-temperature region (top right corner), BaSO4 scale formation is significantly affected
by changes in temperature and pressure. Therefore, it can be observed that in gas wells
with high temperatures and low pressures, BaSO4 scale formation may be more severe.
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Figure 5. Distribution diagram of BaSO4 scaling amounts under different SO4
2− ion concentrations.

Figure 6. Distribution diagram of CaCO3 scaling amounts under different HCO3
− ion concentrations.
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Figure 7. Distribution diagram of CaCO3 scaling amounts under different Ca2+ ion concentrations.

Figure 8. Distribution diagram of BaSO4 scaling amounts under different Ba2+ ion concentrations.
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Figure 6 illustrates the distribution of CaCO3 scale quantities under different HCO3
−

ion concentrations (with an SO4
2− concentration at 220 mg/L, Ca2+ concentration at

700 mg/L, and Ba2+ concentration at 2000 mg/L). From Figure 6, it can be observed that
the CaCO3 scale quantities exhibit a “wave-like” distribution under varying HCO3− ion
concentrations. In the high-temperature region (on the right side), CaCO3 scale formation
is higher, while in the low-temperature region (on the left side), CaCO3 scale formation
is lower. Both high-temperature (right side) and low-temperature (left side) regions are
relatively less influenced by temperature and pressure. However, as ion concentrations
rise, the effect of temperature and pressure on BaSO4 scale formation becomes markedly
more significant, observed in both the high-temperature high-pressure region (top right
corner) and the low-temperature low-pressure region (bottom left corner). Therefore, it
can be concluded that when ion concentrations are low, CaCO3 scale formation is more
severe in high-temperature wells. Conversely, when ion concentrations are high, CaCO3
scale formation is more serious in high-temperature low-pressure wells.

(2) Scale cations
The figure depicted in Figure 7 illustrates the distribution of CaCO3 scaling amounts

under different concentrations of Ca2+ ions (with an HCO3
− concentration of 300 mg/L,

SO4
2− concentration of 220 mg/L, and Ba2+ concentration of 2000 mg/L). From Figure 7,

it can be observed that the scaling amounts of CaCO3 exhibit a “wave-like” pattern at
varying concentrations of Ca2+ ions. In the high-temperature region (on the right side), the
scaling amount of CaCO3 is relatively high, whereas in the low-temperature high-pressure
region (bottom left corner), the scaling amount of CaCO3 is comparatively low. Both the
high-temperature region (on the right side) and the low-temperature high-pressure region
(bottom left corner) show minor influences of temperature and pressure on CaCO3 scaling.
However, with an increase in ion concentration, the impact of temperature and pressure on
CaCO3 scaling in the high-temperature high-pressure region (top right corner) and the low-
temperature low-pressure region (bottom left corner) gradually intensifies. Additionally,
the scaling of CaCO3 in the low-temperature low-pressure region gradually increases,
while in the low-temperature high-pressure region (top left corner), the CaCO3 scaling
gradually decreases. Therefore, it can be concluded that when the ion concentration is low,
CaCO3 scaling is more severe in high-temperature gas wells. Conversely, when the ion
concentration is high, CaCO3 scaling becomes even more pronounced in high-temperature
low-pressure gas wells.

The graph presented in Figure 8 illustrates the distribution of BaSO4 scaling under
different concentrations of Ba2+ ions (with an HCO3

− concentration of 300 mg/L, SO4
2−

concentration of 220 mg/L, and Ca2+ concentration of 700 mg/L). From Figure 8, it can be
observed that the BaSO4 scaling amounts exhibit a “diagonal” pattern at varying Ba2+ ion
concentrations. In the high-pressure low-temperature region (top left corner), the BaSO4
scaling is relatively small, whereas in the high-temperature low-pressure region (bottom
right corner), the BaSO4 scaling is significantly larger. However, in both the high-pressure
low-temperature area and the low-pressure high-temperature area, BaSO4 scaling is rela-
tively unaffected by changes in temperature and pressure. Conversely, in the low-pressure
low-temperature region (bottom left corner) and the high-pressure high-temperature region
(top left corner), BaSO4 scaling is significantly affected by fluctuations in temperature and
pressure. Consequently, it can be inferred that in gas wells characterized by high tempera-
tures and low pressures, the occurrence of BaSO4 scaling might be more pronounced.

In summary, the formation of BaSO4 scaling under the influence of SO4
2− and Ba2+

ions follows a “diagonal” distribution pattern. In the high-pressure low-temperature region
(top left corner), the BaSO4 scaling is relatively small, whereas in the high-temperature low-
pressure region (bottom right corner), the BaSO4 scaling is more significant. However, in
both the high-pressure low-temperature area and the low-pressure high-temperature area,
BaSO4 scaling is relatively less affected by changes in temperature and pressure. Conversely,
in the low-pressure low-temperature region (bottom left corner) and the high-pressure
high-temperature region (top left corner), BaSO4 scaling is notably influenced by variations
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in temperature and pressure. Under the influence of Ca2+ and HCO3
− ions, CaCO3 scaling

exhibits a “wave-like” distribution pattern. In the high-temperature region (right side),
there is a substantial buildup of CaCO3 scaling, whereas in the low-temperature region
(left side), the scaling is minimal. Both the high-temperature region (right side) and the
low-temperature region (left side) show relatively minor variations in CaCO3 scaling due
to changes in temperature and pressure. However, with an increase in ion concentration,
the impact of temperature and pressure on CaCO3 scaling becomes increasingly significant
in the high-temperature high-pressure area (top right corner) and the low-temperature low-
pressure area (bottom left corner). Overall, in gas wells with high temperatures and low
pressures, BaSO4 scaling might be more severe. Additionally, when the ion concentration is
low, there is severe CaCO3 scaling in high-temperature gas wells, whereas when the ion
concentration is high, the scaling becomes even more severe, especially in high-temperature
low-pressure gas wells.

4.2. Analysis of Changes in Diameter Reduction Ratio

According to recent research, wellbore scale can be classified into two main types:
crystalline scale and particulate scale. Crystalline scale occurs when scale ions precipitate
directly onto the wellbore surface from formation water. On the other hand, particulate
scale forms when scale ions aggregate into particles within the formation water and then
adhere to the wellbore surface as the fluid flows. Along with the deposition of scale
particles, there is a process of particle detachment. The interaction between the deposition
and detachment processes [31] leads to wellbore scaling issues, gradually affecting the
production of gas wells over time.

To simplify the problem, this study modeled the deposition and detachment processes
of scale particles in the wellbore as the attachment of particulates from formation water, and
a coefficient of attachment was assigned to describe the scaling process. The attachment of
scale particles on the wellbore surface reduces the space available for fluid flow, potentially
leading to wellbore blockages and impacting gas well production. Hence, to evaluate
the potential risk of wellbore scaling and blockage, the Diameter Reduction Ratio (DRR)
serves as a metric to gauge the extent of scaling. The DRR quantifies the ratio between the
thickness of the scale layer and the internal diameter of the wellbore. Building upon the
calculation of scaling quantity in the previous section, the total scaling within the predicted
production lifespan is computed. This total scaling is converted into volume and averaged
over the scaling intervals in the wellbore to determine the scale layer thickness. The specific
calculation method is shown in Equations (1)–(3) [32].

m = qwCt × 10−6 (1)

where m—the total scale mass within a certain period of time, kg;
qw—daily water production of gas well, m3/d;
C—scale concentration, kg/L;
t—time, d.

d = m/2ρπrL (2)

where d—scale layer thickness, m;
L—fouling section length, m;
ρ—density of scale, kg/m3.

DRR = 2d/D (3)

where D—wellbore inner diameter, m.
Based on the above analysis, and referring to the work of Zhang and colleagues [22],

an attachment ratio of 0.73 was adopted. Based on these principles, the variations in
the Diameter Reduction Ratio (DRR) over a 3-year production period were calculated
under different temperatures, pressures, and ion concentrations. The calculation process
overlooks changes in ion concentration, reservoir temperature and pressure, and wellbore
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internal diameter, and assumes scaling occurs throughout the entire wellbore segment. The
selected parameters for the calculation are detailed in Table 7.

Table 7. Field data.

Daily Water
Production

Geothermal
Gradient

Wellbore Inner
Diameter

BaSO4
Density

CaCO3
Density Cl− Mg2+ Na+ Salinity

650 m3/d 3 ◦C/100 m 0.062 m 4000 kg/m3 2710 kg/m3 16,249 110 10,000 31,000

Note: the unit of ion concentration and mineralization is mg/L.

Following the principles outlined above, an examination was conducted on the re-
duction rate of wellbore diameter concerning scale ion concentration, temperature, and
pressure. In the graph, the X-axis and Y-axis denote temperature and pressure, respectively,
while the Z-axis illustrates the wellbore’s reduction rate. At any point on the surface of the
graph, the height indicates the variation in the reduction rate under the current temperature,
pressure, and ion concentration, with the color scale corresponding to the magnitude of the
reduction rate. Practical observations on-site suggest that when the reduction rate is below
4%, there is considered to be no scaling risk, representing the position on the graph’s plane.
This plane divides the surface representing the reduction rate variation into two parts
and is parallel to the plane of temperature and pressure. At any point on this plane, the
reduction rate is 4%.

Figure 9 illustrates the variation in the wellbore reduction rate when the concentration
of SO4

2− changes (with an HCO3
− concentration at 300 mg/L, Ca2+ concentration at

700 mg/L, and Ba2+ concentration at 2000 mg/L). Similarly, Figure 10 depicts the variation
in the wellbore reduction rate when the concentration of HCO3

− changes (with SO4
2−

concentration at 220 mg/L, Ca2+ concentration at 700 mg/L, and Ba2+ concentration at
2000 mg/L).

Figure 9. Distribution of wellbore diameter reduction rate under different SO4
2− concentrations.
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Figure 10. Distribution of wellbore diameter reduction rate under different HCO3
− concentrations.

Figure 9 illustrates the trend in wellbore reduction rates under the influence of SO4
2−.

It is evident that when the SO4
2− concentration remains constant, pressure has a minor im-

pact on the reduction rate at low temperatures but a significant impact at high temperatures.
Furthermore, at low pressure, temperature exerts a significant impact on the reduction rate,
while at high pressure, the influence of temperature diminishes. With increasing ion con-
centration, the maximum reduction rate extends from the high-temperature, low-pressure
region to encompass the entire surface, indicating variations in reduction rate. Overall, the
reduction rate continuously increases, and the surface representing the reduction rate shifts
upward. In other words, the surface above the plane where the reduction rate equals 4%
becomes increasingly larger. In general, the influence of temperature on the reduction rate
is greater than that of pressure.

Figure 10 illustrates the variation in wellbore reduction rates under the influence of
HCO3-. It can be observed that the overall trend is similar to the reduction rate variation
observed under the influence of SO4

2−. Once again, temperature has a more significant
impact on the reduction rate compared to pressure.

Figure 11 depicts the variation in the wellbore reduction rate when the concentration of
Ca2+ changes (with SO4

2− concentration at 220 mg/L, HCO3
− concentration at 300 mg/L,

and Ba2+ concentration at 2000 mg/L). Similarly, Figure 12 shows the variation in the
wellbore reduction rate when the concentration of Ba2+ changes (with SO4

2− concentration
at 220 mg/L, HCO3

− concentration at 300 mg/L, and Ca2+ concentration at 700 mg/L).
Figure 11 represents the variation in wellbore reduction rates under the influence of

Ca2+. It is evident that at an ion concentration of 200 mg/L temperature has a far greater
impact on the reduction rate than pressure. This is discernible from the spatial extent of the
surface’s changes; the surface representing reduction rate variations is nearly perpendicular
to the plane defined by reduction rate and temperature. As the ion concentration increases,
the reduction rate surface starts to tilt.
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Figure 11. Distribution of wellbore diameter reduction rate under different Ca2+ concentrations.

Figure 12. Distribution of wellbore diameter reduction rate under different Ba2+ concentrations.
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This suggests that pressure exerts a lesser influence on the reduction rate at low
temperatures but a more substantial impact at high temperatures. Conversely, at low
pressure, temperature significantly affects the reduction rate, whereas at high pressure, the
influence of temperature is comparatively minor. The wellbore reduction rate reaches its
minimum at high temperatures and low pressures. In summary, the effect of temperature
on the reduction rate surpasses that of pressure. Additionally, it can be observed that with
increasing ion concentration, the reduction rate surface consistently shifts upward, and the
portion of the surface above the 4% reduction rate plane becomes larger.

Figure 12 illustrates the variation in wellbore reduction rates under the influence of
Ba2+. The trend aligns with the variation observed under the influence of Ca2+, emphasizing
once again that temperature’s impact on the reduction rate outweighs that of pressure.

Based on the above analysis, it can be observed that under certain conditions in the
research area, controlling the temperature, pressure, and ion concentration of the produced
water within specific ranges can maintain the borehole contraction rate below 4% over a
three-year production period. Therefore, during on-site production, focusing on parameters
such as temperature, pressure, and ion concentration can effectively prevent scaling issues.
However, in reality, the temperature of the reservoir and the ion concentration of the
produced water are uncontrollable factors determined by geological conditions. On the
other hand, the bottom-hole pressure of gas wells is related to the production system, which
means that the bottom-hole pressure of gas wells is controllable. Production systems for
gas wells include fixed production rate systems and fixed pressure systems. The latter
involves fixed wellhead (bottom-hole) pressure systems and fixed pressure difference
systems. The formulation of the production system depends on geological conditions and
production requirements. Thus, in the gas well production process, mitigating scaling
and minimizing associated risks can be achieved by manipulating the production system
to regulate bottom-hole pressure, provided certain conditions like fixed temperature and
ion concentration. However, due to economic considerations and reservoir constraints,
bottom-hole pressure cannot be increased indefinitely. In practice, determining the optimal
magnitude of bottom-hole pressure becomes a multi-objective optimization challenge,
balancing economic benefits, reservoir conditions, technical costs, and other relevant
factors. In conclusion, considering the temperature and ion concentration conditions in the
research area, the selected bottom-hole pressure should be adjusted to achieve a borehole
contraction rate as close to 4% as possible, striking a balance between scaling prevention
and economic efficiency in the given reservoir context.

5. Conclusions

The target area was a tight sandstone gas reservoir, and through the collection of
on-site data and laboratory experiments, the water quality and composition of blockage
materials in the target area were clarified. Combining this information with a BP neural
network model, a model for predicting wellbore scaling risk and analyzing scale prevention
measures in the target reservoir was established. Upon elucidating the wellbore blockage
mechanism applicable to tight sandstone gas reservoirs in the target area, corresponding
preventive measures were proposed. The results indicate:

(1) The water in the target area is of a CaCl2 type, and the analysis of blockage material
composition indicates that the predominant scales are CaCO3 and BaSO4. Due to significant
production in the target area, it was analyzed that the fluid in the gas wells exhibits a circular
flow, with a stable pH ranging between 6.2 and 6.5.

(2) Under the influence of Ba2+ and SO4
2−, the BaSO4 scaling quantity shows a “diag-

onal” distribution with changes in temperature and pressure. Under the influence of Ca2+

and HCO3
−, the CaCO3 scaling quantity exhibits a “wave” distribution with changes in

temperature and pressure. Overall, BaSO4 is more influenced by pressure, while CaCO3 is
more influenced by temperature.

(3) Controlling temperature, pressure, and scaling ion concentrations within a certain
range can keep the contraction ratio within 4% or close to 4%, achieving the prevention
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of scaling. This can be achieved through adjustments in production systems, primarily by
modifying production pressure differentials. This provides guidance for predicting scaling
risks and implementing scaling prevention measures in tight sandstone reservoirs.
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