An Improved On-Line Recursive Subspace Identification Method Based on Principal Component Analysis and Sliding Window for Polymerization
Abstract
:1. Introduction
2. Traditional Offline Subspace Identification Method
2.1. Matrix Definition
2.2. Double-Orthogonal-Projection-Based Subspace Identification Method (2ORT-SIM) [19]
3. Proposed On-Line Subspace Identification Method
Algorithm 1. Steps for the Proposed RSIMPCA-SW |
(1) Initialize inputs of the algorithm at time instant , including past horizon , future horizon , number of samples , input dataset , output dataset . |
(2) Iterative computation of Equation (1) to construct the input–output Hankel formula in Equation (11). |
(3) For the first orthogonal projection, construct Equation (13) by projecting onto the orthogonal complement of . |
(4) Perform the LQ decomposition of Equation (23) instead of the second orthogonal projection, and construct for the initial L-factor at time instant . |
(5) Add the new data at time instant to the last column of the original data matrix to construct Equation (26). |
(6) Recursive update of L-factor by bona fide method according to Equations (30)–(34). |
(7) Perform PCA on the L-factor at time instant according to Equation (35). |
(8) Calculate the extended observation matrix by referring to Equation (36). |
(9) Extract the model parameters according to Equations (37) and (38). |
(10) Slide the data window to remove the first column of the data matrix in Equation (26) and return to step 5. |
4. Simulation
4.1. Polyethylene Process Flow Description
4.2. Data Acquisition and Preprocessing
4.3. Model Order Estimation
4.4. Identification Results and Validation Analysis
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ray, W.H.; Villa, C.M. Nonlinear dynamics found in polymerization processes—A review. Chem. Eng. Sci. 2000, 55, 275–290. [Google Scholar] [CrossRef]
- Kreitser, T.; Tumina, S.; L’Vovskii, V. Effect of the parameters of the mathematical model of polymerization kinetics, on estimation of the molecular weight of polyethylene. Polym. Sci. U.S.S.R. 1978, 20, 2989–2998. [Google Scholar] [CrossRef]
- Vivaldo-Lima, E.; Mohammadi, Y.; Penlidis, A. Modeling and simulation of polymerization processes. Processes 2021, 9, 821. [Google Scholar] [CrossRef]
- Fiosina, J.; Sievers, P.; Drache, M.; Beuermann, S. Polymer reaction engineering meets explainable machine learning. Comput. Chem. Eng. 2023, 177, 108356. [Google Scholar] [CrossRef]
- Touloupidis, V. Catalytic Olefin Polymerization Process Modeling: Multi-Scale Approach and Modeling Guidelines for Micro-Scale/Kinetic Modeling. Macromol. React. Eng. 2014, 8, 508–527. [Google Scholar] [CrossRef]
- Bashir, M.A.; Kanellopoulos, V.; Ali, M.A.; McKenna, T.F. Applied Thermodynamics for Process Modeling in Catalytic Gas Phase Olefin Polymerization Reactors. Macromol. React. Eng. 2020, 14, 1900029. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, F.; Song, W.; Jia, X.; Wang, Y. Empirical correction of kinetic model for polymer thermal reaction process based on first order reaction kinetics. Chin. J. Chem. Eng. 2021, 38, 132–144. [Google Scholar] [CrossRef]
- Urrea-Quintero, J.-H.; Marino, M.; Hernandez, H.; Ochoa, S. Multiscale modeling of a free-radical emulsion polymerization process: Numerical approximation by the Finite Element Method. Comput. Chem. Eng. 2020, 140, 106974. [Google Scholar] [CrossRef]
- Mueller, P.A.; Richards, J.R.; Congalidis, J.P. Polymerization reactor Modeling in Industry. Macromol. React. Eng. 2011, 5, 261–277. [Google Scholar] [CrossRef]
- Tan, L.P.; Lotfi, A.; Lai, E.; Hull, J. Soft computing applications in dynamic model identification of polymer extrusion process. Appl. Soft Comput. 2004, 4, 345–355. [Google Scholar] [CrossRef]
- Lima, N.M.; Linan, L.Z.; Melo, N.C.; Manenti, F.; Filho, R.M.; Embirucu, M.; Maciel, R.W. Nonlinear fuzzy identification of batch polymerization processes. Comput. Aided Chem. Eng. 2015, 37, 599–604. [Google Scholar]
- Liu, Z.; Luan, X. Intelligent Modeling for Batch Polymerization Reactors with Unknown Inputs. Sensors 2023, 23, 6021. [Google Scholar] [CrossRef]
- Qin, S.J. An overview of subspace identification. Comput. Chem. Eng. 2006, 30, 1502–1513. [Google Scholar] [CrossRef]
- Corbett, B.; Mhaskar, P. Subspace identification for data-driven modeling and quality control of batch processes. AIChE J. 2016, 62, 1581–1601. [Google Scholar] [CrossRef]
- Ghosh, D.; Hermonat, E.; Mhaskar, P.; Snowling, S.; Goel, R. Hybrid Modeling Approach Integrating First-Principles Models with Subspace Identification. Ind. Eng. Chem. Res. 2019, 58, 13533–13543. [Google Scholar] [CrossRef]
- Lou, H.; Su, H.; Gu, Y.; Hou, W.; Xie, L.; Rong, G. Nonlinear predictive control with modified closed-loop subspace identifi-cation-piecewise linear model for double-loop propylene polymerization process. Control. Theory Appl. 2015, 32, 1040–1051. [Google Scholar]
- Verhaegen, M. Identification of the deterministic part of MIMO state space models given in innovations form from in-put-output data. Automatica 1994, 30, 61–74. [Google Scholar]
- Van Overschee, P.; De Moor, B. N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 1994, 30, 75–93. [Google Scholar]
- Hou, J.; Liu, T.; Chen, F. Orthogonal projection based subspace identification against colored noise. Control. Theory Technol. 2017, 15, 69–77. [Google Scholar] [CrossRef]
- Song, I.H.; Rhee, H.K. Nonlinear control of polymerization reactor by Wiener predictive controller based on one-step sub-space identification. Ind. Eng. Chem. Res. 2004, 43, 7261–7274. [Google Scholar]
- Gomes, F.P.C.; Garg, A.; Mhaskar, P.; Thompson, M.R. Data-Driven Advances in Manufacturing for Batch Polymer Processing Using Multivariate Nondestructive Monitoring. Ind. Eng. Chem. Res. 2019, 58, 9940–9951. [Google Scholar] [CrossRef]
- Mercère, G.; Bako, L.; Lecœuche, S. Propagator-based methods for recursive subspace model identification. Signal Process. 2008, 88, 468–491. [Google Scholar] [CrossRef]
- Shang, L.; Liu, J.; Zhang, Y.; Wang, G. Efficient recursive canonical variate analysis approach for monitoring time-varying processes. J. Chemom. 2017, 31, e2858. [Google Scholar] [CrossRef]
- Wu, P.; Chen, L.; Zhou, W.; Guo, L. Online subspace identification based on principal component analysis and noise estima-tion. J. Zhejiang Univ. 2018, 52, 1694–1701. [Google Scholar]
- Misra, S.; Nikolaou, M. Adaptive design of experiments for model order estimation in subspace identification. Comput. Chem. Eng. 2017, 100, 119–138. [Google Scholar] [CrossRef]
- Sugiyama, M.; Ogawa, H. Subspace Information Criterion for Model Selection. Neural Comput. 2001, 13, 1863–1889. [Google Scholar] [CrossRef]
Algorithm | RSE | MAE | VAF | |||
---|---|---|---|---|---|---|
ppc2 | prod | ppc2 | prod | ppc2 | prod | |
MOESP | 0.2726 | 0.2296 | 0.1242 | 0.1033 | 0.8059 | 0.9055 |
N4SID | 0.3091 | 0.2325 | 0.1436 | 0.1030 | 0.7699 | 0.8981 |
2ORT-SIM | 0.5172 | 0.2954 | 0.2567 | 0.1415 | 0.5205 | 0.8853 |
OSIMPCA-E | 0.1327 | 0.1195 | 0.0489 | 0.0480 | 0.8854 | 0.9450 |
RSIMPCA-SW | 0.1260 | 0.0483 | 0.0471 | 0.0217 | 0.9165 | 0.9885 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Zhang, J.; Lei, T.; Li, S.; Sun, C.; He, G.; Wen, B. An Improved On-Line Recursive Subspace Identification Method Based on Principal Component Analysis and Sliding Window for Polymerization. Processes 2024, 12, 562. https://doi.org/10.3390/pr12030562
Qian J, Zhang J, Lei T, Li S, Sun C, He G, Wen B. An Improved On-Line Recursive Subspace Identification Method Based on Principal Component Analysis and Sliding Window for Polymerization. Processes. 2024; 12(3):562. https://doi.org/10.3390/pr12030562
Chicago/Turabian StyleQian, Jiayu, Jubin Zhang, Ting Lei, Silin Li, Chen Sun, Guanghua He, and Bin Wen. 2024. "An Improved On-Line Recursive Subspace Identification Method Based on Principal Component Analysis and Sliding Window for Polymerization" Processes 12, no. 3: 562. https://doi.org/10.3390/pr12030562
APA StyleQian, J., Zhang, J., Lei, T., Li, S., Sun, C., He, G., & Wen, B. (2024). An Improved On-Line Recursive Subspace Identification Method Based on Principal Component Analysis and Sliding Window for Polymerization. Processes, 12(3), 562. https://doi.org/10.3390/pr12030562