Application of Raman Spectroscopy to Evaluate the Structure Changes of Lubricating Grease Modified with Montmorillonite after Tribological Tests
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Wear and Friction Tests
3.2. Raman Spectroscopy for the Study of Structural Change
4. Conclusions
- The modification of the lubricity life influenced the studied lubricants due to the specific chemistry of the solid phase, the liquid phase and the applied additive, as well as the interdependence between the components of the grease mixture;
- The tribochemical reactants between the components of the lubricant mixture and the tribological film had a major impact on the tribological characteristics of the studied lubricants;
- The extremely effective activity of the phyllosilicate is due to the unique structure of the additive used, which contains substances capable of increasing the lubricity of selected greases;
- In the upper zone of the steel tribological scar, according to the wear and friction tests with vegetable lubricants containing phyllosilicate, the presence of organic and inorganic substances was detected, which modify the tribological effect of greases on the tribological system;
- The occurrence of oxidation compounds can be attributed to the excellent anti-wear characteristics of the lubricants, as measured by the size of the wear marks;
- The interpretation of the results of the friction and wear studies, together with the evaluation of the modification of the structure of the lubricant after the friction and wear studies, shows that the lubricity is a function not only of the addition of the modifier, but of oxidation compounds that protect the tribological system;
- The action of the additive used is based on the mechanism that assumes that, as a consequence of the interference of low-energy photons with the acid or ester particles adsorbed in the friction contact zone, carboxylate anions are formed, which react with the contact area of the tribosystem to create wear-protective boundary layers;
- The mechanism of the formation of boundary layers in lubricating conditions is based on the oxidation reactions of the composition ingredients to polar organic species and then to interactions of functional groups of these species with atoms or metal oxides of the working tribosystem surface.
Funding
Data Availability Statement
Conflicts of Interest
References
- Bumbrah, G.S.; Sharma, R.M. Raman spectroscopy—Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt. J. Forensic Sci. 2016, 6, 209–215. [Google Scholar] [CrossRef]
- Saviello, D.; Trabace, M.; Alyami, A.; Mirabile, A.; Baglioni, P.; Giorgi, R.; Iacopino, D. Raman Spectroscopy and Surface Enhanced Raman Scattering (SERS) for the Analysis of Blue and Black Writing Inks: Identification of Dye Content and Degradation Processes. Front. Chem. 2019, 7, 727. [Google Scholar] [CrossRef]
- Geiman, I.; Leona, M.; Lombardi, J.R. Application of Raman Spectroscopy and Surface-Enhanced Raman Scattering to the Analysis of Synthetic Dyes Found in Ballpoint Pen Inks. J. Forensic Sci. 2009, 54, 947–952. [Google Scholar] [CrossRef]
- McCreery, R.L. Raman Spectroscopy for Chemical Analysis; Wiley-Interscience: London, UK, 2000. [Google Scholar]
- Smith, E.; Dent, G. Modern Raman Spectroscopy—A Practical Approach; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Moreira, L.M.; Silveira, L., Jr.; Santos, F.V.; Lyon, J.P.; Rocha, R.; Zangaro, R.A.; Villaverde, A.B.; Pacheco, M.T.T. Raman spectroscopy: A powerful technique for biochemical analysis and diagnosis. Spectroscopy 2008, 22, 1–19. [Google Scholar] [CrossRef]
- Das, R.S.; Agrawal, Y.K. Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. 2011, 57, 163–176. [Google Scholar] [CrossRef]
- Efremov, E.V.; Efremov, E.V.; Ariese, F.; Ariese, F.; Gooijer, C.; Gooijer, C. Achievements in resonance Raman spectroscopy: Review of a technique with a distinct analytical chemistry potential. Anal. Chim. Acta 2008, 606, 119–134. [Google Scholar] [CrossRef]
- Asher, S.A. UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry. Anal. Chem. 1993, 65, 201A–210A. [Google Scholar] [CrossRef] [PubMed]
- Kudelski, A. Raman spectroscopy of surfaces. Surf. Sci. 2009, 603, 1328–1334. [Google Scholar] [CrossRef]
- Kudelski, A. Analytical applications of Raman spectroscopy. Talanta 2008, 76, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Haynes, C.L.; McFarland, A.D.; Duyne, R.P.V. Surface-enhanced Raman spectroscopy. Anal. Chem. 2005, 77, 338A–346A. [Google Scholar] [CrossRef]
- Gauglitz, G.; Vo-Dinh, T. Handbook of Spectroscopy; Wiley-Vch Verglag GmbH & Co. KGaA: Weinheim, Germany, 2003. [Google Scholar]
- Wu, Y.; Tsui, W.; Liu, T. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 2007, 262, 819–825. [Google Scholar] [CrossRef]
- Kaneta, M.; Ogata, T.; Takubo, Y.; Naka, M. Effects of a thickener structure on grease elastohydrodynamic lubrication films. Proc. Inst. Mech. Eng. Part J 2000, 214, 327–336. [Google Scholar] [CrossRef]
- Kumar, N.; Saini, V.; Bijwe, J. Tribological Investigations of Nano and Micro-sized Graphite Particles as an Additive in Lithium-Based Grease. Tribol. Lett. 2020, 68, 124. [Google Scholar] [CrossRef]
- Cao, Z.; Xia, Y.; Xi, X. Nano-montmorillonite-doped lubricating grease exhibiting excellent insulating and tribological properties. Friction 2017, 5, 219–230. [Google Scholar] [CrossRef]
- Zheng, B.; Zhou, J.; Jia, X.; He, Q. Friction and wear property of lithium grease contained with copper oxide nanoparticles. Appl. Nanosci. 2020, 10, 1355–1367. [Google Scholar] [CrossRef]
- Lin, B.; Rustamov, I.; Zhang, L.; Luo, J.; Wan, X. Graphene-Reinforced Lithium Grease for Antifriction and Antiwear. ACS Appl. Nano Mater. 2020, 3, 10508–10521. [Google Scholar] [CrossRef]
- Fan, X.; Xia, Y.; Wang, L.; Li, W. Multilayer Graphene as a Lubricating Additive in Bentone Grease. Tribol. Lett. 2014, 55, 455–464. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, G.; Wang, X. Tribological Performance of Lubricating Greases Based on Calcium Carbonate Polymorphs Under the Boundary Lubrication Condition. Tribol. Lett. 2012, 47, 183–194. [Google Scholar] [CrossRef]
- Kumar, N.; Saini, V.; Bijwe, J. Synergism or antagonism in tribo-performance of nano-greases using combinations of nanoparticles of graphite and PTFE. Appl. Nanosci. 2021, 11, 2525–2536. [Google Scholar] [CrossRef]
- Wang, T.; Li, Z.; Li, J.; He, Q. Impact of Boron Nitride Nanoparticles on the Wear Property of Lithium Base Grease. J. Mater. Eng. Perform. 2020, 29, 4991–5000. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, W.; Yu, L.; Kajdas, C. Tribological behavior of cast iron and (Ca, Mg)-Sialon under lubrication. Tribologia 2001, 6, 1037–1052. [Google Scholar]
- Cann, P.M. Grease lubrication of rolling element bearings—Role of grease thickener. Lubr. Sci. 2007, 19, 183–196. [Google Scholar] [CrossRef]
- Pogosyan, A.K.; Martirosyan, T.R. Tribological properties of bentonite thickener-containing greases. J. Frict. Wear 2008, 29, 205–209. [Google Scholar] [CrossRef]
- Zheleznyi, L.V.; Bogaichuk, A.V.; Kobylyanskii, E.V.; Mishchuk, O.A. Antiwear properties of high-temperature greases. Chem. Technol. Fuels Oils 2007, 43, 488–494. [Google Scholar] [CrossRef]
- Wang, J. Tribological characteristics of graphene as lithium grease additive. Pet. Process. Petrochem. Technol. 2017, 19, 46–54. [Google Scholar]
- Zhu, X.; Xu, T.; Lin, Q.; Duan, Y. Technical Development of Raman Spectroscopy: From Instrumental to Advanced Combined Technologies. Appl. Spectrosc. Rev. 2013, 49, 64–82. [Google Scholar] [CrossRef]
- Jones, R.R.; Hooper, D.C.; Zhang, L.; Wolverson, D.; Valev, V.K. Raman Techniques: Fundamentals and Frontiers. Nanoscale Res. Lett. 2019, 14, 231. [Google Scholar] [CrossRef]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.P. Surface-Ehanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.-C.; Huang, T.-X.; Su, H.-S.; Zhong, J.-H.; Zeng, Z.-C.; Li, M.-H.; Ren, B. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev. 2017, 46, 4020–4041. [Google Scholar] [CrossRef]
- Keresztury, G. Raman Spectroscopy: Theory, Handbook of Vibrational Spectroscopy; Wiley Online Library: Hoboken, NJ, USA, 2006. [Google Scholar]
- Ishchuk, Y.L. Lubricating Grease Manufacturing Technology; New Age International: New Delhi, India, 2008. [Google Scholar]
- Drabik, J.; Trzos, M.; Pawelec, E.; Wrona, M.; Kozdrach, R.; Duszyński, G.; Piątkowski, M. Study on properties of ecological lubricants produced on vegetable oil bases. Przemysł Chem. 2018, 97, 2194–2199. [Google Scholar] [CrossRef]
- Drabik, J.; Trzos, M.; Kozdrach, R.; Wrona, M.; Wolszczak, M.; Duszyński, G.; Piątkowski, M. Modeling and evaluation of properties of lubricants used in the food industry. Przemysł Chem. 2018, 99, 2200–2204. [Google Scholar] [CrossRef]
- Pirro, D.M.; Webster, M.; Daschner, E. Lubrication Fundamentals, 3rd ed.; CRC Press: London, UK, 2016. [Google Scholar]
- Kozdrach, R. Wpływ rodzaju fazy zdyspergowanej na właściwości tribologiczne smarów plastycznych wytworzonych na oleju lnianym. Nafta-Gaz 2018, 74, 471–478. [Google Scholar] [CrossRef]
- Kozdrach, R. The influence of montmorillonite content on change the physicochemical properties of lubricating greases produced from vegetable base oil. Nafta-Gaz 2020, 76, 270–278. [Google Scholar] [CrossRef]
- Rizvi, S.Q.A. A Comprehensive Review of Lubricant Chemistry, Technology, Selection and Design; ASTM International: West Conshohocken, PE, USA; Baltimore, MD, USA, 2009. [Google Scholar]
- Mohamed, A.; Osman, T.A.; Khattab, A.; Zaki, M. Tribological Behavior of Carbon Nanotubes as an Additive on Lithium Grease. J. Tribol. 2014, 137, 011801. [Google Scholar] [CrossRef]
- Razak, I.H.A.; Ahmad, M.A.; Puasa, S.W. Tribological and Physiochemical Properties of Greases for Rail Lubrication. Tribol. Online 2019, 14, 293–300. [Google Scholar] [CrossRef]
- Havet, L.; Blouet, J.; Valloire, F.R.; Brasseur, E.; Slomka, D. Tribological characteristics of some environmentally friendly lubricants. Wear 2001, 248, 140–146. [Google Scholar] [CrossRef]
- Lundberg, J.; Höglund, E. A new method for determining the mechanical stability of lubricating greases. Tribol. Int. 2000, 33, 217–223. [Google Scholar] [CrossRef]
- Drabik, J.; Kaźmierczak, B.; Kozdrach, R.; Rogoś, E. The Use of Raman Spectroscopy to Monitor Changes in the Intensity of Ratio of Integral Unsaturated Bands in Bio-Greases. Molecules 2023, 28, 3033. [Google Scholar] [CrossRef]
- Kozdrach, R.; Drabik, J.; Szczerek, M. Influence of Silicon Additives on Tribological and Rheological Test Results for Vegetable Lubricants. Materials 2023, 16, 6245. [Google Scholar] [CrossRef]
- Moreira-Izurieta, F.; Jabbarzadeh, A. Tribological Studies in Cartilaginous Tissue of Lamb Synovial Joints Lubricated by Distilled Water and Interstitial-Fluid-Like Solution. Tribol. Ind. 2017, 39, 319–328. [Google Scholar] [CrossRef]
- Gilardi, R. Tribology of Graphite-Filled Polystyrene. Lubricants 2016, 4, 20. [Google Scholar] [CrossRef]
- Cyriac, F.; Lugt, P.M.; Bosman, R. The Impact of Water on the Yield Stress and Startup Torque of Lubricating Greases. Tribol. Trans. 2017, 60, 824–831. [Google Scholar] [CrossRef]
- Miller, M.K.; Khalid, H.; Michael, P.W.; Guevremont, J.M.; Garelick, K.J.; Pollard, G.W.; Whitworth, A.J.; Devlin, M.T. An Investigation of Hydraulic Motor Efficiency and Tribological Surface Properties. Tribol. Trans. 2014, 57, 622–630. [Google Scholar] [CrossRef]
- Cyriac, F.; Lugt, P.M.; Bosman, R. Yield Stress and Low-Temperature Start-Up Torque of Lubricating Greases. Tribol. Lett. 2016, 63, 1–10. [Google Scholar] [CrossRef]
- Oppermann, A.K.L.; Verkaaik, L.C.; Stieger, M.; Scholten, E. Influence of double (w1/o/w2) emulsion composition on lubrication properties. Food Funct. 2017, 8, 522–532. [Google Scholar] [CrossRef]
- Stachowiak, G.W.; Batchelor, A.W. Engineering Tribology; Butterworth-Heinemann: Burlington, MA, USA, 2005. [Google Scholar]
- Cizaire, L.; Vacher, B.; Le Mogne, T.; Martin, J.; Rapoport, L.; Margolin, A.; Tenne, R. Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. Technol. 2002, 160, 282–287. [Google Scholar] [CrossRef]
- Ludema, K.C. Friction, Wear, Lubrication: A Textbook in Tribology; CRC Press: Boca Raton, FL, USA, 1996; pp. 257–265. [Google Scholar]
- Bayer, R.G. Mechanical Wear Prediction and Prevention; Marcel Dekker: New York, NY, USA, 1994; pp. 657–666. [Google Scholar]
- Wakuri, Y.; Soejima, M.; Kitahara, T.; Fujisaki, K.; Nuki, K. Effect of lubricating oils on piston ring friction and scuffing. Jpn. J. Tribol. 1995, 40, 437–449. [Google Scholar]
- Jiménez-Sanchidrián, C.; Ruiz, J.R. Use of Raman spectroscopy for analyzing edible vegetable oils. Appl. Spectrosc. Rev. 2016, 51, 417–430. [Google Scholar] [CrossRef]
- Alvarenga, B.R.; Xavier, F.A.N.; Soares, F.L.F.; Carneiro, R.L. Thermal Stability Assessment of Vegetable Oils by Raman Spectroscopy and Chemometrics. Food Anal. Methods 2018, 11, 1969–1976. [Google Scholar] [CrossRef]
- Qiu, J.; Hou, H.-Y.; Huyen, N.T.; Yang, I.-S.; Chen, X.-B. Raman Spectroscopy and 2DCOS Analysis of Unsaturated Fatty Acid in Edible Vegetable Oils. Appl. Sci. 2019, 9, 2807. [Google Scholar] [CrossRef]
- Kwofie, F.; Lavine, B.K.; Ottaway, J.; Booksh, K. Differentiation of Edible Oils by Type Using Raman Spectroscopy and Pattern Recognition Methods. Appl. Spectrosc. 2020, 74, 645–654. [Google Scholar] [CrossRef]
- Lv, M.Y.; Zhang, X.; Ren, H.R.; Liu, L.; Zhao, Y.M.; Wang, Z.; Wu, Z.L.; Liu, L.M.; Xu, H.J. A rapid method to authenticate vegetable oils through surface-enhanced Raman scattering. Sci. Rep. 2016, 6, 23405. [Google Scholar] [CrossRef] [PubMed]
- Jentzsch, P.V.; Ciobotă, V. Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils. Flavour Fragr. J. 2014, 29, 287–295. [Google Scholar] [CrossRef]
- Pang, L.; Chen, H.; Yin, L.; Cheng, J.; Jin, J.; Zhao, H.; Liu, Z.; Dong, L.; Yu, H.; Lu, X. Rapid fatty acids detection of vegetable oils by Raman spectroscopy based on competitive adaptive reweighted sampling coupled with support vector regression. Food Qual. Saf. 2022, 6, fyac053. [Google Scholar] [CrossRef]
- Camerlingo, C.; Portaccio, M.; Delfino, I.; Lepore, M. Surface-Enhanced Raman Spectroscopy for Monitoring Extravirgin Olive Oil Bioactive Components. J. Chem. 2019, 2019, 9537419. [Google Scholar] [CrossRef]
- Cann, P.M.; Hurley, S. Friction properties of grease in elastohydrodynamic lubrication. NLGI Spokesm. 2002, 66, 6–15. [Google Scholar]
The Tested Lubricating Greases | The Chemical Compound of Tested Lubricating Greases | Experimental Methods Using to Tested of Lubricating Greases |
---|---|---|
Grease A | Linseed oil, lithium stearate | Tribological tests (anti-wear properties) on Anton Paar rheometer with tribological cell. Spectral test using Raman spectroscopy. |
Grease B | Linseed oil, lithium stearate and montmorillonite |
The Studied Greases | The Limiting Load of Wear Goz [N/mm2] | The Mean Friction Factor | The Mean Dynamic Viscosity [Pa * s] |
---|---|---|---|
Grease A_1 N | 411.34 ± 28.79 | 0.201 ± 0.012 | 1.973 ± 0.158 |
Grease A_5 N | 374.73 ± 26.23 | 0.298 ± 0.018 | 2.237 ± 0.178 |
Grease A_10 N | 311.43 ± 21.80 | 0.321 ± 0.019 | 2.713 ± 0.217 |
Grease B_1 N | 542.81 ± 37.99 | 0.122 ± 0.009 | 0.878 ± 0.070 |
Grease B_5 N | 513.12 ± 35.92 | 0.135 ± 0.008 | 1.123 ± 0.089 |
Grease B_10 N | 497.23 ± 34.81 | 0.151 ± 0.009 | 1.474 ± 0.118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozdrach, R. Application of Raman Spectroscopy to Evaluate the Structure Changes of Lubricating Grease Modified with Montmorillonite after Tribological Tests. Processes 2024, 12, 565. https://doi.org/10.3390/pr12030565
Kozdrach R. Application of Raman Spectroscopy to Evaluate the Structure Changes of Lubricating Grease Modified with Montmorillonite after Tribological Tests. Processes. 2024; 12(3):565. https://doi.org/10.3390/pr12030565
Chicago/Turabian StyleKozdrach, Rafal. 2024. "Application of Raman Spectroscopy to Evaluate the Structure Changes of Lubricating Grease Modified with Montmorillonite after Tribological Tests" Processes 12, no. 3: 565. https://doi.org/10.3390/pr12030565
APA StyleKozdrach, R. (2024). Application of Raman Spectroscopy to Evaluate the Structure Changes of Lubricating Grease Modified with Montmorillonite after Tribological Tests. Processes, 12(3), 565. https://doi.org/10.3390/pr12030565