Plateau-Adapted Single-Pump, Single-Bed Vacuum Pressure Swing Adsorption Oxygen Generation Process Simulation and Optimization
Abstract
:1. Introduction
2. Process and Mathematical Model for the VPSA System
2.1. Process of Single-Bed VPSA System
- (I)
- Adsorption 1 (AD1): The pump operates in forward direction to introduce air into the adsorption bed. Due to the strong adsorptive capacity, N2 is retained within the zeolite while the weakly adsorbed component O2 is enriched and collected as the product gas through valve VP1.
- (II)
- Adsorption 2 (AD2): The continuous operation of the pump allows oxygen-rich air to enter the purge buffer tank via valve VPU.
- (III)
- Blowdown (BD): After the completion of the adsorption steps, the N2 is expelled, the pump is switched reversely, and the high pressure can be released to atmospheric pressure. The adsorbent is initially desorbed.
- (IV)
- Vacuum (VU): The pump operates in the reverse mode to lower bed pressure to approximately 0.5 bar for the further regeneration of the absorbent.
- (V)
- Purge (PUR): The pump continues operating and the valve VPU is opened to allow the oxygen-enriched air to flow into the adsorption bed, further improving the desorption effect.
- (VI)
- Pressurization (PR): The Roots pump changes the direction to positive. The initial pressurization of the bed is completed from the vacuum to atmospheric pressure.
2.2. Mathematical Model
- (a)
- The gas followed the ideal gas law.
- (b)
- Adoption of a one-dimensional adsorption bed mathematical model.
- (c)
- The pressure drop along the bed satisfied the Ergun equation.
- (d)
- The mass transfer rate confirmed the linear driving force (LDF) model.
- (e)
- The Extended Langmuir 2 equation was used to describe the adsorption behavior of the gas.
- (f)
- A uniform distribution of adsorbent in the adsorbent bed and a uniform adsorbent bed void fraction.
2.3. Simulation Process and Strategy
2.4. Data Analyses
3. Process and Parameter Optimization
3.1. Effect of Purging on VPSA Performances
3.2. Effect of P/F on VPSA Performances
3.3. Solid Phase Concentration and Pressure Distribution in the Adsorption Bed
4. Simulation Verification
5. Plateau Process Optimization
5.1. Effect of Altitude on VPSA Performances
5.2. Effect of Product Flowrate on VPSA Performance
5.3. Effect of Feed Flowrate on VPSA Performance
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ci | gas phase concentration of component i, mol·m−3 |
Cv | valve opening coefficient, mol·s−1·bar−1 |
Dax,i | axial dispersion coefficient of component i, m2·s−1 |
Dm,i | molecular diffusivity of component i, m2·s−1 |
Hb | height of adsorbent layer, m |
IP1 | isotherm parameter, mol·kg−1·bar−1 |
IP2 | isotherm parameter, K |
IP3 | isotherm parameter, bar−1 |
IP4 | isotherm parameter, K |
kLDF,i | liner driving force constant of component i, s−1 |
amount of substance of O2 in feed, mol | |
amount of substance of O2 in WE forward, mol | |
npur | amount of substance in the purge step, mol |
P | pressure, pa |
Pi | pressure of component i, pa |
qi | amount of i on the solid adsorbent, mol·kg−1 |
qi* | amount of i on the solid adsorbent in equilibrium conditions, mol·kg−1 |
R | universal gas constant, (Pa·m3)/(mol·K) |
R2 | adsorption model fitting correlation coefficients |
rp | particle radius, m |
T | temperature, K |
tcycle | time of cycle, s |
uFeed | superficial velocity of feed, m3·s−1 |
upro | superficial velocity of product gas, m3·s−1 |
uWE_Rev | superficial velocity of WE reverse, m3·s−1 |
vg | gas velocity, m·s−1 |
yFeed, O2 | O2 purity of feed |
ypro,i | Purity of component i of product gas |
ypro,O2 | O2 purity of product gas |
ypur,O2 | O2 purity of purge gas |
yWE_Rev,O2 | O2 purity of WE reverse |
z | axial distance, m |
εi | Interparticle voidage |
εp | Intraparticle voidage |
μ | Dynamic viscosity, kg·m−1∙s−1 |
ρb | Bulk solid density of adsorbent, kg·m−3 |
ρg | Gas density, kg·m−3 |
ρs | adsorbent density, kg·m−3 |
ψ | Sphericity |
References
- Daly, S.; Thorpe, M.; Rockswold, S.; Hubbard, M.; Bergman, T.; Samadani, U.; Rockswold, G. Hyperbaric oxygen therapy in the treatment of acute severe traumatic brain injury: A systematic review. J. Neurotrauma 2018, 35, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Lv, A.; Deng, C.; Zhu, M.; Deng, Y.; Shi, M.; Ma, J.; Gao, W. Research Progress of Oxygen Production Technology in Plateau Environment. Contemp. Chem. Ind. 2018, 47, 105–108. [Google Scholar] [CrossRef]
- Skarstrom C, W. Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption. U.S. Patent 2,944,627, 12 July 1960. [Google Scholar]
- Lin, H.; Lu, J.; Abed, A.M.; Nag, K.; Fayed, M.; Deifalla, A.; Bin Mahfouz, A.S.; Galal, A.M. Simulation of CO2 capture from natural gas by cyclic pressure swing adsorption process using activated carbon. Chemosphere 2023, 329, 138583. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-S.; Ni, S.-H.; Yang, H.-S.; Chou, C.-T. Simulation study of separating oxygen from air by pressure swing adsorption process with semicylindrical adsorber. J. Taiwan Inst. Chem. Eng. 2021, 120, 67–76. [Google Scholar] [CrossRef]
- Zhang, R.; Shen, Y.; Tang, Z.; Li, W.; Zhang, D. A Review of Numerical Research on the Pressure Swing Adsorption Process. Processes 2022, 10, 812. [Google Scholar] [CrossRef]
- Hamedi, H.; Brinkmann, T.; Wolff, T. Techno-economic assessment of H2 extraction from natural gas distribution grids: A novel simulation-based optimization framework for pressure swing adsorption processes. Chem. Eng. J. Adv. 2023, 16, 100541. [Google Scholar] [CrossRef]
- Abd, A.A.; Seong, L.K.; Othman, M.R. Optimized hydrogen purification for fuel cell quality from quinary coke oven gas via layered pressure swing adsorption under non-isothermal conditions. Chem. Eng. Res. Des. 2023, 200, 753–775. [Google Scholar] [CrossRef]
- Yun, J.S.; Cho, K.H.; Lim, M.K.; Yoon, J.W.; Ferreira, A.; Ribeiro, A.M.; Carmo, P.; Nogueira, I.B.; Park, Y.-K.; Park, J.; et al. Process modeling and optimization of vacuum pressure swing adsorption for ethane and ethylene separation using Cu(Qc)2 MOF. Sep. Purif. Technol. 2023, 326, 124711. [Google Scholar] [CrossRef]
- Wu, T.; Wang, Z.; Wang, Y.; Ren, H.; Li, W.; Tang, Z.; Zhang, D. Investigations of turbulence influence on pressure swing adsorption process for CO2 capture by computational mass transfer. J. Environ. Chem. Eng. 2023, 11, 110485. [Google Scholar] [CrossRef]
- Afshardoost, A.; Fanaei, M.A. A simulation study of reducing carbon dioxide and hydrogen sulfide adsorption in dehydration beds. Chem. Eng. Res. Des. 2023, 196, 158–170. [Google Scholar] [CrossRef]
- Tian, T.; Liu, B.; Shi, M.; An, Y.; Ma, J.; Zhang, Y.; Xu, X.; Zhang, D. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds. CIESC J. 2019, 70, 969–978. [Google Scholar]
- Guo, W.; Wang, H.; Chen, H.; Yu, B.; Wang, Y.; Zhao, J. Performance and safety of transport vehicles fueled with alternative fuels in plateau environment: A review. J. Traffic Transp. Eng. (Engl. Ed.) 2022, 9, 930–944. [Google Scholar] [CrossRef]
- Golmakani, A.; Fatemi, S.; Tamnanloo, J. Investigating PSA, VSA, and TSA methods in SMR unit of refineries for hydrogen production with fuel cell specification. Sep. Purif. Technol. 2017, 176, 73–91. [Google Scholar] [CrossRef]
- Jiang, N. Numerical Simulation Study of CO2 Capture from Dry Flue Gas by Pressure Swing Adsorption and Temperature Swing Adsorption; Tianjin University: Tianjin, China, 2020. [Google Scholar]
- Di Marcoberardino, G.; Vitali, D.; Spinelli, F.; Binotti, M.; Manzolini, G. Green hydrogen production from raw biogas: A techno-economic investigation of conventional processes using pressure swing adsorption unit. Processes 2018, 6, 19. [Google Scholar] [CrossRef]
- Luberti, M.; Ahn, H. Design of an industrial multi-bed (V)PSA unit for argon concentration. Sep. Purif. Technol. 2021, 261, 118254. [Google Scholar] [CrossRef]
- Kim, J.; Han, S.S.; Kim, J.; Lee, I.-B.; Oh, H.; Yoon, Y.-S. Vacuum pressure swing adsorption for efficient off-gas recycling: Techno-economic and CO2 abatement study. Energy 2023, 264, 126281. [Google Scholar] [CrossRef]
- Makarem, M.A.; Mofarahi, M.; Jafarian, B.; Lee, C.-H. Simulation and analysis of vacuum pressure swing adsorption using the differential quadrature method. Comput. Chem. Eng. 2019, 121, 483–496. [Google Scholar] [CrossRef]
- Punpee, S.; Phalakornkule, C. Aspen adsorption simulation for the effects of purge flow rate and vacuum pressure in vacuum pressure swing adsorption. Mater. Today: Proc. 2021, 52, 2517–2522. [Google Scholar] [CrossRef]
- Al-Shawabkeh, A.F.; Al-Najdawi, N.; Olimat, A.N. High purity oxygen production by pressure vacuum swing adsorption using natural zeolite. Results Eng. 2023, 18, 101119. [Google Scholar] [CrossRef]
- Ackley, M.W. Medical oxygen concentrators: A review of progress in air separation technology. Adsorption 2019, 25, 1437–1474. [Google Scholar] [CrossRef]
- Chicano, J.; Dion, C.T.; Pasaogullari, U.; Valla, J.A. Simulation of 12-bed vacuum pressure-swing adsorption for hydrogen separation from methanol-steam reforming off-gas. Int. J. Hydrogen Energy 2021, 46, 28626–28640. [Google Scholar] [CrossRef]
- Budner, Z.; Dula, J.; Podstawa, W.; Gawdzik, A. Study and modelling of the vacuum swing adsorption (VSA) process employed in the production of oxygen. Chem. Eng. Res. Des. 1999, 77, 405–412. [Google Scholar] [CrossRef]
- Mahdi, A.H.; Ahmed, S.M.; Ayuob, H.S. A numerical study of single column adsorber for optimal design of pressure swing adsorption. J. Garmian Univ. 2019, 6, 160–170. [Google Scholar] [CrossRef]
- Van Chinh, P.; Hieu, N.T.; Tien, V.D.; Nguyen, T.-Y.; Nguyen, H.N.; Anh, N.T.; Van Thom, D. Simulation and experimental study of a single fixed-bed model of nitrogen gas generator working by pressure swing adsorption. Processes 2019, 7, 654. [Google Scholar] [CrossRef]
- Wu, C.W.; Kothare, M.V.; Sircar, S. Model analysis of equilibrium adsorption isotherms of pure N2, O2, and their binary mixtures on LiLSX zeolite. Ind. Eng. Chem. Res. 2014, 53, 12428–12434. [Google Scholar] [CrossRef]
- Arora, A.; Hasan, M.M.F. Flexible oxygen concentrators for medical applications. Sci. Rep. 2021, 11, 14317. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.C.; Portugal, A.F.; Magalhães, F.D.; Mendes, A. Optimization of medical PSA units for oxygen production. Ind. Eng. Chem. Res. 2006, 45, 1085–1096. [Google Scholar] [CrossRef]
- Liu, Y.S.; Zhang, Q.L.; Liu, W.H.; Li, Z.Y.; Yang, X.; Cao, X.G.; Fu, Y.G.; Li, Y. Influence of product flow rate on O2 Volume fraction in PSA oxygen generation process. Chin. J. Eng. 2020, 42, 1507–1515. [Google Scholar] [CrossRef]
- Lu, B.; Shen, Y.; Tang, Z.; Zhang, D.; Chen, G. Vacuum pressure swing adsorption process for coalbed methane enrichment. Chin. J. Chem. Eng. 2020, 32, 264–280. [Google Scholar] [CrossRef]
Value | Units | |
---|---|---|
Hb | 0.6 | m |
Db | 0.5 | m |
εi | 0.4 | / |
εp | 0.39 | / |
ρb | 634.0 | kg·m−3 |
rp | 8 × 10−4 | m |
Dm, Ar | 4.137 × 10−5 | m2·s−1 |
Dm, N2 | 2.491 × 10−5 | m2·s−1 |
Dm, O2 | 4.137 × 10−5 | m2·s−1 |
IP1, Ar | 6.025 × 10−4 | mol·kg−1·bar−1 |
IP1, N2 | 2.756 × 10−4 | mol·kg−1·bar−1 |
IP1, O2 | 6.025 × 10−4 | mol·kg−1·bar−1 |
IP2, Ar | 1593.0 | K |
IP2, N2 | 2494.0 | K |
IP2, O2 | 1593.0 | K |
IP3, Ar | 1.487 × 10−4 | bar−1 |
IP3, N2 | 1.391 × 10−4 | bar−1 |
IP3, O2 | 1.487 × 10−4 | bar−1 |
IP4, Ar | 1503.0 | K |
IP4, N2 | 2449.0 | K |
IP4, O2 | 1503.0 | K |
AD1 | AD2 | BD | VU | PUR | PR | |
---|---|---|---|---|---|---|
Time (s) | 10 | 0–5 | 3 | 13 | 0/2 | 3 |
PUMP (m3·h−1) | 160 | 160 | 0 | 0 | 0 | 0 |
VPUMP (m3·h−1) | 0 | 0 | 0 | 160 | 160 | 0 |
VE | 0 | 0 | 2 | 0 | 0 | 2 |
VF | 1 | 1 | 0 | 0 | 0 | 0 |
VW | 0 | 0 | 0 | 1 | 1 | 0 |
VP1 | 2 | 2 | 0 | 0 | 0 | 0 |
VPU | 0 | 2 | 0 | 0 | 2 | 0 |
Recovery % | Purity % | Productivity m3·h−1 | Energy Consumption MJ·m−3 | P/F | |
---|---|---|---|---|---|
No-PUR | 13.32 | 81.33 | 3.35 | 1.58 | / |
B-PUR | 17.39 | 92.22 | 3.68 | 1.58 | 0.18 |
F-PUR | 14.82 | 74.18 | 3.98 | 1.51 | 0.15 |
AD2 Time | P/F | PVU/PAD2 |
---|---|---|
1 s | 0.081 | 0.51/1.66 |
2 s | 0.153 | 0.51/1.65 |
3 s | 0.176 | 0.52/1.69 |
4 s | 0.190 | 0.52/1.74 |
5 s | 0.198 | 0.53/1.79 |
VU/AD Pressure (bar) | Purity (%) | Productivity (m3·h−1) | |||
---|---|---|---|---|---|
Exp. | Sim. | Exp. | Sim. | Exp. | Sim. |
0.52/1.69 | 0.51/1.69 | 92.1 | 92.22 | 3.67 | 3.68 |
0.51/1.67 | 93.2 | 3.53 | |||
0.48/1.68 | 91.5 | 3.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, Y.; Song, Z.; Sun, H.; Wen, B.; Su, J.; Ma, J.; Zhang, Y. Plateau-Adapted Single-Pump, Single-Bed Vacuum Pressure Swing Adsorption Oxygen Generation Process Simulation and Optimization. Processes 2024, 12, 1015. https://doi.org/10.3390/pr12051015
Zhang Y, Li Y, Song Z, Sun H, Wen B, Su J, Ma J, Zhang Y. Plateau-Adapted Single-Pump, Single-Bed Vacuum Pressure Swing Adsorption Oxygen Generation Process Simulation and Optimization. Processes. 2024; 12(5):1015. https://doi.org/10.3390/pr12051015
Chicago/Turabian StyleZhang, Yingying, Yanbin Li, Zhenxing Song, Hongyun Sun, Bolun Wen, Junming Su, Jun Ma, and Yanjun Zhang. 2024. "Plateau-Adapted Single-Pump, Single-Bed Vacuum Pressure Swing Adsorption Oxygen Generation Process Simulation and Optimization" Processes 12, no. 5: 1015. https://doi.org/10.3390/pr12051015
APA StyleZhang, Y., Li, Y., Song, Z., Sun, H., Wen, B., Su, J., Ma, J., & Zhang, Y. (2024). Plateau-Adapted Single-Pump, Single-Bed Vacuum Pressure Swing Adsorption Oxygen Generation Process Simulation and Optimization. Processes, 12(5), 1015. https://doi.org/10.3390/pr12051015