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Abstract: Forest fires have emerged as a significant global concern, exacerbated by both global
warming and the expanding human population. Several adverse outcomes can result from this,
including climatic shifts and greenhouse effects. The ramifications of fire incidents extend widely,
impacting human communities, financial resources, the natural environment, and global warming.
Therefore, timely fire detection is essential for quick and effective response and not to endanger
forest resources, animal life, and the human economy. This study introduces a forest fire detection
approach utilizing transfer learning with the YOLOv8 (You Only Look Once version 8) pretraining
model and the TranSDet model, which integrates an improved deep learning algorithm. Transfer
Learning based on pre-trained YoloV8 enhances a fast and accurate object detection aggregate with
the TranSDet structure to detect small fires. Furthermore, to train the model, we collected 5200 images
and performed augmentation techniques for data, such as rotation, scaling, and changing due and
saturation. Small fires can be detected from a distance by our suggested model both during the
day and at night. Objects with similarities can lead to false predictions. However, the dataset
augmentation technique reduces the feasibility. The experimental results prove that our proposed
model can successfully achieve 98% accuracy to minimize catastrophic incidents. In recent years, the
advancement of deep learning techniques has enhanced safety and secure environments. Lastly, we
conducted a comparative analysis of our method’s performance based on widely used evaluation
metrics to validate the achieved results.

Keywords: forest fire; fire detection; YOLOv8; deep learning; TranSDet; wildfire incidents;
brushfire spread

1. Introduction

Forest fires are catastrophic events that result in widespread economic, ecological,
and environmental damage all over the world. High temperatures can ignite dry fuels,
such as sawdust, leaves, and lightning, or they can be sparked by human activities, such
as unextinguished fires, arson, or improperly burned debris [1]. Between 2002 and 2016,
an estimated 4,225,000 km3 of forest burned by fire [2]. Forest fires can arise from both
natural phenomena and human activities. Natural causes include factors such as heat, dry
weather, lightning strikes, volcanic eruptions, coal-seam fires, and smoking. On the other
hand, human-induced causes encompass activities like cooking, accidental ignition, and
deliberate fire lighting. Either natural or human-created fires have a severe impact on wild
as well as human life. Human activity contributes 90%, and lightning provides the rest of
the 10% of forest fire sources [3]. Both people and wildlife are affected by wildfire toxic
gases in the troposphere [4].
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Forest fires were previously identified by watchtowers, which are ineffective, and
human surveillance is expensive [4,5]. Implementing automation offers a significantly
improved and more precise approach to forest fire detection. Additionally, weather condi-
tions, rainy days, and high temperatures constrain the fire detection process. Therefore, a
real-time fire detection technique is much better and has a low cost [6].

To prevent expanding fire, commonly there are two methods used, and are vision-
based fire detection (VFDs) and sensors that exhibit sensitivity to sound, flames, temper-
ature, gases, or solid materials [7]. Sensors trigger chemical characteristics of smoke and
the variance of the environment. Once smoke is in the range, the sensor alarm turns on. In
certain scenarios, sensor-based detection systems [8] may not be feasible, particularly in
expansive coverage areas, forested regions, and environments with elevated temperatures,
as they may generate numerous false alarms [9]. Moreover, the operational range of sensors
is constrained [10], leading to a reduced lifespan.

The inception of object detection leveraging AI (artificial intelligence) traces back to
1986 [11]. Nonetheless, the substantive contributions of AI and machine learning models
were hindered during that period due to technological constraints. Furthermore, the
introduction of Facebook and Google big data forced deep learning (DL) models to have
technical advantages. Parceptron was the first stepping stone towards deep learning. Time-
different deep learning techniques, such as Alexnet [12], VGG16 [13], Faster R-CNN [14],
Detectron2 [15], and YOLOv1 [16], were introduced by the need for scaling tasks, speed,
and so on. In this study, the following problems were identified in detecting forest fires.

1. Collection and labeling images of forest fires pose significant challenges, primar-
ily attributed to the absence of readily available open-access datasets containing
fire images.

2. Given the absence of standardized shapes or sizes of fires, detecting objects of varying
dimensions in real-time poses a considerable challenge, particularly in achieving high
levels of accuracy.

3. Fire and fire-like object detection as fire is a real problem in forest fire identification
and classification.

The integration of artificial intelligence (AI) with mathematical models for fire detec-
tion and prediction has been a burgeoning area of research. In [17–19], researchers provide
a comprehensive overview of various machine-learning techniques applied to fire detection
and prediction. It discusses the integration of AI algorithms with mathematical models
for more accurate predictions. These papers explore the application of deep learning tech-
niques, such as convolutional neural networks (CNNs) and recurrent neural networks
(RNNs), for wildfire detection and prediction. They discuss how these AI methods can be
integrated with mathematical models to improve prediction accuracy [20,21].

Some papers discuss wildfire probability modeling and resilience in wildland fire
management, exploring wildfire risk assessment methodologies and resilience planning
strategies [22]. The mentioned approaches introduced probabilistic risk modeling, scenario
analysis, and community-based resilience planning. It also provides case studies illustrating
the application of these methods in wildfire-prone regions. Scientists also present an
integrated modeling framework that combines wildfire probability modeling with resilience
assessment. It discusses how environmental factors, land use patterns, and social dynamics
influence both wildfire occurrence and community resilience [23,24].

This paper is organized into the following sections: Section 2 presents an overview
of the relevant literature. Section 3 details our dataset and explains our proposed fire
detection method. Section 4 provides a comprehensive examination of experimental results,
accompanied by a detailed analysis of performance, and Section 5 discusses limitations
and outlines future work. In the end, Section 6 provides the findings and final summaries
to overcome challenges.
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2. Literature Review

Forest flame recognition techniques generally fall into the following two main cate-
gories: artificial intelligence/computer vision approaches and sensor-based techniques.
There are some limitations to the sensor-based method. To overcome these limitations, we
upgraded the deep learning method based on transfer learning on pre-trained Yolov8 and
TranSDet. CNNs [25–29] (convolutional neural networks) and DNN (deep neural network)
are the most popular methods in the field of object detection. As sensor-based systems have
some limitations and object detection techniques cover these limitations, deep learning has
gained more popularity [30,31].

2.1. Detection of Forest Fires Utilizing Machine Learning and Deep Learning Methodologies

With AI advancing day by day, numerous research techniques have been innovated
in the field of deep learning on fire detection. Among all deep learning models, CNNs
commonly use techniques in computer vision. Toulouse et al. [32] proposed a system to
recognize geometrical observation of flame based on length and position. The model’s
foundation is the classification of pixels based on the non-refractory pictures’ average
intensity. Jian et al. [33] upgraded the model with a boundary detection operator with
multistep operation. However, the model only obtains better performance in simple and
stable fire and flame images. For the first time in the history of deep learning, using a
combination of foreground and background color frames, Turgay [34] generated a real-time
fire detector. Though the model produced better output for fire images only, for fire-like
images, and in the presence of smoke and shadow, the model was outperformed. With the
improvement in deep learning, LDS is capable of identifying dynamic smoke and flame
textures [35].

With technological improvement, researchers introduced the YOLOFM algorithm
based on YOLOv5n approach to classifying small objects, which makes forest fire detection
more accurate [36]. Furthermore, in [37–41], more improved fire detection techniques were
innovated. To improve fire detection precision accuracy, a DL-based approach named
DTA (Detection and Temporal Accusations) was proposed in [42]. It tries to identify a
person by imitating the identification process. This model increases the accuracy of flame
identification while accurately interpreting the temporal SRoF characteristics. The authors
of [43] designed an early flame recognition technique using a lightweight CNN.

2.2. Detection of Forest Fires Utilizing YOLO and Transformers Methodologies

In [44], the Yolov3 network was employed for small-scale object classification. This
model leverages the K-means clustering technique to distinguish flames. In [45], the authors
introduce a fire depth separable convolution to mitigate the computational costs of the
method and enhance the perceptual feature layer using the cavity convolution method.
Furthermore, in [46], the authors propose ELASTIC-YOLOv3 as an enhancement over
YOLOv2 to enhance performance without increasing the number of parameters. Initially,
fire detection algorithms encountered challenges, such as high light intensity, limited color
information, and variations in flame shapes and sizes, which prompted the development
of enhanced technologies for real-time flame classification and recognition, manifested in
modulated YOLO networks (v4, v5, v6, v7, v8) as introduced in [47–53].

Far object detection using a deep learning model did not perform well before introduc-
ing transformer learning. Transformer-based learning shows superior object prediction per-
formance in various advanced vision areas, including image/video analyzing [54], image
super-resolution [55], object recognition [56], segmentation [57], and ViT [58] (image classi-
fication). This advancement is facilitated through the utilization of Vision Transformer [59],
DeiT [60] (Data-Efficient Image Transformers), and MedT [61] (Medical Transformers).
Vision Transformer (ViT) is a deep learning model that applies the transformer architecture,
originally designed for sequence processing tasks like natural language processing, to
image data. Instead of using convolutional layers like traditional convolutional neural
networks (CNNs), ViT represents images as sequences of patches, which are then processed
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by a transformer encoder. ViT divides the input image into fixed-size, non-overlapping
patches and flattens them into sequences, which are then fed into the transformer en-
coder. By leveraging self-attention mechanisms, ViT captures long-range dependencies
within the image and learns representations that are effective for image classification tasks.
Data-Efficient Image Transformers (DeiT) is a variant of ViT designed to achieve better per-
formance with smaller amounts of labeled training data. DeiT introduces techniques such
as distillation, where a larger pre-trained model (teacher model) is used to distill knowl-
edge into a smaller student model. Medical Transformers (MedT) are transformer-based
models specifically tailored for medical imaging tasks. These models adapt the transformer
architecture to handle medical image data, which often differ from natural images due
to factors like different modalities (e.g., MRI, CT scans) and specialized structures (e.g.,
anatomical features). MedT models are trained in medical imaging datasets and learn to
perform tasks, such as image classification, segmentation, and detection, within the medical
domain. By leveraging the power of transformers, MedT models can capture complex
patterns and relationships in medical images, leading to improved performance in various
medical image analysis tasks [62–64].

3. Proposed Method and Model Architecture
3.1. Forest Fire Dataset

For the model to be trained, the first task begins with collecting a diverse range of
datasets. We collected fire images and videos from the internet. Due to a wide range of
datasets helping to generalize the model, our obtained images collected distinct angles,
focal lengths, and brightening conditions. Additionally, on the internet, there are some
popular platforms such as Roboflow, Bing, Flickr images, and Kaggle to arrange images. To
achieve more accurate results, we divided our dataset into two classes: fire and non-fire
images. To train our dataset, we standardized the dimensions of all images by resizing them
to the same height and width, thus minimizing potential errors. Our dataset comprised
7000 images captured during both the daytime and nighttime, which were subsequently
compressed, as shown in Table 1.

Table 1. Images of the forest fire scenes from the custom dataset.

Dataset Google, Bing, Kaggle, Flickr Images Video Frames Total

Forest Fire Images 4136 2864 7000

After collecting the dataset, we applied custom image pre-processing, dropped 1000 im-
ages from the dataset and left 6000 images. Figure 1 shows how we increased our dataset by
rotating each image at 90◦ angles to 270◦ using a computer vision algorithm. After applying
the augmentation technique, our dataset increased four times, and the total number of
images extended to 24,000 images. Our dataset is divided as follows: 70% for training
images, 10% for test images, and 20% for validation images, as shown in Table 2.
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Table 2. Distribution of flame frames within the dataset.

Dataset Training Images Testing Images Validation Images Total

Fire 11,760 1680 3360 16,800

Non-Fire 5040 720 1440 7200

Scheme 1 shows the convergence of image sizes where x and y are the new image
dimensions. P is the input image matrix, and using the multiplication of the angle, the
expected image rotation takes place.
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After completing image augmentation, we labeled our images into two classes: fire
and non-fire. According to image annotation, a JSON file was created for each image.
Earlier in this section, we mentioned that we resized all the images to overcome unexpected
errors. In our dataset, we resized our images to 512 × 512 using OpenCV2, as shown in
Figure 2.
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3.2. Model Selection

YOLOv8 is the latest edition of the CNN dynamic object model with high accuracy in
real-time. The entire image region is processed by a single neural network, after which it
is divided into multiple components, and the potential bounding boxes and probability
estimates are estimated for each component. The YOLOv8 network is the continuous
improvement of YOLOv1 to YOLOv7. The YOLO model has a backbone that is a series
of convolution layers pulling the pixels down at the different resolution sizes, and these
features pass through a neck where they are pulled together and put into a head, which
leads to an object detection process base loss matrix. The YOLOv8 model architecture is
shown in Figure 3.
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Figure 3. (a,b) are the overall architecture of the YOLOv8 model.

As shown in Figure 3, YOLOv8 is an anchor-free model. Instead of predicting the offset
of an anchor box, it predicts the center of an object directly. With anchor-free detection,
fewer box predictions are made, which speeds up Non-Maximum Suppression (NMS),
which is a post-processing step used to sift through candidate detections. YOLOv8 uses
RasNet as its head. The final detection stage used C2F; here, f is the number of features.
CBS block consists of convolution, batch norm, and silu function. The final detection stage
uses anchor boxes to show the probability of object detection.

The YOLOv8 network contains five different models. YOLOv8n is a good solution for
mobile phone applications. YOLOv8s (small model) is compatible with the CPU. YOLOv8m
is a medium-sized model that has 25.9 million parameters, which are balanced between
speed and accuracy. YOLOv8l has 43.7 million parameters, and this model works best with
numerous databases and training. Out of the five models, YOLOv8x is the largest and has
the highest mean average precision; nevertheless, it performs slower than YOLOv8l. The
relation between YOLOv8n and YOLOv8x is shown in Table 3.

Table 3. Relation between the YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x model [65].

Network Size
(Pixels)

aMPval

(50–95)
Speed

CPU (ms)
Speed T4
GPU (ms) Params (M) Flops (B)

YOLOv8n 640 37.3 - - 3.2 8.7

YOLOv8s 640 44.9 - - 11.2 28.6

YOLOv8m 640 50.2 - - 25.9 78.9

YOLOv8l 640 52.9 - - 43.7 165.2

YOLOv8x 640 53.9 - - 68.2 257.8
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3.3. Proposed Forest Fire Model

In this subsection, we elaborate on the methodologies employed in computer vision
for forest detection, focusing on deep learning approaches, transfer learning techniques,
and the aggregation of models.

3.3.1. Transfer Learning

Deep learning algorithms learn features from data, which provide additional support
to a deep learning model to detect objects more accurately and fast. However, collecting
data is expensive, may not be available, and annotation is a tedious task with high costs.
Transfer learning allows one to learn from features and transfer model weight to another
model for further learning.

First, we review traditional methods of object detection for transfer learning [66]. This
paper proposes using the YOLO pre-trained weights and transfer learning features. As
we mentioned earlier, we used 24,000 forest fire images in our dataset, and for the train,
16,800 images were used. We used the default YOLOv8 in all five models to train our
dataset and show the result after 50,000 iterations in Table 4. In addition, image hue 0.1,
saturation 1.5, and exposure 1.5 were used.

Table 4. Pre-trained weights obtained using a limited dataset.

Models Input Size
Training
Accuracy

(AP50)

Testing
Accuracy

(AP50)

Weight
Size

Iteration
Number

Training
Time

YOLOv8n

512 × 512

83.8% 81.8%

186 MB 50,000

27 h

YOLOv8s 84.1% 82.9% 34 h

YOLOv8m 86.4% 84.8% 38 h

YOLOv8l 91.7% 90.7% 43 h

YOLOv8x 87.1% 85.5% 48 h

Table 4 shows the results obtained for the training and testing accuracies with different
indicators. YOLOv8l showed the highest training and test accuracy of 91.7% and 90.7%
in 43 h, respectively. The following results were obtained from YOLOv8x with 87.1% and
85.5% accuracy. YOLOv8m and YOLOv8s had 86.4% and 84.1% training accuracy and
84.8% and 82.9% testing accuracy, respectively. YOLOv8n showed the lowest training
accuracy at 83.8%; on the other hand, 81.8% was the testing accuracy with 27 h of training
time. Moreover, our fire detection approach using YOLOv8 showed better accuracy with
large-size forest fire detection but was not efficient with small-size forest fires. Images of
forest fires, small-scale fires, and no fires may all be distinguished with the human eye.
For deep learning, the method needs more information to improve prediction accuracy.
Figure 4 shows the overall fire detection using the YOLOv8 object detection model. Here,
the model shows insufficient accuracy in terms of small images but is compatible with
large-size forest fire detection.
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3.3.2. Detect Small-Size Image

From the previous section, detecting small fire images has some limitations in our
model. To solve the accuracy factor, we drove forward the concept of the TranSDet [67]
model. This model proposes a meta-learning-based dynamic resolution adaption transfer
learning (DRAT) schema to adapt the pre-trained general model to detect small objects. The
model includes an additional stage on the pre-trained model using DRAT and then transfers
the model modified for the intended database. The pre-trained model only generates
training on small objects, and to generalize for small objects, the data augmentation (resizing
the input images to small images) technique is used to train the model. Fine-tune follow-up
is used after the augmentation technique. Figure 5 shows the TranSDet architecture.
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TranSDet model directly transfers conventional stage 1 and stage 3 pre-trained models
using fine-tuning and implementing the dynamic resolution adaptation technique. Stage 2
adopts the pre-trained model to improve transfer learning to detect small objects.

θ = arg
min

θ
E
Ri

L(D, Ri, M) (1)

Here, R is a set of resolutions, and M is the model, and θ pre is the weight to generalize
the dataset. In the equation, D represents the database, and L stands for the loss function. To
address the meta-learning problem, we employed the widely used MAML (Model Agnostic
Meta-Learning) model [68].

θ′i = θ − α∇θ LRi (M(θ; Xi)) (2)

θnew = θ − β∇θ ∑
Ri

LRi (M
(
θ′i ; Xi

)
) (3)

Here, Equation (2) θ′i is updated by θ, Xi is the mini batch of images, Ri is the resolution
of set R and α is the step size. From Equation (2), DRAT performs an inner update. In
Equation (3), θ new is the next iteration. When the model is complete, the final epoch of the
model training is complete.

After understanding the mathematical equation, we started building the model and
obtained the final output, as shown in Figure 6. After implementing the TranSDet model,
we obtained a maximum accuracy of 95%.
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3.3.3. Model Aggregation

Model aggregation in deep learning refers back to the method of combining the
predictions or outputs of a couple of common neural networks to make a final prediction or
choice. This technique is regularly used to enhance the overall performance and robustness
of gadget learning. There are several techniques for model aggregation, such as boosting,
bagging, stacking, averaging, voting, and so on. Our proposed model used the boosting
technique (the amalgamation of multiple weak models, each exhibiting slightly superior
performance to random guessing, culminating in the formation of a robust learner).

Boosting is an ensemble learning technique that merges multiple weak learners, often
decision trees, to construct a formidable learner. Its fundamental concept revolves around
assigning greater weight to misclassified instances from the preceding iteration, which
helps the ensemble focus on the difficult instances. The equations involved in boosting
include the following:

The weighted error (ε_t) for the t-th weak learner is calculated as follows:

ε_t = Sum of weights of misclassified examples/Total weight of all examples.
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The weight (α_t) for the t-th weak learner is calculated as follows:

α_t = 0.5 * ln((1 − ε_t)/ε_t)

The weights are updated based on whether they are correctly or incorrectly classified
by the t-th weak learner:

If correctly classified: w_i_(t + 1) = w_i_t * eˆ(−α_t)

If misclassified: w_i_(t + 1) = w_i_t * eˆ(α_t)

The final prediction is a weighted combination of the weak learners’ outputs as follows:
Final Prediction = Sign(Σ(α_t * Output of Weak Learner_t)).

These equations are used iteratively in boosting algorithms like AdaBoost and Gradi-
ent Boosting to create a strong ensemble model from weak learners.

Figure 7 shows our proposed simple model diagram. As mentioned earlier, we
prepared our dataset and used YOLOv8l pre-train model transfer model learning and
TranSDet model learning transfer and aggregated both modes to detect small and large
forest fires using the boosting technique.
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After applying the boosting method to our dataset, the accuracy increased to 97% and
a small fire to 96%, respectively. Furthermore, the inclusion of fire-like images enhanced
our model’s accuracy, as shown in Figure 8. Finally, our proposed model was implemented
on Raspberry PI 3B+, as shown in Figure 9. The suggested approach employed two
different models and used the transfer learning technique, and the model achieved 97%
accuracy performance.
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Operation system: Linux 

Figure 8. Prediction after implementing boosting technique on the YOLOv8l and TranSDet model.
The first row displays the result of detecting a small fire, the second row shows the fire-like image
level to represent no fire, and the third row shows the detection of a large fire.
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Figure 9. Characteristics of Raspberry Pi 3B+ [12].

To evaluate the performance of our suggested model, we juxtapose it with an estab-
lished model in Table 5. However, the Results and Discussion sections show an explanation
of these observations in detail.

Table 5. Comparison between different models.

Features YOLOv8l TranSDet Our Method (Model
Aggregation)

Test speed/s 2 s 2.3 s 4.5 s

Real-time
implementation Possible Possible Possible

Small object
detection

Possible (but not
sufficient)

possible(shows better
output)

Possible (highly
accurate)

Algorithm Selective search Selective search Selective search

4. Results and Discussions from the Experimentations
Test with Fire and Non-Fire Image

We evaluated our model implementing the Visual Studio code on our MSI GS66
laptop (MSI, Taipei, Taiwan), equipped with a CPU speed of 5.3 GHz, 64 GB of RAM, and
6 GPUs. In the previous section, we discussed and implemented our proposed model
and aggregated the YOLOv8l and TranSDet models. In this subsection, we review and
discuss our model’s advantages and drawbacks. Traditionally, the YOLO model is known
for real-time fire detection with high accuracy. However, when we applied the model to our
custom dataset, small fire images were provided with insufficient accuracy. To improve our
model, we applied another model called TranSDet, which provides a high accuracy of up
to 96%. In our proposed model, the boosting technique was used to aggregate both models,
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and our model provided accuracy of up to 97% and 96% with large and small forest fires,
respectively, as shown in Figures 10 and 11.
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Figure 12 shows the training and testing accuracy with loss throughout passing the
epoch to train the model. At the beginning of training, our model loss was at its maximum
at 0.5. However, after completing the model training process, the loss was minimal at 0.11.
On the other hand, for initial testing, it was 0.9, and at the very end, it was 0.1. As we
mentioned earlier, for training accuracy, the model reached 96.7% training accuracy and a
testing accuracy of 97%.
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In this section, the compression of our proposed approach is discussed utilizing
various parameters and models. Our model was developed in three stages. First, we used
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pre-train YOLOv8l and then the TranSDet model to detect small forest fires, and we reached
97% accuracy. F-measures (FM) were employed to compute the weighted average, which
balances precision and recall. The true-positive and false-negative rates were taken into
consideration when calculating this score. In order to detect an object, the FM parameter
was most commonly used since measuring the accuracy rate was difficult. True positives
and false negatives were more effective in a detection model with identical weights. If true
positives and false negatives differ, precision and recall need to be taken into account. True
positive observations are measured by precision.

Recall, on the other hand, is the ratio of false positives to true positives, as described
in previous studies [69,70]. Our developed system had a precision of 97% and a false
detection rate of 0.7%. As shown in Equations (4) and (5), our proposed model had an
average precision and recall rate of 97% and 3%, respectively. TP refers to the accurate
detection of a forest fire, while FP refers to a false negative detection (Figure 13).
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Equation (6) shows the relation between precision and recall.

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

FM =
2 × precision × recall

precision + recall
(6)

Forest fire detection is a complex task in the field of deep learning to achieve high
accuracy. Table 6 shows recently published fire detection models with precision, recall,
and FM. Here, our model reached the highest precision, recall, and FM with 97%, 96.1%,
and 96.5, respectively. This was followed by VGG16 and RsNet with a precision of 92.5%
and 90.8%, recall of 82.9% and 98.6%, and finally 90.8% and 90.2%, respectively. However,
AlexNet was the poorest in terms of precision, recall, and FM at 73.3%, 61.3%, and 75.1%,
respectively (Figure 14).
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Table 6. Numerical outcomes for the detection of fire.

Algorithm P (%) R (%) FM (%) Average (%)

VGG16 92.5 82.9 90.8 90.6

VGG19 93.1 84.5 91.7 91.5

Faster R-CNN [55] 81.7 94.5 87.2 97.8

ResNet [56] 90.8 89.6 90.2 90.3

AlexNet 73.3 61.3 75.1 79.9

Our Method 97 96.1 96.3 96.5
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5. Discussion

As stated in Table 6, the categorization of a model as good or bad is contingent
upon specific criteria rather than its overall performance. Furthermore, a model shows
high accuracy in some specific tasks, but depending on the complexity model can have
some limitations. Our proposed model has a couple of limitations. First, our dataset
did not include smoke images. Therefore, if only smoke was visible at the initial stage
of the forest fire, the model did not detect this as fire. Next, occasionally, the model
considered sun and electric light as forest fires when testing the method in various scenes.
In the future, we intend to enhance the developed system by incorporating a database
encompassing additional classes from diverse environments pertinent to this challenge [71].
Our methodology involved utilizing extensive datasets, like JFT-300M [72], comprising
300 million annotated images.

Despite the aforementioned challenges, the main contributions of this study are
as follows:

1. The pre-trained YOLOv8 model and transferring the learning can detect large-size
forest fires. The YOLOv8 algorithm is known for its speed and ability to perform
object detection in real-time.

2. To detect small-size fires, the TranSDet model and transfer learning approaches can
be applied. Utilizing deep learning to acquire fire-specific features, the presented
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methodology has the potential to mitigate the prevalent issue of false alarms in
conventional fire detection methods. Such an advancement stands to not only prevent
unwarranted emergency responses but also to alleviate the financial burden attributed
to false alarms.

3. Both models can be aggregated with boosting techniques to detect forest fires. The
goal of this research was to apply deep learning models in the field of forest fire
prevention. Early detection with high accuracy is beneficial for environmental safety.

4. In contrast to alternative approaches that rely on limited datasets, our method lever-
ages a substantial dataset encompassing fire, fire-like, and standard scenes. This
dataset comprises authentic imagery and videos sourced from diverse origins, thereby
encapsulating a broad spectrum of fire scenarios. These scenarios encompass both day
and night fire incidents, spanning variations in fire scale and accounting for varying
lighting conditions, including low-light and high-light environments.

Future efforts will aim to overcome the model’s limitation of yielding a high number of
false positives, particularly in challenging scenarios like low-altitude cloud cover and haze.
Enhancements could involve integrating historical fire record data on fire location, date, and
weather conditions, as fires often occur in similar contexts during specific months, thereby
improving prediction accuracy. Additionally, the current approach’s incompatibility with
edge devices presents a drawback. Nonetheless, we plan to address this issue in upcoming
research by optimizing the model size while maintaining prediction accuracy. One potential
avenue is to employ distillation techniques to train a smaller deep network, such as
YOLOv9, which is capable of achieving comparable performance to our current model,
thus making it more suitable for edge computing environments.

6. Conclusions

Day-to-day life unicorn tech companies work with big data. Aligning AI to mimic
human operations can secure human life in such a way as preventing life-threatening tasks
and better service. For object detection, numerous models have been developed based
on deep-learning CNN models. Forest fire detection using YOLOv is nothing new and
provides high accuracy. In the first proposed model, we collected the dataset and conducted
some preprocessing tasks. Our model architecture is based on three stages. First, use the
transfer technique on the YOLOv8 pre-train model to detect large-size forest fires. Next, to
detect small-size forest fires in real-time, the TranSDet model technique was transferred to
the learning of our model. Lastly, both transfers were fed learning to the boosting algorithm
to train weak learners and show high accuracy.

Several investigations have focused on enhancing forest flame identification and
classification tasks through CNN-based AI networks. Nevertheless, the potential of the
Detectron2 network remains unexplored in forest fire detection. The acquisition of ample
image data for training forest fire detection models presents challenges, often resulting in
issues such as data imbalance or overfitting, which can hinder the efficacy of the model. In
this study, we introduce a method for forest fire detection utilizing the enhanced Detectron2
model and develop a dataset to address these challenges.

After achieving 97% tested accuracy, our model was implemented in Raspberry Pi 3B+
to run on GPU mode. Furthermore, after testing our model in the variant environment,
we detected some limitations in real-time frameworks, such as no data related to smoke
frames; therefore, fume detection was not included in our model. In the future, we aim to
develop a model that can concentrate on healthcare using 3D CNN/U-Net [73–75].
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