Hydrothermal Hydrolysis of Cocoa Bean Shell to Obtain Bioactive Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Hydrothermal Hydrolysis
2.3. Analytical Methods
2.3.1. Dry Extract
2.3.2. Antioxidant Activity
2.3.3. Total Phenolics
2.3.4. Total Flavonoids
2.3.5. Condensed Tannins
2.3.6. Total Saponins
2.3.7. Catechin, Epicatechin and Methylxanthines
2.4. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Capacity and TPC
3.2. Flavonoids, Flavanols and Tannins
3.3. Saponins
3.4. Methylxanthines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez, M.; Laca, A.; Laca, A.; Díaz, M. Value-added Products from Fruit and Vegetable Wastes: A Review. CLEAN—Soil Air Water 2021, 49, 2000376. [Google Scholar] [CrossRef]
- Sánchez, M.; Laca, A.; Laca, A.; Díaz, M. Cocoa Bean Shell: A By-Product with High Potential for Nutritional and Biotechnological Applications. Antioxidants 2023, 12, 1028. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Laca, A.; Laca, A.; Díaz, M. Cocoa Bean Shell as Promising Feedstock for the Production of Poly(3-Hydroxybutyrate) (PHB). Appl. Sci. 2023, 13, 975. [Google Scholar] [CrossRef]
- Mellinas, A.C.; Jiménez, A.; Garrigós, M.C. Optimization of Microwave-Assisted Extraction of Cocoa Bean Shell Waste and Evaluation of Its Antioxidant, Physicochemical and Functional Properties. LWT 2020, 127, 109361. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Rojo-poveda, O.; Barbosa-pereira, L.; Zeppa, G.; St, C. Cocoa Bean Shell—A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients 2020, 12, 1123. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Santos, P.; Genisheva, Z.; Pereira, R.N.; Teixeira, J.A.; Rocha, C. Moderate Electric Fields as a Potential Tool for Sustainable Recovery of Phenolic Compounds from Pinus Pinaster Bark. ACS Sustain. Chem. Eng. 2019, 7, 8816–8826. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, Y.; Xu, Y. Understanding and Technological Approach of Acid Hydrolysis Processing for Lignocellulose Biorefinery: Panorama and Perspectives. Biomass Bioenergy 2024, 183, 107133. [Google Scholar] [CrossRef]
- Sánchez, M.; Laca, A.; Laca, A.; Díaz, M. Towards Food Circular Economy: Hydrothermal Treatment of Mixed Vegetable and Fruit Wastes to Obtain Fermentable Sugars and Bioactive Compounds. Environ. Sci. Pollut. Res. 2022, 30, 3901–3917. [Google Scholar] [CrossRef] [PubMed]
- Seke, F.; Manhivi, V.E.; Shoko, T.; Slabbert, R.M.; Sultanbawa, Y.; Sivakumar, D. Extraction Optimisation, Hydrolysis, Antioxidant Properties and Bioaccessibility of Phenolic Compounds in Natal Plum Fruit (Carissa macrocarpa). Food Biosci. 2021, 44, 101425. [Google Scholar] [CrossRef]
- Mashuni; Hamid, F.H.; Muzuni; Kadidae, L.O.; Jahiding, M.; Ahmad, L.O.; Saputra, D. The Determination of Total Phenolic Content of Cocoa Pod Husk Based on Microwave-Assisted Extraction Method. AIP Conf. Proc. 2020, 1, 2243. [Google Scholar] [CrossRef]
- Sanchez, M.; Ferreira-Santos, P.; Gomes-Dias, J.S.; Laca, A.; Rocha, C.M.R. Ohmic Heating-Based Extraction of Biocompounds from Cocoa Bean Shell. Food Biosci. 2023, 54, 102886. [Google Scholar] [CrossRef]
- Benítez-Correa, E.; Bastías-Montes, J.M.; Acuña-Nelson, S.; Muñoz-Fariña, O. Effect of Choline Chloride-Based Deep Eutectic Solvents on Polyphenols Extraction from Cocoa (Theobroma cacao L.) Bean Shells and Antioxidant Activity of Extracts. Curr. Res. Food Sci. 2023, 7, 100614. [Google Scholar] [CrossRef]
- Botella-Martínez, C.; Lucas-Gonzalez, R.; Ballester-Costa, C.; Pérez-álvarez, J.Á.; Fernández-López, J.; Delgado-Ospina, J.; Chaves-López, C.; Viuda-Martos, M. Ghanaian Cocoa (Theobroma cacao L.) Bean Shells Coproducts: Effect of Particle Size on Chemical Composition, Bioactive Compound Content and Antioxidant Activity. Agronomy 2021, 11, 401. [Google Scholar] [CrossRef]
- Đurović, S.; Nikolić, B.; Luković, N.; Jovanović, J.; Stefanović, A.; Šekuljica, N.; Mijin, D.; Knežević-Jugović, Z. The Impact of High-Power Ultrasound and Microwave on the Phenolic Acid Profile and Antioxidant Activity of the Extract from Yellow Soybean Seeds. Ind. Crops Prod. 2018, 122, 223–231. [Google Scholar] [CrossRef]
- Grillo, G.; Boffa, L.; Binello, A.; Mantegna, S.; Cravotto, G.; Chemat, F.; Dizhbite, T.; Lauberte, L.; Telysheva, G. Cocoa Bean Shell Waste Valorisation; Extraction from Lab to Pilot-Scale Cavitational Reactors. Food Res. Int. 2019, 115, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, Technological and in Vitro Antioxidant Properties of Cocoa (Theobroma cacao L.) Co-Products. Food Res. Int. 2012, 49, 39–45. [Google Scholar] [CrossRef]
- Li, W.; Yang, R.; Ying, D.; Yu, J.; Sanguansri, L.; Augustin, M.A. Analysis of Polyphenols in Apple Pomace: A Comparative Study of Different Extraction and Hydrolysis Procedures. Ind. Crops Prod. 2020, 147, 112250. [Google Scholar] [CrossRef]
- do Nascimento, R.D.P.; Moya, A.M.T.M.; da Fonseca Machado, A.P.; Geraldi, M.V.; Diez-Echave, P.; Vezza, T.; Galvez, J.; Cazarin, C.B.B.; Maróstica Junior, M.R. Review on the Potential Application of Non-Phenolic Compounds from Native Latin American Food Byproducts in Inflammatory Bowel Diseases. Food Res. Int. 2021, 139, 109796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Zeng, L.; Bo, H.; Hardie, W.J. Sulphite-Corrected, Non-Phenolic and Phenolic Antioxidant Capacities of Fruit Wines Profiled by Differential Folin-Ciocalteu Assay. Int. J. Food Sci. Technol. 2022, 57, 1259–1272. [Google Scholar] [CrossRef]
- Hernández-Hernández, C.; Viera-Alcaide, I.; Morales-Sillero, A.M.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Bioactive Compounds in Mexican Genotypes of Cocoa Cotyledon and Husk. Food Chem. 2018, 240, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Mokrani, A.; Madani, K. Effect of Solvent, Time and Temperature on the Extraction of Phenolic Compounds and Antioxidant Capacity of Peach (Prunus persica L.) Fuit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Segovia, Á.; Bartolomé, B.; Aguilera, Y.; Martín-Cabrejas, M.A. Extraction of Phenolic Compounds from Cocoa Shell: Modeling Using Response Surface Methodology and Artificial Neural Networks. Sep. Purif. Technol. 2021, 270, 118779. [Google Scholar] [CrossRef]
- Devi, P.; Singh, S.; Sangwan, S.; Moond, M. Effect of pH on Phytochemical and Antioxidant Potential of Satawar Tubers (Asparagus Racemosus Willd.). J. Antioxid. Act. 2021, 2, 42–50. [Google Scholar] [CrossRef]
- Okiyama, D.C.G.; Soares, I.D.; Cuevas, M.S.; Crevelin, E.J.; Moraes, L.A.B.; Melo, M.P.; Oliveira, A.L.; Rodrigues, C.E.C. Pressurized Liquid Extraction of Flavanols and Alkaloids from Cocoa Bean Shell Using Ethanol as Solvent. Food Res. Int. 2018, 114, 20–29. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the Extraction Method on the Recovery of Bioactive Phenolic Compounds from Food Industry By-Products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Poveda, O.; Zeppa, G.; Ferrocino, I.; Stévigny, C.; Barbosa-Pereira, L. Chemometric Classification of Cocoa Bean Shells Based on Their Polyphenolic Profile Determined by Rp-Hplc-Pda Analysis and Spectrophotometric Assays. Antioxidants 2021, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Ospina, J.; Lucas-González, R.; Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.Á.; Martuscelli, M.; Chaves-López, C. Bioactive Compounds and Techno-Functional Properties of High-Fiber Co-Products of the Cacao Agro-Industrial Chain. Heliyon 2021, 7, e06799. [Google Scholar] [CrossRef] [PubMed]
- Cinar, Z.Ö.; Atanassova, M.; Tumer, T.B.; Caruso, G.; Antika, G.; Sharma, S.; Sharifi-Rad, J.; Pezzani, R. Cocoa and Cocoa Bean Shells Role in Human Health: An Updated Review. J. Food Compos. Anal. 2021, 103, 104115. [Google Scholar] [CrossRef]
- Dos Anjos, S.M.; Martins, M.V.; de Souza, V.B.; Tulini, F.L. Evaluation of the Nutritional Composition of Cocoa Bean Shell Waste (Theobroma cacao) and Application in the Production of a Phenolic-Rich Iced Tea. J. Culin. Sci. Technol. 2021, 21, 818–828. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Golding, J.B.; Stathopoulos, C.E.; Roach, P.D. Effects of Aqueous Brewing Solution PH on the Extraction of the Major Green Tea Constituents. Food Res. Int. 2013, 53, 713–719. [Google Scholar] [CrossRef]
- Zeng, L.; Ma, M.; Li, C.; Luo, L. Stability of Tea Polyphenols Solution with Different PH at Different Temperatures. Int. J. Food Prop. 2017, 20, 983605. [Google Scholar] [CrossRef]
- Kurimilla, D.; Vangalapati, M.; Myneni, V.R. Extraction of Catechins from Aegle Marmelos Fruit Pulp: Statistical Optimization Using Response Surface Methodology and Artificial Neural Networks. Int. J. Chem. Eng. 2022, 2022, 4933015. [Google Scholar] [CrossRef]
- Kovač, M.; Šubarić, D.; Jozinović, A.; Babić, J.; Bekavac, J.; Jokić, S.; Barišić, V.; Ačkar, Đ.; Miličević, B. Application of Coca Bean Shell Extracts in the Production of Corn Snack Products. Food Health Dis. 2021, 10, 69–76. [Google Scholar]
- Barišić, V.; Petrović, J.; Lončarević, I.; Flanjak, I.; Šubarić, D.; Babić, J.; Miličević, B.; Doko, K.; Blažić, M.; Ačkar, Ð. Physical Properties of Chocolates Enriched with Untreated Cocoa Bean Shells and Cocoa Bean Shells Treated with High-Voltage Electrical Discharge. Sustainability 2021, 13, 2620. [Google Scholar] [CrossRef]
- Younes, A.; Li, M.; Karboune, S. Cocoa Bean Shells: A Review into the Chemical Profile, the Bioactivity and the Biotransformation to Enhance Their Potential Applications in Foods. Crit. Rev. Food Sci. Nutr. 2023, 63, 9111–9135. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Tran, T.G.; Tran, N. Le Phytochemical Compound Yield and Antioxidant Activity of Cocoa Pod Husk (Theobroma cacao L.) as Influenced by Different Dehydration Conditions. Dry. Technol. 2022, 40, 2021–2033. [Google Scholar] [CrossRef]
- Kayaputri, I.L.; Djali, M.; Sukri, N.; Fazaryasti, R.H. The Antimicrobial Effectiveness of Cacao Shell and Cacao Husk Combination on Inhibition of Pathogenic Bacteria in Food Products. IOP Conf. Ser. Earth Environ. Sci. 2020, 443, 012077. [Google Scholar] [CrossRef]
- Abulude, F.O.; Ogunkoya, M.O.; Adenibuyan, G.B.; Mabinuola, K. Phytochemical Assessment of The Extracts of Stem (Bark) and Leaves of Theobroma cocoa Materials: Experimental Procedure and Its Comparison to Literature. J. Sci. Eng. Mater. 2022, 1, 85–92. [Google Scholar]
- Ajiboso, S. Detection and Distribution of Some Phytochemicals in Theobroma cacao Tree. Chem. Biol. Pharm. Chem. 2022, 5, 1–5. [Google Scholar] [CrossRef]
- Sioriki, E.; Lemarcq, V.; Alhakim, F.; Triharyogi, H.; Tuenter, E.; Cazin, C.S.J.; Nolan, S.P.; Pieters, L.; Van de Walle, D.; Dewettinck, K. Impact of Alkalization Conditions on the Phytochemical Content of Cocoa Powder and the Aroma of Cocoa Drinks. LWT 2021, 145, 111181. [Google Scholar] [CrossRef]
- Barreto, P.K.C.; da Silva, A.L.S.; de Jesus, R.M.; Coutinho, J.P.; Lôbo, I.P.; Santos, H.M.; de Jesus, R.M. Use of Design of Experiments to Optimize the Chromatographic Separation and Ultrasound-Assisted Extraction for Simultaneous Determination of Methylxanthines and Flavonoids in Guarana. Food Anal. Methods 2024, 1, 1490–1500. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, M.; Bernal, T.; Laca, A.; Laca, A.; Díaz, M. Hydrothermal Hydrolysis of Cocoa Bean Shell to Obtain Bioactive Compounds. Processes 2024, 12, 956. https://doi.org/10.3390/pr12050956
Sánchez M, Bernal T, Laca A, Laca A, Díaz M. Hydrothermal Hydrolysis of Cocoa Bean Shell to Obtain Bioactive Compounds. Processes. 2024; 12(5):956. https://doi.org/10.3390/pr12050956
Chicago/Turabian StyleSánchez, Marta, Tamara Bernal, Amanda Laca, Adriana Laca, and Mario Díaz. 2024. "Hydrothermal Hydrolysis of Cocoa Bean Shell to Obtain Bioactive Compounds" Processes 12, no. 5: 956. https://doi.org/10.3390/pr12050956
APA StyleSánchez, M., Bernal, T., Laca, A., Laca, A., & Díaz, M. (2024). Hydrothermal Hydrolysis of Cocoa Bean Shell to Obtain Bioactive Compounds. Processes, 12(5), 956. https://doi.org/10.3390/pr12050956