
Citation: Ou, X.; You, Z.; He, X. Local

Path Planner for Mobile Robot

Considering Future Positions of

Obstacles. Processes 2024, 12, 984.

https://doi.org/10.3390/pr12050984

Academic Editors: Gongzhuang Peng

and Shenglong Jiang

Received: 24 April 2024

Revised: 9 May 2024

Accepted: 10 May 2024

Published: 12 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Local Path Planner for Mobile Robot Considering Future
Positions of Obstacles
Xianhua Ou, Zhongnan You and Xiongxiong He *

College of Information Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
xhou@zjut.edu.cn (X.O.); youayou121@163.com (Z.Y.)
* Correspondence: hxx@zjut.edu.cn

Abstract: Local path planning is a necessary ability for mobile robot navigation, but existing planners
are not sufficiently effective at dynamic obstacle avoidance. In this article, an improved timed elastic
band (TEB) planner based on the requirements of mobile robot navigation in dynamic environments is
proposed. The dynamic obstacle velocities and TEB poses are fully integrated through two-dimensional
(2D) lidar and multi-obstacle tracking. First, background point filtering and clustering are performed
on the lidar points to obtain obstacle clusters. Then, we calculate the data association matrix of the
obstacle clusters of the current and previous frame so that the clusters can be matched. Thirdly, a Kalman
filter is adopted to track clusters and obtain the optimal estimates of their velocities. Finally, the TEB
poses and obstacle velocities are associated: we predict the obstacle position corresponding to the TEB
pose through the detected obstacle velocity and add this constraint to the corresponding TEB pose
vertex. Then, a pose sequence considering the future positions of obstacles is obtained through a graph
optimization algorithm. Compared with the original TEB, our method reduces the total running time by
22.87%, reduces the running distance by 19.23%, and increases the success rate by 21.05%. Simulations
and experiments indicate that the improved TEB enables robots to efficiently avoid dynamic obstacles
and reach the goal as quickly as possible.

Keywords: dynamic obstacle avoidance; two-dimensional lidar; Kalman filter; TEB local planner

1. Introduction

Wheeled mobile robots are increasingly used in today’s society in such forms as food
delivery robots and transportation robots. In the autonomous navigation of robots, avoiding
obstacles and safely reaching the target are the challenges they encounter, especially in the
face of dynamic obstacles, and the robot must process a large amount of environmental
information and make optimal control decisions. After the robot receives the reference path
given by the global path planner [1,2], the local path planner needs to give the robot an
optimal local path through sensors such as cameras, lidar, or ultrasonic devices so that the
mobile robot can reach the target as soon as possible while avoiding obstacles on the path.

Obstacle detection plays a key role in the navigation of mobile robots in dynamic
environments. This is the main way for mobile robots to receive obstacle motion informa-
tion. Many recent object detection algorithms are vision-based [3,4]; these need a large
amount of calculations, and vision-based object detection is greatly affected by light. Of
course, some people use low-cost sensors such as infrared sensors for detecting obstacles [5].
Although the amount of calculation is small, there is too little information, so in this article,
we weigh the pros and cons of using two-dimensional lidar to detect obstacle movement
information [6–11]. We think that for robots, the data provided by 2D lidar can basically
meet the robot’s obstacle avoidance needs because for robot obstacle avoidance, we only
need to consider obstacle detection rather than obstacle recognition.

Local planners include the dynamic window approach (DWA) and TEB. The DWA [12]
mainly samples multiple groups of velocities in the linear and angular velocity space, simu-
lates the trajectories formed by these velocities within a certain time period, evaluates these

Processes 2024, 12, 984. https://doi.org/10.3390/pr12050984 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12050984
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-5806-1047
https://doi.org/10.3390/pr12050984
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12050984?type=check_update&version=2


Processes 2024, 12, 984 2 of 16

trajectories through the evaluation function, and selects the best trajectory. Its advantage
is low computational complexity and strong real-time performance. The disadvantage is
that it easily becomes stuck in local optimal, and it is suitable only for certain robots. The
TEB [13–16] local planner’s working principle is to insert N time intervals of T seconds
between the start and target. Then, it finds the optimal pose sequence through the opti-
mization algorithm and motion instructions to drive the robot to the target. In the Robot
Operating System (ROS), TEB is an open-source package. The optimization method uses
the general graph optimization (G2O) algorithm [17].

The two classic algorithms mentioned above can basically realize the local planning
for most robots in most static environments, but these algorithms do not take the movement
information of obstacles into consideration, and they all regard obstacles as static obstacles,
which causes the planned trajectory to be only currently optimal, regardless of the future
positions of the obstacles, so the obstacle avoidance effect in a dynamic environment
is not good enough. However, robot obstacle avoidance is systematic work that not
only needs path planners [18,19] but also needs to combine obstacle perception [20,21],
robot control [22], trajectory tracking [23,24], and localization [25–27].

Therefore, on the basis of the TEB algorithm structure, we use 2D lidar to fully integrate
dynamic obstacle velocities and finally plan a collision-free trajectory considering the future
positions of obstacles. First, the robot receives a 2D point set through lidar and obtains
obstacle point clusters through operations such as coordinate transformation, background
point filtering, and obstacle point clustering. Then, a Kalman filter [28] is used to track
obstacles to obtain obstacle velocities. Afterward, the velocities of obstacles are used to
predict the future positions of the obstacles for various TEB poses; then, the robot optimizes
the trajectory by the G2O method to obtain a collision-free trajectory.

The main contributions of this manuscript are as follows:

1. A multi-obstacle velocities detection algorithm through 2D lidar and Kalman filter
is proposed.

2. An improved TEB local planner that combines the TEB poses and obstacle velocities
is designed to improve the robot’s dynamic obstacle avoidance efficiency.

3. A series of simulations and experiments are performed to verify the effectiveness of
the proposed method.

2. Related Work

Path planning in response to dynamic obstacles is an open research topic that has been
studied for decades. There are many obstacle avoidance algorithms for dynamic environments,
but many of these algorithms were initially proposed for static environments and then adapted
to dynamic environments, including artificial potential field (APF), DWA, and TEB. The
APF [29] algorithm is a typical reactive method. It uses repulsion and attraction to plan the
local trajectory of the robot. Attraction is positively correlated with the distance between the
robot and the target, while repulsion is the opposite. This algorithm has a simple structure, but
there are many defects. For example, it does not consider the kinematics of the robot, and it
can easily fall into a local optimum; moreover, the algorithm does not take the future positions
of obstacles into consideration. Methods based on velocity obstacle (VO) [30–33] are also
noteworthy reactive methods that utilize the collision region principle to detect regions where
collisions are possible for dynamic obstacle avoidance. Although these reactive methods
are effective at obstacle avoidance, there is still considerable room for improvement. The
application of the original TEB algorithm in dynamic scenes only continuously updates the
local cost map without considering the statuses of obstacles. In this situation, if the speed of
the robot or obstacle is too fast, the robot may not be able to successfully avoid obstacles.

There are some recent studies considering dynamic obstacles. Guo [34] proposed an
obstacle avoidance algorithm suitable for two-wheeled differential-driven robots by using
a stereo vision system to detect dynamic obstacles, estimating the motion state of dynamic
obstacles through an extended Kalman filter, and then by using the velocities of obstacles
to calculate dynamic risk regions and realize dynamic obstacle avoidance for the robot.



Processes 2024, 12, 984 3 of 16

However, it can be applied to only the differential speed robot. For pedestrians, a special
type of obstacle avoidance model has been proposed: Reddy [35] is a hybrid path planning
method that takes into account some navigation habits of pedestrians walking, such as
avoiding obstacles from the left side. Using these behaviors as a reference, the method com-
bines the social force field with geometric methods to select the optimal path for the robot.
According to experimental results, this algorithm outperforms baseline and individual
methods. Smith [36] combines path planning with reinforcement learning and proposes a
cooperative Markov decision process (Co-MDP) approach. This method utilizes an MDP to
predict human behavior and integrates the prediction results with social rules and the state
of the robot; the research aims to humanize the robot’s movements, and the robot performs
well in human–robot co-populated environments. Chen and Lin [37] provided a plugin of
the cost map2d [38] layer in the framework of the ROS. On the basis of the obstacle layer
and the obstacle expansion layer, the obstacle velocity layer was introduced. This layer
passed the DeepSort [39] algorithm to detect dynamic obstacles, to further extract 2D lidar
messages, and to generate moving obstacles and the range of future moments through the
k-means clustering algorithm; this method provides better trajectory planning for mobile
robots to avoid obstacles in dynamic environments. Dong [40] proposed an algorithm that
combines two-dimensional lidar and the TEB algorithm. Simulation and experiments have
proven the ability of the system in real-time detection and obstacle tracking and show that
it has a certain robustness. Wang [41] set up a virtual target (VT) on the global path and
tracked the VT and tracked the global path when the robot was moving in the dynamic
environment to achieve safe and stable operation of the robot in a dynamic environment.
In this article, we also propose a global path replanning strategy to address the situation
of untrackable areas in dense environments. Through a large number of experiments, it
is proven that this method can reach the target faster, safer, and more smoothly than can
other methods.

3. Methodology

In this section, we first introduce how to use 2D lidar for obstacle detection, and then, we
describe the details of obstacle tracking when using the Kalman filter and the calculation of
the interframe data association matrix. Finally, we introduce how to use obstacle velocities
and TEB pose information to predict the obstacle positions of different poses in the future as
well as a method for associating TEB pose vertices and obstacle edges.

3.1. Obstacle Detection

3.1.1. Clustering

A point set obtained by 2D lidar is based on the polar coordinate system with the lidar as
the origin and consists of the polar diameter and polar angle; the expression is (θ, r). However,
this form of data does not satisfy our requirements for obstacle velocity detection, so we need
to transform it into the coordinate system (x, y) with the map as the origin. Therefore, this
algorithm relies more on the accuracy of the real-time localization algorithm of the robot. The
formula to transform the coordinates from (θ, r) to (x, y) is as follows:[

x
y

]
=

[
cos θr − sin θr
sin θr cos θr

]
×
[

cos θ
sin θ

]
× r +

[
xr
yr

]
(1)

where (xr, yr, θr) is the robot’s global pose in the map, (xr, yr) are the coordinates and θr
is the orientation of the robot, (x, y) are the point coordinates after transformation, while
(θ, r) are the polar coordinate points before.

After obtaining the global point cloud, these points need to be clustered. This paper uses
the conditional Euclidean clustering algorithm to cluster the point set and uses the known
inflated global grid map as a mask to filter out the background points; this clustering results in
K obstacle clusters. Figure 1 presents the schematic diagram of background point clustering.
The original Euclidean has only one hyperparameter: that is, ϵ, which is the neighborhood



Processes 2024, 12, 984 4 of 16

range. The setting of this hyperparameter will depend on the width of the mobile robot, the
pedestrian’s step length, and the resolution of the lidar. Conditional Euclidean clustering adds
a hyperparameter based on the original algorithm: that, is the background grid map after
inflation. Whenever the clustering algorithm searches for a point, in addition to judging how
the point cloud is distanced from the neighboring points, the background map will also be
used to determine whether the point is a noise point. After the points are clustered, K clusters
will be obtained. In addition, the length and width of each cluster needs to be calculated to
facilitate the subsequent calculation of the intersection over union (IOU).

Figure 1. Schematic diagram of background point clustering. The points in the figure are the filtered
obstacle points: the white points are the noise points, the black rectangle is the obstacle, and the blue
area is the inflated obstacle area.

3.1.2. Data Association Matrix

Calculation of the data association matrix is crucial in multi-obstacle tracking because
it is necessary to ensure that the clusters of the current frame corresponds to the clusters of
the previous frame. The calculation method of the data association matrix in this article
is introduced below. First, the expression of the obstacle cluster center set obtained by
clustering is as follows:

Ppre ≜ {(pxpre
i , pypre

i ), i ∈ [1, M]} (2)

Pnow ≜ {(pxnow
j , pynow

j ), j ∈ [1, K]} (3)

where Ppre is the cluster set in the previous frame, Pnow is the cluster set in the current frame,
and M and K are the total number of point cloud cluster sets. Then, the data association
matrix mat is weighted by two matrices: a distance difference matrix matdist and an IOU
matrix matIOU . The specific expansion formula is as follows:

mat = α × matdist + β × matIOU (4)

matdist =

d(ppre
1 , pnow

1 )−1 · · · d(ppre
1 , pnow

K )−1

...
. . .

...
d(ppre

M , pnow
1 )−1 · · · d(ppre

M , pnow
K )−1

 (5)

matIOU =

IOU(ppre
1 , pnow

1 ) · · · IOU(ppre
1 , pnow

K )
...

. . .
...

IOU(ppre
M , pnow

1 ) · · · IOU(ppre
M , pnow

K )

 (6)

The expansion of the data in the matrix matdist is as follows (that is, the distance
between the center of the i-th cluster in the previous frame and the j-th cluster in the
current frame):

d(ppre
i , pnow

j ) =
√
(xpre

i − xnow
j )2 + (ypre

i − ynow
j )2 (7)



Processes 2024, 12, 984 5 of 16

The specific meaning of the data in the matrix matIOU is the intersection and union ratio
between the current cluster and the previous frame. The IOU is the intersection ratio and
the union of the binding boxes of the two clusters. Finally, we get a value between (0, 1).

In addition, in order to eliminate the dimensional influence between different features
and to improve the matching accuracy, the two matrices need to be normalized: the original
data are linearly mapped to the [0, 1] interval, and the mapping function is:

x′ = (x − min)/(max − min) (8)

where x are the original data, x′ are the normalized data, min is the minimum value in the
matrix, and max is the maximum value in the matrix.

3.1.3. Kalman Filter Tracking

The pairing relationship of clusters between frames can be obtained through the data
association matrix, and then, the obstacles are tracked through Kalman filtering to obtain
their motion information. The state equation of the obstacles is:

Xt = AXt−1 + Wt−1 (9)

where Xt = [x, y, vx, vy, ax, ay]T is a six-dimensional state vector that includes position,
velocity, and acceleration in the x- and y-directions. Xt−1 is the state at the previous
moment, and Wt−1 is the process noise, for which the probability distribution is unknown.
A is the state transition matrix; the expansion of this matrix is as follows:

A =



1 0 dt 0 dt2/2 0
0 1 0 dt 0 dt2/2
0 0 1 0 dt dt2/2
0 0 0 1 0 dt
0 0 0 0 1 0
0 0 0 0 0 1

 (10)

where dt is the observation interval: that is, the time interval between frames. The observa-
tion matrix for dynamic obstacles is:

Zt = HXt + Vt (11)

where Zt = [x, y, vx, vy]T is the observation value and includes the coordinates and ve-
locities of the obstacle in the x- and y-directions. Observations come from inter-frame
clusters: from such clusters we obtain the positions of the obstacles. Referring to the idea
of differentiation, vx and vy can be obtained. As long as the sampling interval dt is small
enough, the obstacles in the two sampling intervals can be seen to move at a uniform speed:
that is vx

t = (xt − xt−1)/dt. Similarly, vy
t , Vt is observation noise. The observation matrix

H is:

H =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (12)

The posterior estimate X̂t is calculated through the Kalman gain from the following equation:

X̂t = X̂−
t + Kt(Zt − HX̂−

t ) (13)

The term X̂t is the optimal motion estimates of obstacles. Following, we introduce how
to associate motion information with the original TEB algorithm to achieve local planning
and dynamic obstacle avoidance.



Processes 2024, 12, 984 6 of 16

3.2. Improved TEB Algorithm

The TEB algorithm is a classic local path planning algorithm. Based on the elastic
band (EB) algorithm, it adds various constraints such as time, velocities, obstacles, and
path and robot kinematic constraints. It imagines the ideal path as a elastic band and
treats all external constraints as external forces that cause the elastic band to deform.
The original TEB algorithm obtains the location information of obstacles through a local
cost map. Therefore, the information obtained by the algorithm does not include the
motion information of the obstacles. This will cause the algorithm to perform poorly in
an environment with dynamic obstacles, mainly due to the possibilities that there is no
time to avoid obstacles and that the obstacle avoidance path is not optimal. Therefore, in
order to optimize the operating effect of the algorithm in a dynamic environment, this
article optimizes the path by associating the TEB poses and the obstacle positions at the
corresponding future time. This article introduces a new constraint function:

f f pobs = e
(
−dmin,j,−romin , ϵ, S, n

)
(14)

where dmin,j is the distance between the TEB pose and the obstacle at the corresponding
time, romin is the minimum distance between the obstacle and the pose point, and the
specific expansion formula of the e function is as follows:

e(x, xr, ϵ, S, n) ∼=


(

x−(xr−ϵ)
S

)n
x > xr − ϵ

0 else
(15)

where xr is the limit value, and S, n, and ϵ affect the accuracy of the approximation and are scaling,
polynomial order, and a small displacement around the approximation value, respectively.

The obstacle avoidance effects of the improved TEB algorithm when facing obstacles
in different directions are shown in Figure 2. As can be seen from Figure 2a, when it is
detected that the obstacle is moving from left to right, the improved TEB algorithm plans
an obstacle avoidance path to avoid the obstacle to the left. The same is true for the obstacle
avoidance in Figure 2b. As can be seen from the schematic diagram, when it detects that
the direction of movement of an obstacle is towards the robot from top to bottom, the
algorithm makes a decision to avoid obstacles in advance instead of waiting until the robot
enters the area affected by the obstacle.

(a) (b)

Figure 2. The dynamic obstacle avoidance effect of improved TEB: The green car represents the
position of the mobile robot at different times, and the blue rectangle represents the position of the
one obstacle at different times. The arrow represents the speed and direction of the obstacle. The
robot’s target is at the top of the figure. The black dotted line is the ideal motion trajectory of the
robot, with T0 − T3 indicating time 0 to time 3. (a) Obstacle from the side. (b) Obstacle from the front.



Processes 2024, 12, 984 7 of 16

Figure 3 is a schematic diagram of the proposed obstacle position in the future. The
position of the obstacle is related to the corresponding TEB pose, where the position of the
j-th obstacle is Pj = [xj, yj]

T , as follows:

Pj = P0 +
j

∑
i=0

(
V + dti+1

i +
A × (dti+1

i )2

2

)
, j ∈ [1, k] (16)

where V = [vx, vy]T , A = [ax, ay]T are the speed and acceleration, respectively, of the
obstacle detected at the current moment, and dti+1

i is the time interval between the i-th and
(i + 1)-th TEB poses.

Figure 3. Schematic diagram of the obstacle’s future position. The solid square area in the figure is
the obstacle information detected at the current moment. It has component velocities in the x- and
y-directions. The dotted line area is the k-th TEB pose.

Figure 4 shows the details of dynamic obstacle avoidance achieved by the improved
TEB algorithm in Figure 2. It can be clearly seen from Figure 4a that at time T0, the robot has
planned a path to avoid obstacles to the left, because at this time, the obstacle corresponding
to the second TEB pose is on the ideal path of the robot, so the TEB pose at this position will
be stretched to the left. Due to the characteristics of the TEB poses, the TEB poses adjacent
to it will also be affected and stretched to the left. The robot will move to the left and avoid
obstacles. The same applies to the poses in Figure 4b.

(a) (b)

Figure 4. Details of improved TEB. This figure presents the details at time T0. The local pose sequence
of the robot in the figure consists of four red arrows, and the blue square is the obstalce at T0 while
the light-blue squares are the future positions of the obstalce at different times. And the green car
represents the robot. The specific calculation process can be referenced in Figure 3 and Equation (16).

It can be seen from the above that the improved TEB algorithm can combine the TEB
poses with the future positions of obstacles and plan a local path that integrates the obstacle
velocities, improving the obstacle avoidance efficiency of the mobile robot when facing
dynamic obstacles. In order to verify the proposed algorithm’s effectiveness, this article
will verify the algorithm on simulation and experimental platforms.



Processes 2024, 12, 984 8 of 16

4. Simulations and Experiments

4.1. Simulations

The simulation environment has good repeatability and controllable conditions. To
evaluate the robustness and efficacy of the proposed approach in a dynamic environment, we
use Gazebo and the ROS for simulations (the simulation environment is shown in Figure 5)
and choose an Ackermann type of car as the mobile robot. First, we map the environment
in a simulation environment without dynamic obstacles, and then, we add corresponding
obstacles for simulation testing experiments. We use rosbag to extract the simulation data
and then export the relevant topic information in the .bag file into a .csv file for analysis.
We verify the navigation effect of the proposed method for a single obstacle with various
velocities and directions and in a complex environment with multiple obstacles. For the
first two simulations, to highlight our improvements over the original TEB local planner, we
compare the navigation effect of the improved TEB with the effect of the original. In order
to demonstrate the advantages of the proposed method over other local planners, we also
compare the improved TEB with a model predictive control (MPC) local planner and a state
lattice planner in the third simulation.

(a) (b) (c)

Figure 5. Simulation environment: (a) the simulation environment, which is a cross corridor, (b) the
car used in the simulation, (c) the pedestrian acting as a dynamic obstacle in the simulation. The blue
area in the figure represents the area that the lidar can scan.

4.1.1. Obstacle Ahead of the Robot

The first set of simulations is used to verify the obstacle avoidance effect of the
method for a single obstacle with different velocities coming from the front. The simulation
environment is shown in the first row of Figure 6. The start position of the pedestrian is
(12, 0), and the pedestrian moves at a speed of 0.8 m/s, 1.0 m/s, and 1.2 m/s, respectively,
in the three simulations. From the comparison of Figure 6d,g, it can be seen that the
distance between the robot and the pedestrian is approximately 5 m at this time, but the
TEB poses of the original algorithm are still in the reference path, while for our method, the
robot predicts that in the future, a pedestrian will affect its trajectory, so advanced obstacle
avoidance actions are taken.

(a) (b) (c)

Figure 6. Cont.



Processes 2024, 12, 984 9 of 16

(d) (e) (f)

(g) (h) (i)

Figure 6. Simulation processions: (a–c) Gazebo snapshots of the robot’s avoidance maneuver when
confronted with a pedestrian moving at a speed of 1.0 m/s. (d–i) Robot Visualization Tools (rviz)
screenshots at different times for the original algorithm and our method; these figures display the
robot’s global reference path, local path, history path, TEB poses, etc. In these figures, the yellow
arrows represent the TEB poses; they can also be seen to be the positions that the robot will reach in the
future. The red point cloud is the obstacle point cloud, the green path is the global reference path, the
red trajectory represents the robot’s history path, and the white binding box is the detected obstacle.

From Figure 7, we can observe that the proposed method can perform obstacle avoid-
ance behavior when the robot is at a considerable distance from the obstacle. When the
robot takes obstacle avoidance actions, the distance between the robot and the obstacle
is called the reaction distance. We computed the relationship between the reaction dis-
tance and the obstacle velocity and formed Table 1. From Table 1, we can conclude that
for the proposed method, the reaction distance is determined by the detected obstacle
velocity, while for the original TEB, the reaction distance does not change much, or it even
decreases in the case of encountering a faster obstacle—the robot may react too late to
avoid obstacles. Therefore, it is necessary to take obstacle avoidance actions in advance.
This simulation proves that the improved TEB can control the reaction distance to avoid
obstacles in advance according to the velocities of obstacles.

(a) (b) (c)

Figure 7. (a–c) Trajectories of the robot for pedestrian speeds of 0.8 m/s, 1.0 m/s, and 1.2 m/s, where the
blue line is the original TEB, the red line is our method, and the circles are the positions of the pedestrian
when the robot performs obstacle avoidance behavior under different algorithms. The position of the robot
at this time is represented by red and blue solid dots, and the reaction distance is calculated and marked
with numbers with different colors in the figure.



Processes 2024, 12, 984 10 of 16

Table 1. Relationship table between reaction distance and pedestrian velocity.

Pedestrian Velocity TEB Ours

0.8 m/s 2.998 m 3.110 m
1.0 m/s 2.732 m 4.618 m
1.2 m/s 2.258 m 5.180 m

4.1.2. Obstacle Approaching from the Side of the Robot

The second simulation changes the direction of the pedestrian. The simulation envi-
ronment is shown in Figure 8. The start and target of the robot remain unchanged, but
the ideal path conflicts with pedestrians, forcing the robot to avoid them. We observe the
obstacle avoidance effect of the robot. From the first row and the second row in Figure 8,
we can clearly see that the robot runs at low efficiency under the original TEB. However,
from Figure 8g–l, it can be seen that in the improved TEB, under the influence of the risk
area, the robot adopts the strategy of avoiding obstacles to the left.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8. (a–c,g–i) Snapshots of the robot using the original TEB and our method to avoid side
pedestrians. (d–f,j–l) The rviz screenshots during the operation of the original TEB and our method,
respectively, in which the yellow arrows are the TEB poses.



Processes 2024, 12, 984 11 of 16

From the experimental effect in Figure 9a, we can see that, although the pedestrian
does not block the robot at this time, the obstacle risk area affects the TEB poses. Therefore,
the robot decides in advance to go in the opposite direction of the area where pedestrians
are walking. The difference between Figure 9a,b lies in the initial position of the pedestrian
when the robot starts. The position y of the pedestrian in Figure 9b is smaller than that
in Figure 9a. The robot does not need to make too much of a left-turn deflection so
that obstacles can be avoided using our method, and the original TEB also appears to
move around obstacles. In Figure 9c, the direction of the pedestrian is from the negative
direction of y to the positive direction. In the improved algorithm, when the position of the
pedestrian is far away from the ideal trajectory of the robot, the robot takes a left turn to
avoid obstacles in advance. However, the original TEB takes obstacle avoidance measures
only when pedestrians almost collide with robots. The obstacle avoidance efficiency is low,
and collisions are prone to occur. This set of simulations proves that the robot will choose
the obstacle avoidance direction based on the direction of the pedestrians.

(a) (b) (c)

Figure 9. (a–c) Experimental results of the robot in three different situations. The three different
situations here are aimed at different moments when the three robots are started. The blue line is the
original algorithm, the red line is the proposed algorithm, and the circle represents the positions of
the pedestrian when the robot is performing obstacle avoidance behavior. At this time, the position
of the robot is marked with red and blue solid circles.

4.1.3. Navigation in Complex Environments

The third set of simulation experiments allowed the robot to run in a complex, mul-
tidynamic obstacle scene, as shown in Figure 10. Four pedestrians moved at a speed of
0.8 m/s. We compare our method with the original TEB, the MPC local planner, and the
state lattice planner in this section. For the four local planners, we conducted 50 simulation
experiments. For the robot, it is considered successful if it reaches the target within the
specified time, and it is considered to have failed if it collides or gets stuck on the path.
Through the rosbag file, we performed some processing on the data to calculate the success
rates, total running distances, and times of the four methods to form Table 2. We can see
from Table 2 that the improved TEB not only improves the success rate of dynamic obstacle
avoidance, but it also increases the average speed of the robot on the global path and
reduces the running distance. Through this simulation, we found that the improved TEB
is not only better than the original TEB, but it is also more effective than other advanced
local planners.



Processes 2024, 12, 984 12 of 16

(a) (b)

(c) (d)

Figure 10. Snapshots of the robot using the improved method to avoid obstacles in a complex,
dynamic simulation environment. (a–d) the different time during the simulation.

Table 2. The success rates, running distances, and total times of the four methods.

Algorithm Success Running Distance Time

TEB local planner 75% 18.61 m 21.81 s
MPC local planner 80% 17.54 m 21.62 s

State lattice 90% 16.33 m 18.82 s
Ours 95% 15.03 m 16.82 s

4.2. Experiments

In order to verify the efficiency of the proposed method on an actual robot platform, we
designed a mobile robot experimental platform. The platform includes a two-dimensional
lidar for sensing the environment, and the lidar is connected to the upper computer: a
Jetson Nano. The chassis is controlled by an STM32 to control the motor movement of
the robot. Our method works under ROS-Melodic. The real environment experiment
must be used to verify whether the robot uses obstacle avoidance operations for oncoming
pedestrians in advance. As shown in Figure 11, the start of the given robot is (0, 0), and the
target starts at (8, 0). When the robot starts, a person moves slowly toward the robot as a
dynamic obstacle.

(a) (b)

Figure 11. (a) the front view of the robot platform, (b) the side view.

From Figure 12a–d in the original algorithm, when the pedestrian moves in front of the
robot, since the position of the pedestrian does not affect the first few TEB poses, the robot



Processes 2024, 12, 984 13 of 16

still runs on the ideal trajectory. Only when the position of the pedestrian reaches a position
close enough to the robot does the robot identify the obstacle and devise a trajectory to
circumvent it. Because it is too close to the obstacle, there is an operation of turning in
place. If the pedestrian does not notice the robot at this time, it may collide with the
pedestrian. From Figure 12e–h, we can see that in the improved method, the robot performs
maneuvering operations in advance when facing oncoming pedestrians: the position of
the pedestrian in Figure 12g is the same as in Figure 12c, and the distance between the
pedestrian and the robot is approximately the same or even greater, but the robot has
already started to avoid obstacles in advance, so even if the pedestrian maintains his/her
own trajectory at this time, the route of the robot can perfectly stagger with the pedestrian.

From the trajectory path diagram in Figure 13, we can see the difference between the
two methods of advance obstacle avoidance more intuitively. The reaction distance of
the original TEB is only approximately 1 m, while the reaction distance of the improved
TEB algorithm is as high as 3.5 m. The total running path of the robot in the original TEB
is longer.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12. Photos of the robot facing oncoming pedestrians and the corresponding rviz screenshots.
The yellow arrow indicates the TEB poses, and the red point cloud is the pedestrian scanned by the
2D lidar: (a–d) the original TEB, and (e–h) our method.



Processes 2024, 12, 984 14 of 16

Figure 13. Trajectories of two methods.

4.3. Discussion

Simulations and experiments show that the combination of obstacle velocities and TEB
poses can improve the efficiency of dynamic obstacle avoidance. The first simulation verified
that the improved TEB can plan different obstacle avoidance paths for obstacles with different
velocities, the robot can avoid obstacle in advance based on the velocities of obstacles, and
the reaction distance increases as the speed of the obstacles increases, which can ensure the
safety of the robot while moving. The second simulation showed that our method can make
different obstacle avoidance strategies for obstacles from different directions, which improves
the efficiency of obstacle avoidance. The third simulation demonstrated the effectiveness
of our method in environments with multiple dynamic obstacles, and we compared the
improved TEB with other advanced local planners, including an MPC local planner and
a state lattice planner. The comparative experiments with other planners showed that the
improved TEB reduces the total running time and running distance and increases the success
rate, proving that the improved TEB can indeed improve the efficiency of local path planning
in dynamic environments. Finally, the robot platform experiment verified that our method
can run on a robot platform and is better than the original TEB. Simulations and experiments
prove the contribution of this article and the necessity of our research.

5. Conclusions

Due to the uncertainty of robot movement, dynamic obstacle avoidance poses many
challenges to robot navigation. The traditional method of avoiding static obstacles is
to set the inflation radius of obstacles or to increase the update frequency of the local
cost map. However, the positions of dynamic obstacles change. These methods do not
robustly consider the velocities of obstacles. If the speed of the obstacle is too fast, the robot
may not have enough time to avoid the obstacle when it is too close to the obstacle. In
this manuscript, we propose a new dynamic obstacle avoidance method that detects and
estimates the velocities of dynamic obstacles through 2D lidar and integrates the TEB local
planner. We conduct simulations and real experiments to demonstrate that the proposed
method can perform advanced avoidance according to the velocity of obstacles, but this
algorithm is more dependent on the accuracy of the localization algorithm. In the future, we
plan to conduct further research on the uncertainty of the directions of dynamic obstacles.

Author Contributions: Methodology, X.O., Z.Y. and X.H.; Writing—original draft, Z.Y.; Supervision,
X.O. and X.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(Nos. 62233016 and 62303418) and the Zhejiang Provincial Natural Science Foundation of China
(Nos. LQ22F030016 and LQ23F010024).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.



Processes 2024, 12, 984 15 of 16

References
1. Qi, J.; Yang, H.; Sun, H. MOD-RRT*: A sampling-based algorithm for robot path planning in dynamic environment. IEEE Trans.

Ind. Electron. 2020, 68, 7244–7251. [CrossRef]
2. Zhang, Y.; Wang, S. LSPP: A novel path planning algorithm based on perceiving line segment feature. IEEE Sens. J.

2021, 22, 720–731. [CrossRef]
3. Kim, B.; Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int. J. Soc.

Robot. 2016, 8, 51–66. [CrossRef]
4. Sun, T.; Pan, W.; Wang, Y.; Liu, Y. Region of interest constrained negative obstacle detection and tracking with a stereo camera.

IEEE Sens. J. 2022, 22, 3616–3625. [CrossRef]
5. Almasri, M.M.; Alajlan, A.M.; Elleithy, K.M. Trajectory planning and collision avoidance algorithm for mobile robotics system.

IEEE Sens. J. 2016, 16, 5021–5028. [CrossRef]
6. Kobayashi, Y.; Sugimoto, T.; Tanaka, K.; Shimomura, Y.; Arjonilla Garcia, F.J.; Kim, C.H.; Yabushita, H.; Toda, T. Robot navigation

based on predicting of human interaction and its reproducible evaluation in a densely crowded environment. Int. J. Soc. Robot.
2022, 14, 373–387 . [CrossRef]

7. Duong, H.T.; Suh, Y.S. Human gait tracking for normal people and walker users using a 2D LiDAR. IEEE Sens. J. 2020,
20, 6191–6199. [CrossRef]

8. Lee, H.; Lee, H.; Shin, D.; Yi, K. Moving objects tracking based on geometric model-free approach with particle filter using
automotive LiDAR. IEEE Trans. Intell. Transp. Syst. 2022, 23, 17863–17872. [CrossRef]

9. Wei, C.; Wang, Y.; Shen, Z.; Xiao, D.; Bai, X.; Chen, H. AUQ–ADMM algorithm-based peer-to-peer trading strategy in large-scale
interconnected microgrid systems considering carbon trading. IEEE Syst. J. 2023, 17, 6248–6259. [CrossRef]

10. Chen, Q.; Li, Y.; Hong, Y.; Shi, H. Prescribed-Time Robust Repetitive Learning Control for PMSM Servo Systems. IEEE Trans. Ind.
Electron. 2024, in press. [CrossRef]

11. Shim, I.; Choi, D.G.; Shin, S.; Kweon, I.S. Multi lidar system for fast obstacle detection. In Proceedings of the 2012 9th Interna-
tional Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Daejeon, Republic of Korea, 26–28 November 2012;
IEEE: Piscataway, NJ, USA, 2012; pp. 557–558.

12. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33.
[CrossRef]

13. Rösmann, C.; Feiten, W.; Wösch, T.; Hoffmann, F.; Bertram, T. Trajectory modification considering dynamic constraints of autonomous
robots. In Proceedings of the ROBOTIK 2012: 7th German Conference on Robotics, VDE, Munich, Germany, 21–22 May 2012; pp. 1–6.

14. Rösmann, C.; Hoffmann, F.; Bertram, T. Planning of multiple robot trajectories in distinctive topologies. In Proceedings of the 2015
European Conference on Mobile Robots (ECMR), Lincoln, UK, 2–4 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6.

15. Rösmann, C.; Hoffmann, F.; Bertram, T. Kinodynamic trajectory optimization and control for car-like robots. In Proceedings of the
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 5681–5686.

16. Rösmann, C.; Oeljeklaus, M.; Hoffmann, F.; Bertram, T. Online trajectory prediction and planning for social robot navigation. In
Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 1255–1260.

17. Rösmann, C.; Feiten, W.; Wösch, T.; Hoffmann, F.; Bertram, T. Efficient trajectory optimization using a sparse model. In Proceedings
of the 2013 European Conference on Mobile Robots, Barcelona, Spain, 25–27 September 2013; IEEE: Piscataway, NJ, USA, 2013;
pp. 138–143.

18. Hwang, C.L.; Huang, H.H. Experimental validation of a car-like automated guided vehicle with trajectory tracking, obstacle
avoidance, and target approach. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics
Society, Beijing, China, 29 October–1 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2858–2863.

19. Ding, Z.; Liu, J.; Chi, W.; Wang, J.; Chen, G.; Sun, L. PRTIRL based socially adaptive path planning for mobile robots.
Int. J. Soc. Robot. 2023, 15, 129–142. [CrossRef]

20. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3D object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 19–23 June 2018; pp. 4490–4499.

21. Ren, W.; Wang, X.; Tian, J.; Tang, Y.; Chan, A.B. Tracking-by-counting: Using network flows on crowd density maps for tracking
multiple targets. IEEE Trans. Image Process. 2020, 30, 1439–1452. [CrossRef]

22. Li, C.; Guo, S.; Guo, J. Study on obstacle avoidance strategy using multiple ultrasonic sensors for spherical underwater robots.
IEEE Sens. J. 2022, 22, 24458–24470. [CrossRef]

23. Jha, B.; Turetsky, V.; Shima, T. Robust path tracking by a Dubins ground vehicle. IEEE Trans. Control Syst. Technol.
2018, 27, 2614–2621. [CrossRef]

24. Sun, C.; Zhang, X.; Zhou, Q.; Tian, Y. A model predictive controller with switched tracking error for autonomous vehicle path
tracking. IEEE Access 2019, 7, 53103–53114. [CrossRef]

25. Qu, P.; Li, S.; Zhang, J.; Duan, Z.; Mei, K. A Low-cost and Robust Mapping and Relocalization Method Base on Lidar Inertial
Odometry. In Proceedings of the 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), Xining,
China, 15–19 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 257–262.

http://doi.org/10.1109/TIE.2020.2998740
http://dx.doi.org/10.1109/JSEN.2021.3130282
http://dx.doi.org/10.1007/s12369-015-0310-2
http://dx.doi.org/10.1109/JSEN.2022.3142024
http://dx.doi.org/10.1109/JSEN.2016.2553126
http://dx.doi.org/10.1007/s12369-021-00791-9
http://dx.doi.org/10.1109/JSEN.2020.2975129
http://dx.doi.org/10.1109/TITS.2022.3155828
http://dx.doi.org/10.1109/JSYST.2023.3290775
http://dx.doi.org/10.1109/TIE.2024.3363757
http://dx.doi.org/10.1109/100.580977
http://dx.doi.org/10.1007/s12369-022-00924-8
http://dx.doi.org/10.1109/TIP.2020.3044219
http://dx.doi.org/10.1109/JSEN.2022.3220246
http://dx.doi.org/10.1109/TCST.2018.2870571
http://dx.doi.org/10.1109/ACCESS.2019.2912094


Processes 2024, 12, 984 16 of 16

26. Wang, E.; Chen, D.; Fu, T.; Ma, L. A Robot Relocalization Method Based on Laser and Visual Features. In Proceedings of the 2022
IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), Chengdu, China, 3–5 August 2022; IEEE: Piscataway, NJ,
USA, 2022; pp. 519–524.

27. Chen, X.; Vizzo, I.; Läbe, T.; Behley, J.; Stachniss, C. Range image-based LiDAR localization for autonomous vehicles. In
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xian, China, 30 May–5 June 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 5802–5808.

28. Welch, G.; Bishop, G. An Introduction to the Kalman Filter. 1995. Available online: https://perso.crans.org/club-krobot/doc/
kalman.pdf (accessed on 20 April 2024).

29. Huang, Y.; Ding, H.; Zhang, Y.; Wang, H.; Cao, D.; Xu, N.; Hu, C. A motion planning and tracking framework for autonomous
vehicles based on artificial potential field elaborated resistance network approach. IEEE Trans. Ind. Electron. 2019, 67, 1376–1386.
[CrossRef]

30. Fiorini, P.; Shiller, Z. Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 1998, 17, 760–772.
[CrossRef]

31. Bharath, G.; Singh, A.; Kaushik, M.; Krishna, K.; Manocha, D. Prvo: Probabilistic reciprocal velocity obstacle for multi robot
navigation under uncertainty. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 24–28.

32. Van den Berg, J.; Lin, M.; Manocha, D. Reciprocal velocity obstacles for real-time multi-agent navigation. In Proceedings of the 2008
IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; IEEE: Piscataway, NJ, USA, 2008;
pp. 1928–1935.

33. Guo, K.; Wang, D.; Fan, T.; Pan, J. VR-ORCA: Variable responsibility optimal reciprocal collision avoidance. IEEE Robot. Autom.
Lett. 2021, 6, 4520–4527. [CrossRef]

34. Guo, B.; Guo, N.; Cen, Z. Obstacle avoidance with dynamic avoidance risk region for mobile robots in dynamic environments.
IEEE Robot. Autom. Lett. 2022, 7, 5850–5857. [CrossRef]

35. Reddy, A.K.; Malviya, V.; Kala, R. Social cues in the autonomous navigation of indoor mobile robots. Int. J. Soc. Robot. 2021,
13, 1335–1358. [CrossRef]

36. Smith, T.; Chen, Y.; Hewitt, N.; Hu, B.; Gu, Y. Socially aware robot obstacle avoidance considering human intention and
preferences. Int. J. Soc. Robot. 2021, 15, 661–678. [CrossRef]

37. Chen, C.S.; Lin, S.Y. Costmap generation based on dynamic obstacle detection and velocity obstacle estimation for autonomous
mobile robot. In Proceedings of the 2021 21st International Conference on Control, Automation and Systems (ICCAS), Jeju,
Republic of Korea, 12–15 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1963–1968.

38. Lu, D.V.; Hershberger, D.; Smart, W.D. Layered costmaps for context-sensitive navigation. In Proceedings of the 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; IEEE: Piscataway, NJ, USA, 2014;
pp. 709–715.

39. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017
IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 3645–3649.

40. Dong, H.; Weng, C.Y.; Guo, C.; Yu, H.; Chen, I.M. Real-time avoidance strategy of dynamic obstacles via half model-free detection
and tracking with 2d lidar for mobile robots. IEEE/ASME Trans. Mechatronics 2020, 26, 2215–2225. [CrossRef]

41. Wang, C.; Chen, X.; Li, C.; Song, R.; Li, Y.; Meng, M.Q.H. Chase and track: Toward safe and smooth trajectory planning for robotic
navigation in dynamic environments. IEEE Trans. Ind. Electron. 2022, 70, 604–613. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://perso.crans.org/club-krobot/doc/kalman.pdf
https://perso.crans.org/club-krobot/doc/kalman.pdf
http://dx.doi.org/10.1109/TIE.2019.2898599
http://dx.doi.org/10.1177/027836499801700706
http://dx.doi.org/10.1109/LRA.2021.3067851
http://dx.doi.org/10.1109/LRA.2022.3161710
http://dx.doi.org/10.1007/s12369-020-00721-1
http://dx.doi.org/10.1007/s12369-021-00795-5
http://dx.doi.org/10.1109/TMECH.2020.3034982
http://dx.doi.org/10.1109/TIE.2022.3148753

	Introduction
	Related Work
	Methodology
	Obstacle Detection
	Clustering
	Data Association Matrix
	Kalman Filter Tracking

	Improved TEB Algorithm

	Simulations and Experiments
	Simulations
	Obstacle Ahead of the Robot
	Obstacle Approaching from the Side of the Robot
	Navigation in Complex Environments

	Experiments
	Discussion

	Conclusions
	References

