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Abstract: Blasting is a prevalent technique in deep rock excavation, with the state of rock fragmenta-
tion under high in-situ stress conditions being distinct from that under low in-situ stress conditions.
A new material point method framework utilizing the generalized interpolated material point and
convective particle domain interpolation functions was implemented to simulate the single-hole
blasting process, analyze the stress distribution around the blasting hole, and elucidate the mecha-
nism of how ground stress influences the expansion of blasting cracks through the interaction with
the blasting load. In addition, the dynamic relaxation method realizes the stress’s initialization. It
was concluded that the in-situ stress can increase the compressive stress induced by blasting load,
whereas it decreases the caused tensile stress. With the increase in the ground stress, the scale of the
cracks decreases. Under the non-isobaric condition, the blast-induced cracks preferentially expand
along the high stress with the increase in the stress difference between the horizontal direction and the
vertical direction, and the blast-induced cracks are suppressed to the greatest extent in the direction
of the minimum ground stress.

Keywords: high in-situ stress; rock blasting; material point method; crack propagation

1. Introduction

The ongoing advancement of the global economy has precipitated a burgeoning
demand for natural resources. Deep resource extraction has become ubiquitous as shallower
mineral deposits are gradually depleted [1,2]. Numerous mines worldwide operate at
depths exceeding 1000 m below the surface, with examples in Canada and the United
States reaching depths surpassing 2000 m [3]. Noteworthy among these is the West Wits
mine in South Africa, distinguished as a pioneer in deep shaft mining, housing three
gold mines—TauTona, Savuka, and Mponeng—all surpassing a depth of 3700 m. The
mechanical behavior of rock masses is intricate, contingent upon factors such as mineral
characteristics, degree of jointing, in-situ stress, and rock weathering [4-9]. Challenges
associated with high temperature, in-situ stress, and permeability are notably pronounced
in deep-rock engineering, with in-situ stress playing a pivotal role irrespective of geological
conditions [10,11]. For instance, in the TauTona gold mine, in-situ stress approaches
100 MPa at 3500 m [12].

Drilling and blasting methods, including rock excavation through drilling, charging,
and blasting, have long served as the primary approach for rock excavation in underground
construction, as shown in Figure 1, offering adaptability to varied geological conditions,
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cost-effectiveness, and particular suitability for complex rock construction [9,13-15]. While
surface and shallow rock masses typically experience low in-situ stresses with minimal
impact on rock fragmentation, deep mines encounter in-situ stresses nearing or surpassing
the rock’s uniaxial compressive strength. Moreover, rock properties at considerable depths
differ from those at shallower levels. With the advent of deep mining, extensive zonal
disintegration of deep-rock masses occurs, transitioning the damage pattern of rocks from
brittle to ductile, resulting in a sharp rise in rock burst accidents and induced phenomena,
like seismic activity [16], Nevertheless, there remains a dearth of comprehensive research
examining the effects of static in-situ stresses and dynamic blast loads on the blasting
behavior of deep-rock masses. Lu et al. [17] emphasized that traditional pre-cracking
and blasting methods become inapplicable when static in-situ stress surpasses 10-12 MPa.
Therefore, a thorough understanding of the blasting mechanisms in rock masses subjected
to high in-situ stress is paramount.
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Figure 1. Drilling and blasting: the mechanism of blasting and rock fragmentation.

Over the past few decades, extensive research has delved into the blasting mech-
anism of rock formations, employing various methodologies, such as theoretical analy-
sis, field blasting tests, and numerical simulations. The foundational blasting theories
were predominantly established by Kutter and Fairhurst [18]. In-situ stress significantly
influences the propagation of blast-induced cracks, a focal point of numerous studies
investigating crack initiation and extension under in-situ stress conditions. Field tests
conducted by Nicholls et al. [19] revealed that pre-splitting along the direction of maxi-
mum in-situ compressive stress is notably more accessible than in other directions. Some
cracks initially initiated radially but subsequently deviated towards the direction of the
applied static stress field. Some blast tests on diverse materials under initial rock pressure
were conducted by Jung et al. [20], illustrating that crack propagation aligned with the
applied pressure. Yang et al. [21] investigated blast-induced crack behavior in dynamic
and static stress fields through focal dispersion experiments, revealing that perpendicular
pre-compressive stress to the crack extension direction reduces stress concentration at the
crack tip and impedes crack extension. In contrast, parallel pre-compressive stress exerts
no effect on extension.

However, due to challenges associated with field blasting tests, such as high costs and
difficulty in observing blast-induced cracks, experimental studies have yet to extensively
explore the effects of in-situ stress on the blasting behavior of deep-rock masses. With ad-
vancements in computational power, numerical simulation methods have become valuable
research tools for investigating blast damage or rock fracture [22]. Two primary numerical
methods are commonly applied: mesh [23,24] and meshless [25,26]. Bendezu et al. [27]
introduced a numerical analysis method based on the finite element method to simulate
blast-induced challenges to rock-fracture extension. While the finite element method (FEM)
is continuum-based, making it difficult to simulate crack extension and rock fragmentation
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directly, meshless methods and hybrid mesh-meshless methods have gained popularity for
rock-blasting simulation in recent years. Fakhimi and Lanari [28] utilized a combination
of the Discrete Element Method (DEM) and Smooth Particle Hydrodynamics (SPHs) to
simulate rock blasting, with the behavior of the rock simulated using cohesive DEM and
the explosive’s explosion simulated by SPH. However, the SPH method suffers from ten-
sile instability, leading to numerical breaks, shape function inconsistency, and difficulty
introducing intrinsic boundary conditions [29]. The material point method employs a dual
Lagrangian and Eulerian description, capitalizing on the strengths of both methodologies,
proving effective in solving fracture and significant deformation problems. The standard
material point method, known as sMPM and developed by Sulsky [30,31], faces issues,
like severe mesh traversal and tensile instability. Bardenhagen and Kober [32] addressed
mesh traversal by introducing particle eigenfunctions and proposed the generalized in-
terpolated material point method (GIMP-MPM). However, GIMP-MPM does not handle
tensile instability well. Sadeghirad et al. [33,34] developed a series of convective particle
domain interpolation (CPDI-MPM) techniques to alleviate tensile instability. CPDI-MPM
treats material points as particle domains, accurately tracking tensile, shear, and rotational
deformations by monitoring the motion of domain angles of mass points, surpassing previ-
ous material point methods in accuracy. While various enhanced extensions of material
point methods have emerged, GIMP and CPDI methods are the prominently utilized ap-
proaches. Wan et al. [35] employed a combination of the generalized interpolated material
point method (CPDI) and the para-basin interpolation technique (CPDI) to simulate the
rock-blast fracture process under three-dimensional conditions comprehensively.

The above studies have yielded valuable insights into the influence of in-situ stress
on blast-induced cracks. Previous numerical investigations into the effect of initial stress
on blast fragments typically represented blast load through a pressure—time history curve.
However, controversies persist regarding the selection of peak pressure, load function, and
blast load duration, which fail to characterize explosive blasts accurately. The material
model significantly affects the numerical simulation outcomes [36]. and the JH-2 model
is a mature model suitable for rock blasting in in-situ stress conditions [37]. Here, a
novel coupled static and dynamic load model is introduced, utilizing the material point
method to simulate explosives, rock, and air, exploring the impact of in-situ stress on
the evolution of rock single-hole blasting damage and analyzing the processes of crack
initiation and extension.

2. Material Point Method
2.1. Governing Equations

An updated Lagrangian description is usually used in numerical methods to solve
problems characterized by high strain rates and large deformation, especially in scenarios
involving blasting and high-velocity impacts, and the corresponding governing equations
are Equations (1)-(3).

do 9o _

dt paxk M
i pbi = pii; 2
axj 1 1

pe = &jojj ©)

where p, vy, 03, b;, u;, e, and éij are density, velocity vector, component of the Cauchy stress
tensor, body force per unit mass, displacement vector, energy rate, and component of the
strain rate tensor, respectively.

Like most numerical methods, the weak form of the governing equations in the
material domain () can be written as the following equation:

/. piiiéuidﬂ + / O'ijéui’jdﬂ - / pbiéu,-dﬂ =0 (4)
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2.2. MPM Solution Scheme

The MPM discretizes the continua into a cluster of particles with the lumped mass,
as shown in Figure 2. Material points carry all physical attributes of the continuum and
move within the background grid. The base function transfers physical information, such
as velocities and stresses, between a cluster of material points and a background grid,
eliminating the necessity to deal with convective terms. The momentum conservation
equations are solved on a regular Eulerian background mesh, avoiding the problem of
mesh distortion. Then, the discretized form of Equation (4) can be written as Equation (5).

Ty p p
mpu'ipéu,'p + Z Vpa’i]‘péuip,]‘ - Z mpbipéuip =0 5)
1 p=1

p= p=1

where 11, is the total number of the particles, my, V), Uip, Ollip, and bl-p are the mass, volume,
displacement, virtual displacement, and body force of the particle p, respectively.

In the material point method, the weak form of the momentum conservation equation
is solved on the background grid, and the background grid node data can be obtained by in-
terpolating the material points data. Due to the arbitrariness of the virtual displacement Ju;,
the momentum equation on the background grid can be written as the following equation:

Py = filt+ 7, Vx; ¢ T, (6)

where I'; is the displacement boundary,

Pip = myu;; (7)
Py is the grid nodal momentum,
p
mp =)  Nppmyp (8)
p=1
my is the lumped grid nodal mass,
. 1p
z'lFt = Z VPNIp,jUijP ©)
p
ieIXt = Z mPNIpbiP (10)
p=1

where fint, Xt are the internal nodal force and the external nodal force, respectively.

Background grid

Material point: @  Gridnode: @

Figure 2. Sketch of a discrete body of MPM.
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2.3. Base Function of GIMP and CPDI

The data of the background grid nodes are calculated by interpolating the data of
the material points. Hence, the base functions are crucial for the accuracy of the numer-
ical simulation results. However, the derivative of the C° standard linear interpolation
function is discontinuous between grids, leading to perturbations when material points
instantaneously cross grid boundaries. This can cause short-term sudden changes in stress
and energy, compromising accuracy and potentially distorting results. In the damage
model, the beginning of damage is usually related to the stress, so grid crossing must be
avoided. In addition, the numerical fracture will happen when particle sets are subjected to
solid stretching.

Numerical fracture and grid crossing perturbations will result in the instability of the
numerical simulation. Fine meshing enhances the accuracy of numerical simulation, but
this is also more likely to produce grid-crossing instabilities. A straightforward approach
to mitigate this is increasing material points and reducing time steps, although this method
could be more efficient. A better way to reduce this error is to use B-spline shape functions,
such as the generalized interpolating function (GIMP) [32], where both the function and
its derivatives are C! continuous. Sadeghirad et al. [33,34] proposed a Convected Particle
Domain Interpolation (CPDI) technique in which the convection of a continuum set of
material points is more accurate than the generalized material point interpolation function.
This feature is crucial for eliminating the instability in the stretching process, and CPDI has
a C! continuous base function, like GIMP.

2.4. Time Step Control

The numerical stability of an explicit dynamics program depends on the time incre-
ment at each step. In the material point method, the time integration occurs on a spatially
fixed background grid. In determining the critical time step, unlike the technique using
Lagrangian grids, the material point method needs to consider the velocity of the material
in addition to the material speed of sound. This consideration is particularly crucial for sce-
narios involving ultrahigh-speed impacts and explosions, where the velocity of the material
point approaches the material speed of sound. According to the Courant-Friedrichs-Lewy
stability condition, the propagating distance of the physical information is less than the
element size during one timestep [38]. Therefore, a recommended time step is given by
Equation (11).
hg

(11)
where At,, is the critical time increment, /i is the length of the background grid, c; is the
wave speed, and u,, is the particle’s velocity. The time step in the calculation process can be
adjusted by the factor « (0 <a < 1).

3. Theoretical Analysis and Numerical Model

In the tunnel blasting excavation process, the axial size of the tunnel is much larger
than the cross-section size. It is often used in a continuous column charging mode along
the axial direction. The axial force is approximately uniform so that the deep-rock blasting
can be simplified as a plane strain model. The rock single-hole blasting model with static
and dynamic coupling is depicted in Figure 3a. An infinitely sizeable isotropic rock mass
contains a borehole of radius «. The rock plate is subjected to in-situ stress, as shown in
Figure 3b, and the center hole is subjected to explosive pressure, as shown in Figure 3c.

3.1. Stress Distributions under Static Loads

Because the rock size L of the rock mass under in-situ stress is much larger than the
radius « of the borehole, assume that the rock mass is elastic, continuous, and homogeneous.
Under the above conditions, the stress distribution around the borehole under in-situ stress
can be obtained by the formula given by Kirsch [39]:
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o = (252) (1= (&) + (222) (1-4(2)° +3(2)")cos20
7= (23) (1 (5)7) - (%2%) (1£3()")cos20 .
7y = (25%) (1+2(2)* = 3(£)*)cos20

r

where 07, 03, and T, are the radial stress, circumferential stress, and shear stress in the
static state, respectively. oy is the vertical in-situ stress and o, is the horizontal in-situ stress;
r is the distance to the center of the borehole.

[oF Oy
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Figure 3. Geometric models (a) the model under the combination of dynamic and static loads (b) the

model under static loads; (c) the model under blasting loads.

3.2. Stress Distributions under Dynamic Loads

Blasting is an instantaneous process completed in several seconds, and the induced
pressure P(t) on the borehole wall can be calculated using Equation (13) proposed by
Blair [40].

P(t) = Pyn(ey/n)"t"e 1" (13)

where Py is the borehole pressure after blasting, # is an integer, and 7y is a decay parameter.
After the explosion of explosives, the wall of the borehole will be strongly impacted by the
blast wave. This impact load leads to the enlargement of the borehole, forming a larger
cavity while simultaneously subjecting the cavity rock wall to intense impact compression.
It results in the formation of a broken belt ring. The whole expanded cavity and broken
belt together form the crushed zone. The crushed zone is primarily characterized by
compressive and shear damage. After the shock wave passes through the crushing zone
and the compressive stress wave attenuates, its intensity decreases below the dynamic
compressive strength of the rock, preventing immediate rock damage. However, it can
still induce radial displacement in the rock mass, leading to radial tensile stress within
the rock mass. Since the dynamic tensile strength of the rock is much lower than the
dynamic compressive strength, the excessive circumferential tensile stress will result in
circumferential tensile damage and radial cracks. The rock is strongly compressed when
the blasting compressive stress wave is through the crushed zone and stores some elastic
deformation energy. At the end of the stress wave propagation, the stored energy is released
to produce an unloading wave, resulting in the rock mass’s centripetal movement and the
radial tensile stress. If this tensile stress surpasses the rock’s dynamic tensile strength, it
will produce circumferential fissures in the rock and eventually form the cracked zone. In
this zone, the blasting produces many explosive gases and expands into radial fissures.
On the other hand, the blasting gas is strongly compressed around the rock, triggering an
unloading-induced tensile stress that further enlarges circumferential fissures. Outside
Region 2, the intensity of stress waves is no longer sufficient to cause significant damage to
form an elastic vibration zone [41].
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It is assumed that the rock conforms to the basic assumptions of elastodynamics. The
governing equations for the stress wave in the rock mass Equation (14) can be given by
Miklowitz [42] in polar coordinates:

2 2
To0h) | 0 aggg? 0(r > a, t >0)

(1, 1) |10 = 22571) ” Vo =0(r > a) (14)
rli_)r{}o(p(r t) =0(t>0)
od(a,t) = P(t)

where ¢(r, t) is the displacement potential function, C, is the longitudinal wave velocity of
the rock, and (T;,j,, represents the radial stress under dynamic loading.

The stress components under the blasting stress wave can be obtained from the
following Equation (15):

2 A az Adg(r,
Ufr(r,t) (2p+A)0”p(r.t) + %; t)
Ugg t) = AP rt) + 2y+)\)aq)(r t) (15)

ol (r t—vadrt+(799rt))

where A and y are Lame constants, v is Poisson’s ratio, and og is the circumferential stress
under dynamic loading.
After the Laplace transformation, the general solution of Equation (15) can be deter-
mined by:
_ - H(t—t")Kq(sp7)s1
(P(r’ m) = m[(252/k2(a)K1)(53u()+s)%K0(szu)]
s1=P(m)/(2p+A)

52:m/Cp (16)
t'=(r—a)/Cp

where m is the Laplace transform parameter, C; is the shear wave velocity of the rock,
H(t —t') is the Heaviside function, and Kj and Kj are the second kind of zero-order and
first-order modified Bessel functions, respectively.

Durbin [43] performed the numerical inversion of Equation (16). The result is ex-
pressed as follows:

N
—%Re{ﬁ(r,a)} +3 (Re{¢<r,a + iszn) }coskz%rt - Im{@(r,u + iszT[) }sinkz;-[t)} (17)
k=0

where 4 is an arbitrary real number, 0 < 2 < Re(m); and T is the time interval, 0 < t < T/2.
From Equation (13) to Equation (17), the stress distribution with the rock under
coupled in-situ stress and blasting load can be obtained by Equation (18).

_ 4
{ Orr = UZ[r + U'fr (18)
Ogg = Oy + (759

3.3. Numerical Simulation Model

In theoretical analysis, the calculation of rock mass is based on the classical elasticity
theory, making it challenging to derive an analytical solution for the inelastic material
under blasting. Thus, the results can only be a general perception of the stress distribution
in rock mass. To capture the nonlinear response of rock under blasting in deep-rock
masses, numerical simulation methods have been widely applied, providing a convenient
alternative for analyzing such complex problems. Because the material point method
is independent of mesh distortion and convective term treatment, it has advantages as
a numerical tool in modeling large deformation problems. Consequently, the method
has been used to simulate the behavior of rock fracture under blast loading [44,45]. The
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numerical modeling setup for the rock single-hole blasting model with static and dynamic
coupling is shown in Figure 4a. The stresses 05, and o, are applied to model the in-situ
stresses. The plane domain consists of explosives, air, and rock, with a borehole radius of
21 mm and an explosive radius of 16 mm. In the present numerical model, the size of the
background grid is set as 10 mm, the discrete size of the rock is 5 mm, the discrete size of
the explosives and air is 0.5 mm, and the whole discrete model is shown in Figure 4b.

g,
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Figure 4. The numerical models: (a) model schematic (b) overall discrete model (c) discrete model of

the localized borehole.

The blasting process inside the borehole is intricate, involving the deformation of
gases and solids. The selection of appropriate material point types is critical to the accuracy
of numerical simulation. The localized discrete form of the blast hole is shown in Figure 4c.
For the explosive part in the borehole, CPDI-Quadrilateral particles are inapplicable due
to the potential large deformations. To address this problem, the uGIMP particles are
employed to discretize explosives and air parts. The strong compression of parts within the
borehole diminishes the impact of tensile instability induced by applying uGIMP particles.
Moreover, the uGIMP particles model can be generated by the structuring method and
is uniformly distributed in the plane, which can ensure that they expand uniformly in
different directions and make the explosion more uniform. Meanwhile, CPDI- Quadrilateral
particles are applied to discretize the rock region and simulate the rock fracture, avoiding
the tensile instability of rocks and improving the accuracy of the simulation.

The effect of in-situ stress on rock cracking after blasting is analyzed, considering
equiaxial pressure and different lateral pressure conditions. The rockblasting crack modes
are investigated under in-situ stress levels of 0 MPa, 10 MPa, 20 MPa, 40 MPa, and 50 MPa.
Under different lateral pressure conditions, the lateral pressure factor k = 07,/ 0 is defined,
and the vertical stress 0, = 40 MPa at a depth of 1500 m is used. Then, k = 0.25, k = 0.5,
k=1.0,k =15,k =2.0,and k = 3.0 are determined for the rock-blasting crack patterns
with six different lateral pressure coefficients.

3.4. Parameters of the Model

The military explosive, PETN, is applied to model the explosive material, with a
density of 1.32 g/cm?, detonating velocity of 6690 m/s, and Chapman-Jouguet pressure
Pcy of 16 GPa, respectively. In general, the Jonew—-Wilkins-Lee (JWL) equation is now the
most commonly used equation of state for numerical calculations of explosions [46], and it
is expressed as follows:

w w wE
P=A(1———)e RV iB(1- " |e RV 4= 1
< R1V>e " ( R2V>e v (19

where P is the hydrostatic pressure, V is the initial relative volume of explosion products,
and E is the inner energy per initial unit volume. A, B, R1, Ry and w are the constants of
explosions. For PETN, the parameters applied in this model are shown in Table 1, obtained
from Banadaki et al. [47].
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Table 1. The Parameters of JWL EOS of PETN.
Material A (kPa) B (kPa) Ry R, w Ey (kJ/m3)
PETN 573,100,000 20,160,000 6 1.8 0.28 7,190,001

Air is considered an ideal gas with a density of 0.001225 kg/m3, and a polynomial
EOS is used to simulate the relationship between pressure and density of air as shown in
Equation (20).

P =co+cip+ cop® + cap’ + (04 +csp+ 06142) E (20)

wherecy =c¢; = ¢ =c3 =cg = 0; ¢4 = c5 = 0.4, and E = 250.0 k] /m3.

The response of rock subjected to blasting loads is complex. The strength of rock is
related to the pressure, damage, and strain rate. The JH-2 model is commonly used to
simulate the damage of brittle materials [47-51]. The parameters of the JH-2 model are
listed in Table 2. Most of the parameters can be determined or derived from laboratory
experiments on rocks [47]. The strain rate coefficient C = 0.005 is assumed to be identical
to ceramic. The damage constants D and D, cannot be measured directly [47]; thus, the
values of D and D; are obtained by numerical adjustments. The values listed in Table 2
are validated to achieve an acceptable fracture pattern, and the same method has been
successfully adopted by Banadaki et al. [47], Yang et al. [51], and Ai et al. [52].

Table 2. Parameters of JH-2 model of granite.

Parameter Value Parameter Value
o (g/cm®) 2.66 st 0.25
E (MPa) 51,188.28 oEL(MPa) 4500
v 0.16818 pueL(MPa) 3700
A 0.76 Beta 0.5
B 0.25 D4 04
C 0.005 D, 0.9
M 0.62 K; (GPa) 25.7
go (s 1) 1 K, (GPa) —4500
T (MPa) 54 K3 (GPa) 300,000

3.5. Verification of the Numerical Method and Model

Jung et al. [20] performed single-hole blasting experiments on marble slabs in the
laboratory. Marble slabs are loaded under the uniaxial stress of 5 MPa and without prestress.
In these experiments, the dimension of the marble slab was 200 mm x 200 mm X 23 mm.
The radius of the center borehole in the marble slab was 4 mm. A high-precision detonator
was used for blasting and the density, modulus of elasticity, Poisson’s ratio, and tensile
strength of the marble were 2625 kg/m?3, 20.7 GPa, 0.12 and 6.2 MPa, respectively. The
blast-induced rock-fracture modes are listed in Figure 5.

Numerical simulations were performed using MPM and compared with single-hole
blasting experiments conducted by Jung et al. [20]. The dimensions, rock parameters, and
prestress in numerical models are consistent with the experiment setup. The numerical
rock-fracture modes caused by blasting without prestress and under uniaxial prestress are
visualized in Figure 6, respectively. The experimental and numerical results demonstrated
that the blast-induced cracks expanded radially around the borehole without applying
prestress. However, when a 5 MPa uniaxial prestress was applied, the crack extension
direction was consistent with the direction of the prestress, and the prestress inhibited the
crack extension in the direction perpendicular to it. Notably, the longest crack observed
in the numerical simulation is also consistent with the crack observed in the experiment.
These indicate that the MPM and numerical model are suitable for simulating rock fracture
caused by blasting.
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Figure 5. Experimental results: (a) Without prestress; (b) With a uniaxial stress of 5 MPa.
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Figure 6. Numerical results: (a) Without prestress; (b) With a uniaxial stress of 5 MPa.

4. Numerical Simulation Results

Generally, the numerical simulation of rock blasting under in-situ stress can be divided
into static and dynamic phases. The static phase is the in-situ stress field simulation phase,
known as the stress initialization phase, and the dynamic phase is the numerical simulation
of the blasting process. The whole simulation process is shown in Figure 7.

The numerical models were employed in the simulations, which were conducted
using the MPAS code (material point analysis system developed by the authors), an explicit
material point method dynamic calculation program designed in C++. Furthermore, the
program has already yielded some positive outcomes [35,53].
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Figure 7. Flow chart of the stress initialization and the dynamic analysis.

4.1. Stress Initialization

In deep-rock engineering, the in-situ stress state is significant, as it plays a pivotal role
in the dynamic response behavior of rocks. Consequently, stress initialization represents
a crucial initial step in the dynamic response simulation of rock masses in a high in-situ
stress field [54]. The dynamic relaxation method is often used for its cost-effectiveness and
ease of implementation. This method has characteristics of the explicit dynamic procedure
of the material point method by introducing fictitious mass and viscous damping [55].

The dynamic equilibrium equation with fictitious mass and viscous damping is
as follows:

P! = Ma' 4 Co + Kd! (21)
Using static loads to substitute for dynamic loads, the above equation can be rewritten
as follows:
P — Kd' = Ma! + Co! (22)
where M is the fictitious mass and C is the artificial damping. v’ and a' are the velocity and
acceleration at time step f, respectively.

The left two terms of Equation (22) can be assumed as an unbalanced force R’ at time
step t, and Equation (22) can be written as Equation (23).

R = Ma! + Co' (23)

The time increment step is A’. Nodal velocity using the finite-difference method can
be written as follows:

ot = % <vt+A2t + vt_A2t> (24)

The acceleration can be obtained by linear interpolation of the velocity, as in Equation (25).
1 t t

at = N(UHAZ —vtA2> (25)

Substituting Equations (24) and (25) into Equation (23), the unbalanced force can be
written as follows:

Rf = %M <vt*A2t — vtAZt) + %C (v”g +vtA2t) (26)
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Therefore, Equation (26) can be rewritten in terms of the velocity at time t + At/2
as follows:

-1 -1
ey (Ll 1 TNy (Ll t
v (AtM—l- 5C i 5C)Y T (M 5C) R (27)

Assuming the viscous damping coefficient B as follows:

_ CAt

p= M (28)

After substituting Equation (28) into Equation (27), Equation (27) yields as follows:

t+%’ _ 1-8 tf%t_i_ 1 ng (29)

v —0
118 1+pM

To bring the system to a state of static equilibrium, reduce the unbalanced force factor
to R! = Ma', then the velocity update equation becomes as follows:

s 1_,3vt—%t + 1

t
“1vp 1+ﬁaAt (30)

[

The critical viscous damping coefficient B is related to the model self-oscillation
frequency w, which can be obtained by numerical simulation, and the completion of the
stress initialization phase is determined by the static identification condition Equation (31).

Kr = |Fext +Fint|/|Fint| <ap 1)
Kg = EK/WeXt < &E

where K is the parameter of the unbalanced force of the system, K is the kinetic energy
parameters of the system, Fext and Fit are nodal external and nodal internal forces, re-
spectively, E is the total kinetic energy of the system, and W is the work of the nodal
external force. When the system is in static equilibrium, Kr and Kr should be less than the
constants ar and ag, setting as 0.01.

According to Equation (13), the stress distribution on the borehole wall and the
variation in stress with increasing distance from the borehole can be obtained. As shown
in Figure 8a,b, the circumferential stress distribution on the borehole wall for equiaxial
pressure and different lateral pressures, respectively. Figure 8c—f shows the variation in
stress as a function of distance from the borehole.

In the case of equiaxial pressure, from Figure 8a, circularly distributed circumferential
compressive stress is generated on the borehole wall, which tends to increase in-situ stress
levels. In the context of varying lateral pressure conditions, tensile stress is observed
in the vertical direction of the borehole wall when k = 0.25. Conversely, when k > 0.25,
circumferential stress is identified as compressive stress. Furthermore, with the increase in
k, the circumferential compressive stress in the vertical direction is observed to increase
more significantly compared to the horizontal direction.

From Figure 8¢, radial stress around the borehole increases as the distance from the
borehole rises in the case of equiaxial pressure. Conversely, in Figure 8d, radial stress
around the borehole diminishes as the distance from the borehole increases. Eventually,
the circumferential and radial stress converge with in-situ stress. Circumferential tensile
stresses primarily influence the growth of cracks, and the circumferential compressive
stress intensifies with the increment of in-situ stress. It can thus be deduced that higher
in-situ stress has the potential to impede crack propagation.

In the case of different lateral pressures, as depicted in Figure 8e,f, in the horizontal
direction, when k < 1.0, the horizontal stress is less than the vertical stress, with the increase
in distance from the borehole the circumferential stress decreases until it converges to the
value of vertical stress. Simultaneously, the radial stress increases and then decreases until
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it aligns with the horizontal stress in the horizontal direction. When k > 1.0 and the distance
from the borehole increases, the circumferential stress increases and then decreases until it
matches the vertical stress value, and the radial stress gradually increases and converges to
the horizontal stress value. In the vertical direction, the circumferential stress converges to
the horizontal stress, while the radial stress converges to the vertical stress.
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Figure 8. The stress distribution around the borehole: (a) under equiaxial pressure conditions,
(b) under anisotropic pressure conditions, (c) Radial stresses under equiaxial pressure conditions,
(d) Circumferential stresses under equiaxial pressure conditions, (e) Stresses in the horizontal direc-
tion, and (f) Stresses in the vertical direction.
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Numerical simulation was carried out based on the model shown in Figure 4, and the
radial stress and circumferential stress distributions are plotted after stress initialization.
Numerical outcomes presented in Figure 9 correspond to cases of 03, = 0, = 10 MPa,
oy =0y = 40 MPa, k = 0.25, and k = 3.0. From Figure 9a, at a certain distance from
the borehole, the distribution of radial stress and circumferential stress is circular when
oy, = 0y = 10 MPa, which means under the equiaxial pressure condition, the distribution
of radial stress and annular stress is basically identical. From Figure 9d, when k = 3.0, the
radial stress exhibits a nonlinear increase from the vertical to the horizontal direction, and
the annular stress increases nonlinearly from the horizontal to the vertical direction. The
results of the stress distribution analysis are in accordance with the theoretical analysis,
thereby confirming the reliability of the stress initialization method employed.

Fringe Levels(MPa) Fringe Levels(MPa) Fringe Levels(MPa) Fringe Levels(MPa)
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2 [ " . I: [ -
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3 00, [ -100
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Figure 9. Results of the stress initialization: (a) 03, = 0, = 10 MPa, (b) 0}, = 0, = 40 MPa, (c) k = 0.25,
and (d) k = 3.0.

4.2. Single-Hole Blasting with In-Situ Stress

After stress initialization, the explosives can be detonated, and the boundary con-
ditions should be changed to a reflection-free boundary. The theoretical analysis of the
blasting-induced stress component is shown in Figure 10. As the stress wave propagates,
the circumferential stress transitions from compressive to tensile stress, resulting in radial
cracks within a specific range around the borehole. Figure 10d shows the stress histories
derived from theoretical and numerical investigations. The numerical calculation results
of the elastic material in compression and tension conditions at the wall of the borehole
are incredibly close to the theoretical calculation results. In contrast, in the vicinity of the
borehole, due to the large deformation characteristics of the rock-blasting problem, the
results of the elastic model based on the small deformation theory make a certain degree
of error with the theoretical calculation results. The overall trend is in agreement, which
verifies the accuracy of the theoretical and numerical calculations.

In the stress wave propagation and stress wave reflection problems, to simulate an
infinite range of stress wave propagation in a finite computational region, it is necessary to
set the boundary condition as a reflection-free boundary, and the boundary force o,onq is
introduced to replace the far-area-acting stress i, in the MPM [56]. In the two-dimensional
case, the boundary force is given by the displacement continuity condition. It can be
expressed as
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where 0}, is the normal stress, ¢ is the tangential stress, p is the current material density, Cp
and ¢, are the compression and shear wave speeds respectively, v, is the normal vibrational
velocity, and v; is tangential vibrational velocity.
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Figure 10. Stress histories under blasting: (a) The blasting stress wave, (b) Radial stresses,
(c) Circumferential stresses, and (d) Comparison of theoretical and numerical simulation results.

Figure 11a—f shows the numerical simulation results under equiaxial conditions. It
is evident that the in-situ stress significantly influences the propagation of cracks, and
the lengths of cracks are almost the same in the horizontal and vertical directions under
equiaxial conditions. The maximum crack length is generated in the absence of in-situ
stress. When the ground stress 03, = 0, = 10 MPa, the crack length decreases obviously.
Subsequently, with the increase in the in-situ stress from 10 MPa to 50 MPa, the crack length
decreases gradually, and the crack is minimal when the in-situ stress reaches 50 MPa.

Figure 11g-1 shows the numerical simulation results of blasting with different lateral
pressure coefficients, at a burial depth of 1500 m with the vertical pressure o, = 40 MPa.
The inhibitory effect of the in-situ stress on the crack extension is enhanced when the lateral
pressure coefficient k is increased from 0.25 to 3.0, and the direction of the longest crack
coincides with the direction of the maximum in-situ stress. When the lateral pressure
coefficient k is less than 1.0, the horizontal in-situ stress is less than the vertical in-situ
stress, resulting in a shorter maximum crack length horizontally compared to vertically.
The disparity between crack lengths in the two directions decreases when k increases.
However, when k exceeds 1.0, the crack length in the vertical direction is significantly
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reduced; it decreases with the increase in the lateral pressure coefficient and vertical cracks
are difficult to form when k = 2.0 and k = 3.0; the results demonstrate that the in-situ
stress perpendicular to the crack growth direction significantly inhibits crack extension.
Meanwhile, the horizontal crack length changes slightly with the increase in the lateral

pressure coefficient.
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Figure 11. Numerical simulation results of single-borehole blasting: (a) 0, = 0y = 0 MPa,

(c) 0y, = 0y = 20 MPa, (d) 0y, = 0y = 30 MPa, (e) 0, = 0y, = 40 MPa,

(f) o) = 0 = 50 MPa, (g) 0 = 25 0 = 10 MPa, (h) 0, = 0.5 0, = 20 MPa, (i) 0}, = 7, = 40 MPa,
(j) o, = 1.5 0 = 60 MPa, (k) 0, = 2.0 07 = 80 MPa, and (1) ¢}, = 3.0 0, = 120 MPa.
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4.3. Discussion

The propagation of cracks in the process of blast-induced rock fracture is closely
related to the in-situ stress level and the above theoretical and numerical simulation results
can provide some guidance for the design of deep-rock-blast engineering.

The results of the above studies show that the in-situ stress significantly inhibits crack
extension, and the crack extension length decreases significantly with increasing ground
stress. If the design of deep-rock blasting with high in-situ stresses is identical to that
of shallow-rock blasting, cracks may not be able to connect between adjacent boreholes,
which is not conducive to rock fragmentation and the formation of excavation profiles.
Consequently, in the design of deep-rock blasting, the explosive payload can be increased
in accordance with the desired outcome, while the hole spacing can be reduced to enhance
the fragmentation of the rock, improve the quality of the excavation profile, and achieve
more optimal blasting results.

Under unequal horizontal and vertical stress, the direction of the longest crack pro-
duced by blasting coincides with the maximum in-situ stress, since the crack extension is
largely inhibited by in-situ stresses perpendicular to the crack growth direction. Conse-
quently, the configuration of boreholes aligned with the direction of the maximum in-situ
stress is more conducive to the interconnection of cracks between boreholes. In deep-tunnel
blasting, the configuration direction of contour boreholes is constrained by the location
of the tunnel contour and is not readily amenable to modification. However, the cutting
holes can be arranged toward the maximum in-situ stress, thus facilitating the connection
of cracks created by blasting adjacent holes and the formation of cavities. The cavities will
provide a new free surface for subsequent rock blasting, facilitating the reflection of the
blast-stress wave to promote rock fracture.

5. Conclusions

The material point method combining CPDI and GIMP was adopted for the numerical
simulation of deep-rock blasting, and a simple theoretical analysis was conducted. A
coupling method can provide a uniform blasting pressure and overcome tensile instability.
A good agreement was achieved between the simulation and experimental results. From
this study, the following conclusions are obtained.

1. In the stress initialization stage, the dynamic relaxation method is adopted in the
material point method to simulate the in-situ stress field and in-situ stress field results
obtained by numerical simulation, consistent with theoretical results. The dynamic
relaxation method is straightforward and cost-effective in the display dynamics soft-
ware and only requires the introduction of a damping coefficient in the velocity update
equation.

2. The in-situ stress significantly inhibits the crack extension produced by rock blasting,
and the maximum crack length decreases considerably with the increase in in-situ
stress due to the significant difference in the level of in-situ stress between the deep
and shallow rock mass. Adjusting borehole spacing is advised to ensure complete
crack extension to optimize rock fragmentation and excavation profile quality in
deep-rock masses under high in-situ stress.

3. Under unequal horizontal and vertical stress, the orientation of the most extended
cracks produced by blasting aligns with the direction of the maximum in-situ stress.
Consequently, the arrangement of boreholes along the direction of the maximum
in-situ stress is more conducive to promoting the connection of cracks produced
between adjacent boreholes after blasting.
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