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Abstract: Renewable energy sources are increasingly integrated into power systems, leading to
significant variability in operations. This necessitates robust methods for assessing operational
reliability. We propose a novel model–data hybrid approach that incorporates endogenous uncertainty
into the reliability evaluation process. First, unlike traditional methods that treat uncertainties as
external factors, this approach recognizes that operational decisions can significantly influence how
uncertainties are resolved and impact reliability metrics. The proposed method integrates device
reliability indices with operational decision variables. This allows us to evaluate the impact of
endogenous uncertainty on operational reliability through a reliability-constrained stochastic unit
commitment model. Additionally, a model–data hybrid algorithm is introduced for efficient solution
of the formulated optimization problem. Case studies demonstrate the effectiveness of the proposed
method. Results also show that endogenous uncertainty may cause a 10% error in power system
reliability indices.

Keywords: operational reliability evaluation; endogenous uncertainty; power system; data-driven

1. Introduction

Modern power systems rely heavily on their reliability, which ensures the secure and
adequate provision of electrical energy. Conventional power system reliability evaluations
utilized historical data and assumed static failure rates for equipment like generators and
transmission lines. However, recent research has highlighted the temporal variability of
device performance within operational timeframes [1]. This necessitates a shift towards
operational reliability evaluations that address short-term reliability under dynamic condi-
tions, a trend that has gained significant traction in recent decades [2].

Modern power system research prioritizes operational reliability, making it a key
area of focus in both academia and industry. To account for the dynamic nature of device
failures, researchers have explored probabilistic reliability indicators at specific points in
time (e.g., [3,4]). Additionally, studies have investigated how demand response programs
influence the short-term reliability of wind-integrated power systems (e.g., [5]).

The growing complexities within power systems necessitate a closer link between oper-
ational optimization and reliability evaluation. This recognition has led to the incorporation
of operational reliability metrics as either objectives or constraints in key decision-making
problems. These problems include unit commitment (UC) [6,7], economic dispatch [8],
reserve optimization [9], and power market clearing [10].

Previous studies primarily focused on exogenous uncertainties as the main factors
influencing reliability metrics. These uncertainties include demand and renewable energy
variations, as well as random equipment failures. Exogenous uncertainties are typically
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assumed to have predetermined and fixed probability distributions independent of decision-
making processes [1]. However, this approach overlooks the crucial role of endogenous
uncertainties (EUs) in operational reliability.

EUs represent uncertainties that are influenced by operational optimization decisions,
either explicitly or implicitly, and play a significant role in operational reliability evaluations.
Mounting evidence suggests that operating conditions significantly impact the uncertainties
associated with device states [11]. Since operational decisions directly determine these
operating conditions, they also influence the resolution of uncertainties related to device
states, as illustrated in Figure 1. Figure 1 demonstrates how decision variables determine
the operating conditions of generation and transmission equipment, which further affect
the devices’ force outage rates (FORs). Consequently, uncertainties related to device states
emerge as a key example of EUs.

Processes 2024, 12, x FOR PEER REVIEW 2 of 15 
 

 

Previous studies primarily focused on exogenous uncertainties as the main factors 
influencing reliability metrics. These uncertainties include demand and renewable energy 
variations, as well as random equipment failures. Exogenous uncertainties are typically 
assumed to have predetermined and fixed probability distributions independent of deci-
sion-making processes [1]. However, this approach overlooks the crucial role of endoge-
nous uncertainties (EUs) in operational reliability. 

EUs represent uncertainties that are influenced by operational optimization deci-
sions, either explicitly or implicitly, and play a significant role in operational reliability 
evaluations. Mounting evidence suggests that operating conditions significantly impact 
the uncertainties associated with device states [11]. Since operational decisions directly 
determine these operating conditions, they also influence the resolution of uncertainties 
related to device states, as illustrated in Figure 1. Figure 1 demonstrates how decision 
variables determine the operating conditions of generation and transmission equipment, 
which further affect the devices’ force outage rates (FORs). Consequently, uncertainties 
related to device states emerge as a key example of EUs. 

 
Figure 1. Comparisons between the conventional power system reliability evaluation and the one 
considering endogenous uncertainty. 

The presence of EUs exerts a substantial impact on operational reliability, necessitat-
ing a comprehensive approach that considers both optimization and evaluation as an in-
terconnected process. By incorporating EUs into our understanding of operational relia-
bility, we can achieve more accurate and robust decision making, ultimately enhancing 
the security and efficiency of power systems. 

Traditionally, evaluating power system reliability is a time-consuming process. This 
is because optimal power flow (OPF) calculations are performed on an exponentially 
growing number of system states to determine load shedding for each state. To address 
this complexity, the direct current (DC) model is often used as a computationally simpler 
alternative to the full AC model. However, even with this simplification, reliability evalu-
ation for a provincial system can still take several to dozens of hours. The inclusion of 
endogenous uncertainty further exacerbates this issue by dramatically increasing the 
number of possible system states, making the evaluation even more computationally ex-
pensive. Additionally, system fluctuations caused by renewable energy sources lead to 
dynamic changes in reliability over time. This dynamic nature makes it challenging to 
ensure timely assessments of operational reliability. As a result, developing methods for 
faster and more efficient reliability evaluation becomes increasingly crucial. 

Several approaches have been proposed to address the computational challenges as-
sociated with operational reliability evaluation. Techniques like fast sorting algorithms 
[12], state-space decomposition [13,14], and dimensionality reduction [15,16] have been 
developed to minimize the number of states considered. Similarly, reliability evaluation 

Figure 1. Comparisons between the conventional power system reliability evaluation and the one
considering endogenous uncertainty.

The presence of EUs exerts a substantial impact on operational reliability, necessitating
a comprehensive approach that considers both optimization and evaluation as an intercon-
nected process. By incorporating EUs into our understanding of operational reliability, we
can achieve more accurate and robust decision making, ultimately enhancing the security
and efficiency of power systems.

Traditionally, evaluating power system reliability is a time-consuming process. This is
because optimal power flow (OPF) calculations are performed on an exponentially growing
number of system states to determine load shedding for each state. To address this com-
plexity, the direct current (DC) model is often used as a computationally simpler alternative
to the full AC model. However, even with this simplification, reliability evaluation for a
provincial system can still take several to dozens of hours. The inclusion of endogenous
uncertainty further exacerbates this issue by dramatically increasing the number of possible
system states, making the evaluation even more computationally expensive. Additionally,
system fluctuations caused by renewable energy sources lead to dynamic changes in relia-
bility over time. This dynamic nature makes it challenging to ensure timely assessments
of operational reliability. As a result, developing methods for faster and more efficient
reliability evaluation becomes increasingly crucial.

Several approaches have been proposed to address the computational challenges asso-
ciated with operational reliability evaluation. Techniques like fast sorting algorithms [12],
state-space decomposition [13,14], and dimensionality reduction [15,16] have been de-
veloped to minimize the number of states considered. Similarly, reliability evaluation
using Monte Carlo simulation (MCS) [17] has seen advancements through state space
pruning [18], population-based intelligent search [19], and advanced sampling techniques
like Latin hypercube sampling [20,21]. These methods primarily focus on accelerating the
simulation process by reducing the number of system states explored.
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However, a separate set of techniques aims to expedite the analysis of individual
system states. These methods, such as the Lagrange multiplier-based state enumeration
(LMSE) [22], the multiparametric linear program (MPLP) [23,24], and the load feasible
region (LFR) approach [25], bypass the need for full optimal power flow (OPF) calculations
for each state by employing alternative methods to determine load shedding requirements.
While existing methods offer faster reliability evaluation through reduced state exploration
and analysis, they struggle to keep pace with the dynamic nature of renewable energy. Any
fluctuation necessitates a full re-evaluation, hindering real-time insights. To address this
timeliness issue, a new approach is needed: a rolling reliability assessment that utilizes
real-time data. This method would continuously update the evaluation, eliminating the
need for repetitive full assessments.

Current methods for operational reliability evaluation have limitations. This paper
addresses these shortcomings by introducing a new approach. The key contributions of
this article are as follows:

(1) Propose an explicit and analytical EU model to reveal the relationship between opera-
tional decisions and the power components’ reliability parameters.

(2) Develop a model and data hybrid-driven method to evaluate the transmission system
reliability considering EUs. An M-BPNN architecture is employed for faster and
potentially more accurate assessments. The M-BPNN is trained offline using a non-
sequential Monte Carlo simulation to calculate system reliability indices under various
operating conditions. Following this training, the system states are categorized, and
separate BP neural networks are trained specifically for each category. During online
operation, real-time system data are fed into the corresponding pre-trained neural
network to obtain reliability metrics.

The remainder of this paper is organized as follows. Section 2 presents the model
of endogenous uncertainty in power systems. Section 3 introduces the power system
reliability evaluation model considering the endogenous. Section 4 proposes the model and
data hybrid-driven reliability evaluation method. Numerical results are given in Section 5.
Section 6 concludes this manuscript.

2. Modeling of EU in Power Systems
2.1. Concept of EU

To delve into the concept of the EU, it is crucial to establish a clear distinction between
it and its counterpart, exogenous uncertainty. Exogenous uncertainty refers to situations
with inherent and substantial uncertainties. In such cases, the underlying probability
distribution of stochastic parameters can be established based on historical data or expert
knowledge. Conversely, the EU arises when decisions made at a specific point in time
significantly impact the level of uncertainty encountered later.

Within the realm of the EU, two primary model categories exist:

• Type I: Decisions can shift the probability distribution of uncertain parameters, making
some outcomes more probable and others less [26].

• Type II: Through strategic actions, the decision maker can exert control over the
existing uncertainty [27].

This research delves into the complexities of a specific type of EU model (Type I).
While the EU has gained traction in power system expansion planning, as evidenced by
a multistage stochastic optimization model for large-scale wind [26], its application in
operational reliability assessment remains less studied. Existing works like [27] explore
the EU’s role in investment planning for solar and concentrating solar plants. However, a
comprehensive understanding of the EU’s impact on operational reliability evaluation is
lacking. Ignoring these multifaceted influences can lead to overly optimistic or pessimistic
assessments, potentially misleading decision making in power system operations and
leading to suboptimal outcomes.
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2.2. EU Modeling in Power System Operational Reliability Evaluation

EU is modeled by the relationship between decision variables and electrical equip-
ment FORs. The lifespan of equipment generally decreases with increasing operating
temperature and reaction rates. Components subjected to continuous high temperatures
experience a reduction in lifespan and a corresponding rise in failure probability. This is
primarily because increased current flow through a component often leads to a rise in its
temperature. The condition-dependent forced outage rate (FOR) of an electric component
can be expressed as [28]

F(I) =
{

α · eβI , I0 < I < I1
F̂, I ≤ I0.

, (1)

where F(I) is the FOR of the electric equipment, I is the real-time current, I0 is the rated
current of the equipment, and I1 is the trip setting current. The parameter F0 is the initial
value of the FOR of the electric equipment when the current is smaller than I0 such that [29]

F0 =
λ

λ + µ
, (2)

where λ is the failure rate and µ is the repair rate of the electric equipment, which are set
based on the historical data. Parameters α and β are calculated based on historical data
such that

α =
F0

eβ·I0
, (3)

β =
ln
(

F0
Fmax

)
I0 − I1

. (4)

The actual value of the current I can be obtained through the optimal power flow
calculation. Note that the optimal power flow depends on the operational decisions of the
power system, e.g., the decisions of the unit commitment. Thus, the EEU-based FOR of the
ith electric equipment, denoted as FEU

i , can be equivalently expressed as

FEU
i = FEU

i (Ii) = FEU
i (Q(x, y)) (5)

Ii = Q(x, y) (6)

where x is a binary variable and it represents the UC solution. y is the continuous variable
and it is related to the generation schedule, etc. Q(·) denotes the function between the
binary variable x and the continuous variable y.

Device FORs are further impacted by external uncertainties beyond inherent design
limitations. These uncertainties include factors like age-related failures. Therefore, both EU
and aging effects are incorporated into the reliability models for these devices. Suppose
that an electric equipment has an enlistment age of t0. Then, its FOR, denoted as F0

a (t0, i),
during the ith period is estimated as

F0
a (t0, i) =

∫ t0+i∆t
t0

H(t)dt−
∫ t0+(i−1)∆t

t0
H(t)dt∫ ∞

t0
H(t)dt

, (7)

where H(t) characterizes the likelihood of ageing-related failure as a function of time t.
There might be a dependency between outages caused by EU issues and those caused

by aging equipment. Devices with longer operating lifetimes (enlistment ages) tend to be
more sensitive to operational variations, increasing their susceptibility to issues arising
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from endogenous uncertainties. Consequently, Equation (1) can be reformulated into a
more general form as shown below.

F(I, T1, i) =

{
αage · eβage·I , I0 < I < I1,

F0
a (t0, i), I ≤ I0.

(8)

where parameters αage and βage are updated by (3) and (4).

3. The EU-Guided Operational Reliability Evaluation Model

Section 3 introduces the operational reliability evaluation model for power systems
considering endogenous uncertainty (EU). The operational reliability evaluation process
contains three parts: (1) EU-based scenario generation; (2) stochastic unit commitment
(SUC)-based system state analysis; and (3) reliability index calculations. Figure 2 shows the
operational reliability evaluation process.
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Figure 2. EU-based power system operational reliability evaluation.

3.1. EU-Based Scenario Generation

Let Φs,up be the set of available devices and Φs,dn is the set of unavailable devices
corresponding to scenario s. The occurrence probabilities of scenario s can be expressed as

πs =

 ∏
i∈Φs,up

(1− F(I, T1, i))

 ·
 ∏

i∈Φs,dn

F(I, T1, i)

, (9)

where F(I, T1, i) denotes the failure rate of the ith electric component.
It is clear from (9) that the ith electric component’s failure rate F(I, T1, i) is a function

of the current I and the service time T1. In contrast, the component’s failure rate is modeled
as a constant in conventional research [R1]–[R3] because the previous research does not
consider the endogenous uncertainty.

Operational reliability evaluation often employs scenario generation techniques based
on N − k contingencies, where N represents the total number of system components and k
represents the number of allowed simultaneous failures. Increasing the value of k leads
to a more comprehensive assessment by incorporating the effects of multiple component
outages. However, this approach faces a trade-off between accuracy and computational
burden. As k grows the number of potential contingencies rises exponentially, significantly
increasing the computational complexity required for analysis. This paper employs the
Markov chain Monte Carlo method to generate system scenarios.

3.2. SUC-Based System State Analysis

The power system state analysis aims to calculate the demand curtailment under
different scenarios. A two-stage SUC model is employed for system state analysis. The
first stage of the SUC model determines the unit commitment variables ug,t and the second
stage determines the dispatch variables Ps

g,t after the uncertain parameter realizations.
The objective function, fg, can be expressed as the sum of the first-stage cost function

f (1)g
(
ug,t−1, ug,t

)
, the second-stage cost function f (2)g

(
Ps

g,t

)
, and the cost of demand cur-
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tailment ccur · ∑n Ps
cur,n,t, where ccur is the cost coefficient of demand curtailment and

∑n Ps
cur,n,t is the total demand curtailment. The objective function can be expressed as

min ∑
g∈G

∑
t∈T

∑
s∈S

πs

(
f (1)g
(
ug,t−1, ug,t

)
+ f (2)g

(
Ps

g,t

)
+ ccur ·∑

n
Ps

cur,n,t

)
. (10)

The first-stage cost function f (1)g
(
ug,t−1, ug,t

)
can be expressed as the sum of the startup

cost of generation units, CU
g,t, and the shutdown cost CD

g,t:

f (1)g
(
ug,t−1, ug,t

)
= CU

g,t + CD
g,t. (11)

The second-stage cost function is the operational cost of generation units such that

f (2)g

(
Ps

g,t

)
= cgPs

g,t, (12)

where cg is the operating cost coefficient of the gth-generation unit.
The first stage of the model incorporates constraints on unit commitment decisions ug,t.

Equations (13) and (14) ensure that each generating unit g respects minimum down-time
(TO) and minimum up-time (TS) requirements.

t+TO−1

∑
k=t

ug,k ≥ TO ·
(
ug,t − ug,t−1

)
(13)

t+TS−1

∑
k=t

(
1− ug,k

)
≥ TS ·

(
ug,t−1 − ug,t

)
(14)

Constraints (15) and (16) address the costs associated with unit startup and shutdown,
where Hg and Jg are the startup and shutdown cost coefficients for the gth-generation unit.

CU
g,t ≥ max

{
Hg ·

(
ug,t − ug,t−1

)
, 0
}

(15)

CD
g,t ≥ max

{
Jg ·
(
ug,t−1 − ug,t

)
, 0
}

(16)

The second-stage incorporates various constraints, denoted by Equations (17) to (26).
Equation (17) enforces power balance at each bus, considering connections with generators
(represented by matrix Cg) and lines (represented by matrix C f t). Ps

d,n,t and Ps
cur,n,t represent

demand and corresponding curtailment for each bus at period t.

Cg · Ps
g,t − C f t · Ps

l,t = Ps
d,n,t − Ps

cur,n,t. (17)

Equation (18) governs power flow through lines, with ∆θs
l,t being the voltage phase

angle difference between connected buses for line l at time t.

Ps
l,t =

∆θs
l,t

Xl
. (18)

Constraint (19) ensures line power flow remains within limits, where zs
l reflects the

availability of line l in scenario s, and Ωl represents the set of all lines.

Pmin
l · zs

l ≤ Ps
l,t ≤ Pmax

l · zs
l , zs

l ∈ {0, 1}. (19)

Similarly, Constraint (20) guarantees generator outputs stay within limits, with zs
g

indicating the availability of unit g in scenario s, and Ωg representing the set of all units.

Pmin
g · zs

g · ug,t ≤ Ps
g,t ≤ Pmax

g · zs
g · ug,t, zs

g ∈ {0, 1}. (20)
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Constraints (21) and (22) address ramping capabilities, limiting both upward and
downward adjustments in power output. Rg,u and Rg,d represent the limits for ramping up
and down, respectively. Additionally, STg,u and SDg,d denote limitations on start-up and
shutdown power, respectively.

Ps
g,t − Ps

g,t−1 ≤ ug,t−1 ·
(

Rg,u − STg,u
)
+ STg,u. (21)

Ps
g,t−1 − Ps

g,t ≤ ug,t ·
(

Rg,d − SDg,d

)
+ SDg,d. (22)

Constraint (23) restricts the extent of demand curtailment, while Constraint (24) sets
boundaries for phase angles. The availability state set for all elements is denoted by Zs, and
individual element availabilities (generators zs

g and lines zs
l ) are members of this set Zs.

0 ≤ Ps
cur,t ≤ Pmax

cur,t, (23)

θmin ≤ θs
t ≤ θmax. (24)

Finally, Equations (25) and (26) introduce reliability-specific constraints.

EENSt = ∑
n

∑
s

πs · Ps
cur,n,t, (25)

EENSt ≤ EENS, (26)

where EENS are the maximum value of EENSt. Definition of EENSt is given in Section 3.3.

3.3. Reliability Index Calculations

The reliability metrics used to quantify operational reliability include the expected
energy not supplied (EENS) and loss of load probability (LOLP). EENS refers to the amount
of electricity demand that is anticipated to go unmet within a specific timeframe such that

EENSt = ∆t ·∑
s

πs · Ps
cur,t, (27)

where ∆t denotes the length of t that demand reduction occurs. Ps
cur,t denotes the demand

curtailment in period t corresponding to scenario s.
LOLP measures the likelihood that the electrical system will not be able to meet the

demand for electricity within a year such that

LOLPt = ∑
s

πs,t · Ls,t, (28)

where Ls,t is a binary variable and it is equal to 1 if the demand curtailment happens in
scenario s, it is equal to 0 otherwise; that is,

Ls,t =

{
0, Ps

cur,t ≤ 0,
1, Ps

cur,t > 0.
(29)

4. The Model and Data-Driven Algorithm

Evaluating operational reliability in power systems is a complex task due to the sheer
size and interconnectedness of modern grids. Traditional methods, such as N − k contin-
gency analysis, become computationally expensive for large systems as they require simulat-
ing numerous outage scenarios. Backpropagation Neural Networks (BPNNs) offer a promis-
ing alternative by reducing the computational burden associated with reliability evaluation.

4.1. The Framework of BPNN

BPNNs achieve this by learning from pre-computed data. Instead of re-simulating
outages every time an evaluation is needed, BPNNs can be trained on a large dataset
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of pre-computed reliability assessments for various scenarios. This pre-training allows
BPNNs to evaluate new operating conditions much faster than traditional methods. Addi-
tionally, the BPNN can handle uncertainties inherent in power systems. Fluctuations in
renewable energy output, unpredictable load profiles, random equipment failures, and EU
all contribute to the challenge of assessing reliability. BPNNs excel at learning complex
relationships between these uncertain factors and their impact on the system’s reliability.

A BPNN is organized into layers of interconnected artificial neurons. These layers
include input layer, hidden layers, and output layer, as shown in Figure 3.

Processes 2024, 12, x FOR PEER REVIEW 8 of 15 
 

 

4.1. The Framework of BPNN 
BPNNs achieve this by learning from pre-computed data. Instead of re-simulating 

outages every time an evaluation is needed, BPNNs can be trained on a large dataset of 
pre-computed reliability assessments for various scenarios. This pre-training allows 
BPNNs to evaluate new operating conditions much faster than traditional methods. Ad-
ditionally, the BPNN can handle uncertainties inherent in power systems. Fluctuations in 
renewable energy output, unpredictable load profiles, random equipment failures, and 
EU all contribute to the challenge of assessing reliability. BPNNs excel at learning complex 
relationships between these uncertain factors and their impact on the system’s reliability. 

A BPNN is organized into layers of interconnected artificial neurons. These layers 
include input layer, hidden layers, and output layer, as shown in Figure 3. 

 
Figure 3. The structure diagram of BPNN. 

The input layer receives raw data representing the state of the power system for reli-
ability evaluation. Examples of such data include power generation, electricity demand at 
various grid points, and the operational status of components. 

The hidden layers perform the core information processing. A BPNN can have one 
or more hidden layers, each containing multiple interconnected neurons. These neurons 
apply mathematical functions to transform the received data. The number of hidden lay-
ers and neurons significantly impacts the BPNN’s ability to learn intricate relationships 
within the data. 

The output layer produces the network’s prediction or output. In the context of reli-
ability evaluation, this output could be a single value representing the probability of a 
system failure or a set of values indicating the reliability of different grid components. 

During forward propagation, the activation of a hidden neuron is calculated as 𝑦 = 𝑓൫𝜇 + 𝜔𝑦൯, (30)

where the input layer takes in data denoted by 𝑦. The jth hidden layer receives its input 
from the previous layer, represented by 𝑦. Weights connecting the previous layer to neu-
rons in the 𝑗th hidden layer are denoted by 𝜔. Each neuron in the 𝑗th hidden layer has 
a threshold value, 𝜇. The activation function applied to each neuron in the 𝑗th hidden 
layer is denoted by 𝑓. 

The relationship between the hidden layer and the next hidden layer can be ex-
pressed as  𝑦ାଵ = 𝑓൫𝜇ାଵ + 𝜔ାଵ𝑦൯. (31)

The relationship between hidden layer and output layer can be expressed as  𝑦௧ = 𝑓൫𝑢 + 𝜔𝑦,௫൯, (32)

Figure 3. The structure diagram of BPNN.

The input layer receives raw data representing the state of the power system for
reliability evaluation. Examples of such data include power generation, electricity demand
at various grid points, and the operational status of components.

The hidden layers perform the core information processing. A BPNN can have one
or more hidden layers, each containing multiple interconnected neurons. These neurons
apply mathematical functions to transform the received data. The number of hidden layers
and neurons significantly impacts the BPNN’s ability to learn intricate relationships within
the data.

The output layer produces the network’s prediction or output. In the context of
reliability evaluation, this output could be a single value representing the probability of a
system failure or a set of values indicating the reliability of different grid components.

During forward propagation, the activation of a hidden neuron is calculated as

yj = f J
(
µj + ωjym

)
, (30)

where the input layer takes in data denoted by ym. The jth hidden layer receives its input
from the previous layer, represented by yj. Weights connecting the previous layer to
neurons in the jth hidden layer are denoted by ωj. Each neuron in the jth hidden layer
has a threshold value, µj. The activation function applied to each neuron in the jth hidden
layer is denoted by f j.

The relationship between the hidden layer and the next hidden layer can be expressed as

yj+1 = f J
(
µj+1 + ωj+1yj

)
. (31)

The relationship between hidden layer and output layer can be expressed as

yt = fo
(
uo + ωoyj,max

)
, (32)

The model predicts a value (yt) for each time point (t). This prediction is influenced
by the weights (ωo) connecting the final hidden layer to the output layer. Additionally,
a threshold value (uo) is applied at the output layer. The output layer utilizes an acti-
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vation function ( fo) to transform the weighted sum of inputs. Commonly, hidden layer
activation functions are logical or hyperbolic, while the output layer often employs a linear
activation function.

To assess the model’s accuracy, we can calculate the error between predicted and
actual outputs using the following formula:

δy = yt − y, (33)

The formula allows us to calculate the error term for a unit in the jth hidden layer as:

δj = ωT
j δj+1 ×

(
f ∗J
(
1− f J

))
(34)

In the formula, the weight coefficient of the hidden layer j can be updated as:

ωj = ωj + δj+1 · yT
j (35)

This describes one iteration of training a Multi-Backpropagation Neural Network (M-
BPNN). Through repeated adjustments of its learning parameters over numerous iterations,
the M-BPNN progressively refines its accuracy.

4.2. BPNN Based Operational Reliability Evaluation Algorithm

This work introduces a novel approach, the Multi-Backpropagation Neural Network
(M-BPNN) architecture, to improve the prediction accuracy of system reliability indices
under fluctuating operating conditions. Conventional BPNN models directly map operat-
ing conditions to reliability metrics. However, the impact of different operating points on
reliability varies as conditions change. This limitation can lead to inaccurate predictions
with a single BPNN architecture.

The proposed M-BPNN addresses this limitation by introducing a classification step
before network training. The system operating data are first categorized based on a chosen
attribute, such as mean or quantile values. This allows for the creation of multiple BPNN
sub-models, each trained on data with similar characteristics. During prediction, the
input data from the test set are first classified and then directed to the corresponding
sub-model for prediction. Finally, the results from all sub-models are combined to form the
complete forecast.

The effectiveness of BPNNs is significantly influenced by the number of hidden
layers and neurons within these layers. To address this, the paper proposes an adaptive
algorithm for finding the optimal architecture for the M-BPNN. This algorithm iteratively
evaluates different network configurations and selects the one that delivers the most
accurate prediction results. It contains eight steps.

Step 1. Input Data: The process starts with feeding the training and test datasets to
the system.
Step 2. Set Maximum Values: The network architecture has a predetermined maximum
number of hidden layers and units per layer.
Step 3. Enumeration: The flowchart utilizes a cyclical process to iteratively assess various
configurations of hidden layers and the number of elements within those layers, all while
staying within predefined limits.
Step 4. BPNN Training: The loop iteratively trains a Backpropagation Neural Network
with the chosen configuration of hidden layers and elements.
Step 5. Error Calculation: After training the network, the BP neural network is used to
calculate the reliability index and the error.
Step 6. Termination Condition: The loop iterates until all possible combinations of hidden
layers and hidden elements have been enumerated.
Step 7. Minimum Error Selection: Once all combinations are assessed, the flowchart finds
the combination that resulted in the minimum error.
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Step 8. Reliability Index Calculation: Finally, the flowchart employs the identified combina-
tion of hidden layers and hidden elements to calculate the reliability index.

5. Numerical Results

Case studies were carried out with numerical experiments to examine the benefits of
the proposed method in the efficiency improvement of power system operational reliability
evaluation. Five power system reliability evaluation methods are considered.

• Method 1 (M1): The non-sequential Monte Carlo simulation method. The convergence
threshold of the sequential Monte Carlo method is 10−4.

• Method 2 (M2): The proposed method.
• Method 3 (M3): The radial basis function (RBF) neural network-based method [30].

The RBF neural network also has an input layer, hidden layer, and output layer. The
RBF neural network is trained using a supervised learning algorithm such as gradient
descent or its variants. During training, the network adjusts the weights associated
with the radial basis functions and the output layer to minimize the difference between
the predicted reliability values and the actual reliability data (obtained from historical
records, simulations, or analytical models). A detailed structure can be found in [30].

• Method 4 (M4): The generalized regression neural network-based method [31]. The
generalized regression neural network has the input layer, the radial basis layer, and
the output layer. The radial basis layer calculates the Euclidean distance between the
input vector and each prototype vector. The distance calculation is typically performed
using a Gaussian kernel function. The outputs from the radial basis layer are weighted
by the Gaussian activations and summed to produce the final output of the network.
Details can be found in [31].

• Method 5 (M5): The genetic algorithm [32]. The genetic algorithm contains eight parts:
(1) chromosome representation, (2) initialization, (3) fitness evaluation, (4) selection,
(5) crossover, (6) mutation, (7) replacement, and (8) termination. Details can be
found in [32].

Three test systems are considered, including the RTS 79 system, the RBTS system, and
the RTS 96 system. The data source and the diagram of these test systems can be found
in [2] The evaluation process commences with the calculation of system reliability indices
under various operating conditions using M1. These calculated indices subsequently serve
as both the input and output data for methods M2–M4. Next, the data are divided into
training and test sets following a 9:1 ratio. The training set is used to train the neural
network model, while the test set serves the purpose of verifying the model’s accuracy.
This process can avoid overfitting.

Consider the results of the unit commitment of the RBTS system as an example. The
RBTS system comprises six buses, nine transmission lines, and a mix of generation units
including four thermal and seven hydro units. It caters to five demand centers with a
total installed generation capacity of 240 MW, exceeding the peak demand of 185 MW.
Daily demand curves from the IEEE- RBTS inform the demand models. For manageability,
the maximum number of simultaneously failing devices is limited to three. The capacity
and reliability parameters of the system components are detailed in Table 1. The analysis
considers a total of 1351 scenarios encompassing all possible “N-3” contingencies. For
reference, a comprehensive list of “N-1,” partial “N-2,” and “N-3” scenarios is provided in
Table 2.
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Table 1. Reliability Parameters of the Electric Equipment of the RBTS System.

Electric Equipment Rated Capacity
(MW)

Failure Rate
(occ./a)

Repair Rate
(occ./a) Force

The 1st generator 40 2.0 194.67 0.0300
The 2nd generator 40 2.0 194.67 0.0300
The 3rd generator 10 4 194.67 0.0200
The 4th generator 20 2.4 159.27 0.0250
The 5th generator 5 2.4 159.27 0.0100
The 6th generator 5 2.4 159.27 0.0100
The 7th generator 40 2.4 159.27 0.0200
The 8th generator 20 5.0 194.67 0.0150
The 9th generator 20 3.0 146.00 0.0150

The 10th generator 20 6.0 194.67 0.0150
The 11th generator 20 6.0 194.67 0.0150

The 1st transmission line 45 1.5 876.00 0.0017
The 2nd transmission line 40 5.0 876.00 0.0057
The 3rd transmission line 40 4.0 876.00 0.0045
The 4th transmission line 71 1.0 876.00 0.0011
The 5th transmission line 71 1.0 876.00 0.0011
The 6th transmission line 45 1.5 876.00 0.0017
The 7th transmission line 42 5.0 876.00 0.0057
The 8th transmission line 71 1.0 876.00 0.0011
The 9th transmission line 71 1.0 876.00 0.0011

Table 2. Probability of the System Event Considering EU.

N-1
system event

Method Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7

No EU 0.7935 0.1619 0.2035 0.2454 0.0801 0.1213 0.1213

With EU

t1 0.6528 0.1138 0.1430 0.1725 0.2519 0.3812 0.3812
t2 0.6526 0.1137 0.1429 0.1723 0.2517 0.3809 0.3809
t3 0.6526 0.1137 0.1428 0.1723 0.2516 0.3808 0.3808
t4 0.6528 0.1138 0.1429 0.1724 0.2518 0.3811 0.3811
t5 0.6723 0.1227 0.1542 0.1859 0.0607 0.4110 0.4110

Table 3 compares the performance of each method (M1–M5) across three test systems,
including the RTS 79 system, the RBTS system, and the RTS 96 system. M1 provides the
precise results while it is time-consuming. Methods M2~M5 cannot provide the optimal
results but they are faster than M1. By comparing M2 with M3-M5 in each test system, we
can assess the trade-off between accuracy and computational efficiency.

Table 3. Reliability Evaluation Results of Methods M1–M5.

Methods

EENS (MWh/a) LOLP

RBTS
System

RTS 79
System

RTS 96
System

RBTS
System

RTS 79
System

RTS 96
System

M1 1056 127,549 24,704 0.0098 0.0846 0.0139
M2 1021 126,877 24,872 0.0097 0.0835 0.0138
M3 1098 124,791 22,950 0.0108 0.0909 0.0136
M4 998 147,313 20,760 0.0104 0.0917 0.0140
M5 1007 136,690 24,499 0.0090 0.0893 0.0133

The arrows in the table indicate how each method’s results (EENS and LOLP) compare
to the standard method (M1) within the same test system. Consider the results of the RBTS
system as an example. M1 gives the baseline value of EENS as 1056 MWh/a. M2’s EENS
value (1021 MWh/a) is lower than M1’s, indicating a closer approximation. M3’s EENS
value (1098 MWh/a) is higher than M1’s, indicating a larger deviation. M4’s EENS value
(998 MWh/a) is lower than M1’s, but the magnitude of the difference might be significant
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compared to M2. M5’s EENS value (1007 MWh/a) is lower than M1’s, but the magnitude
of the difference might be larger than M2’s.

Figure 4 compares the absolute errors of four approximation methods (M2, M3, M4,
and M5) to a standard method (M1) for evaluating the reliability of three test systems. The
y-axis of the graph shows the absolute error, while the x-axis shows the evaluation method.
Each method is represented by a different color line in the graph. There are two graphs in
the figure, one for each metric: absolute error of EENS (equivalent energy non-supplied)
and absolute error of LOLP (loss of load probability).
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The absolute error in EENS is generally lower for method M2 compared to M3, M4,
and M5 on RBTS, RTS-79, and RTS-96 systems. This suggests that M2 provides a better
approximation to the standard method (M1) in terms of EENS for these systems.

The absolute error in LOLP is also lower for method M2 compared to M3, M4, and
M5 on both RBTS, RTS-79, and RTS-96 systems. This suggests that M2 provides a better
approximation to the standard method (M1) in terms of LOLP for these systems as well.

Overall, the graph suggests that approximation method M2 offers the closest approxi-
mation to the standard method (M1) among the four methods evaluated (M2, M3, M4, and
M5) for both EENS and LOLP on the RBTS, RTS-79, and RTS-96 systems.

6. Conclusions

This paper introduces the concept of endogenous uncertainty for power system op-
erational reliability evaluation. Endogenous uncertainty is integrated into the reliability
parameter model of electric components and the scenario generation process. Then, a
two-stage reliability-constrained unit commitment model is formulated for system state
analysis. A BPNN-based method is proposed to solve this model. Case studies are car-
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ried out on the RBTS, RTS-79, and RTS-96 systems. Numerical results demonstrate that
endogenous uncertainty has a great impact on the power system reliability level. The
proposed method can solve this problem more effectively compared to the radial basis
function neural network-based method, the generalized regression neural network-based
method, and the genetic algorithm.

Author Contributions: Methodology, L.Z. (Lingzi Zhu); Software, Q.C.; Validation, Q.C.; Formal
analysis, Q.C. and D.C.; Investigation, D.C.; Resources, L.Z. (Lingzi Zhu); Data curation, L.Z. (Lingzi
Zhu); Writing—original draft, M.L.; Writing—review & editing, L.Z. (Lingxiao Zhang); Visualization,
L.Z. (Lingxiao Zhang); Supervision, L.Z. (Lingxiao Zhang); Project administration, D.C.; Funding
acquisition, M.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Key Science and Technology Project of China Southern
Power Grid under Grant 066500KK52222013.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: Authors Lingzi Zhu and Mingshun Liu are employed by the Power Dispatching
Control Center of Guizhou Power Grid Co., Ltd. Dongxu Chang are employed by the Electric Power
Research Institute, China Southern Power Grid. The remaining authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be construed as a
potential conflict of interest. The authors declare that this study received funding from China Southern
Power Grid. The funder was not involved in the study design, collection, analysis, interpretation of
data, the writing of this article or the decision to submit it for publication.

Nomenclature

Indices and Sets
i Index of power components
g Index of generation units
t Index of time
s Index of scenario
Φs,up Set of available devices under scenario s
Φs,dn Set of unavailable devices under scenario s
Parameters
I0 Rated current of the power component
I1 Trip setting current
F0 Initial value of the forced outage rate of the electric equipment
α, β Power outage coefficients of power components
αage, βage Power outage coefficients of power components considering aging
λ Failure rate of the power component
µ Repair rate of the power component
Fmax Maximum force outage rate of the electric equipment
T1 Service time of power component
N The total number of power components
ccur Cost coefficient of demand curtailment
cg Operating cost coefficient of the gth-generation unit
TO Minimum downtime of generation units
TS Minimum up-time of generation units
Hg Startup cost coefficients of generation units
Jg Shutdown cost coefficients of generation units
Xl Transmission line impedance
Pmin/max

l Minimum and maximum transmission power of line l
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Pmin/max
g Minimum and maximum power of generation unit g

Rg,u,Rg,d Limits for ramping up and down
Variables
F Forced outage rate of the electric equipment
It Real-time current
FEU

i EU based force outage rate of the ith power component
H(t) Likelihood of aging-related failure
πs Occurrence probability of scenario s
ug,t Unit commitment decision variables
Ps

g,t Dispatch variables
fg Objection function of the SUC model

f (1)g First-stage cost function

f (2)g Second-stage cost function
Ps

cur,n,t Demand curtailment
CU

g,t Startup cost of generation units
CD

g,t Shutdown cost of generation units
Ps

d,n,t Demand at each bus
∆θs

l,t Voltage phase angle difference
zs

l Availability of line l in scenario s
zs

g Availability of generation unit g in scenario s
STg,u,SDg,d Limitations on start-up and shutdown power
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