Organic Waste for Bioelectricity Generation in Microbial Fuel Cells: Effects of Feed Physicochemical Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organic Solid Waste Collection and Preparation
2.2. Laboratory-Scale MFC Setup and Operation
2.3. Laboratory Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Characterization of Selected Organic Wastes
3.2. Performance of Selected Organic Solid Wastes as the Feed of MFCs
3.3. Effect of Particle Size on MFC Performance
3.4. Effect of Moisture Content on MFC Performance
3.5. Effect of C/N Ratio on MFC Performance
3.6. Long-Term Operation of MFCs Connected in Series
3.7. Implications of the Present Study
MFC Type | Organic Feed | Maximum Power Density (W/m3) | Reference |
---|---|---|---|
Single-chambered air-cathode MFC | Food waste | 7.25 | This study |
Single-chambered air-cathode MFC | Piggery waste | 3.86 | This study |
Single-chambered air-cathode MFC | Anaerobic sludge | 1.5 | This study |
Single-chambered air cathode | Household Food waste | 7.7–8.1 | [22] |
Two chambered | Boiled solid potato | 1.4 | [51] |
Single-Chambered | Landfill leachate | 6.82 | [52] |
Two Chambered (H-type) | Landfill leachate | 2.06 | [21] |
Single-chambered MFC | Cattle manure | 0.02 | [53] |
Single-chambered air cathode MFC | Cattle manure | 0.02–0.1 | [38] |
Two chambered MFC | Waste activated sludge | 0.1 | [40] |
Single Cassette-electrode air cathode MFC | Cattle manure | 16.3 | [37] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN. World Population Prospects 2019. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 11 February 2020).
- Lenkiewicz, Z. Beyond an Age of Waste—Turning Rubbish into Resource. International Solid Waste Association (ISWA), 2024. Available online: https://www.unep.org/resources/global-waste-management-outlook-2024 (accessed on 24 May 2024).
- Singh, S.; Sinha, R.K. Vermicomposting of Organic Wastes by Earthworms: Making Wealth from Waste by Converting ‘Garbage into Gold’ for Farmers, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Fedunik-Hofman, L. Transforming food Waste: Making Something out of Rubbish. Australian Academy of Science, 2020. Available online: https://www.science.org.au/curious/earth-environment/transforming-food-waste-making-something-out-rubbish (accessed on 24 May 2024).
- Kabeyi, M.J.B.; Olanrewaju, O.A. Technologies for biogas to electricity conversion. Energy Rep. 2022, 8, 774–786. [Google Scholar] [CrossRef]
- Van, D.P.D.P.; Fujiwara, T.; Tho, B.L.B.L.; Toan, P.P.S.P.P.S.; Minh, G.H.G.H. A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environ. Eng. Res. 2020, 25, 1–17. [Google Scholar] [CrossRef]
- Cerda, A.; Artola, A.; Font, X.; Barrena, R.; Gea, T.; Sánchez, A. Composting of food wastes: Status and challenges. Bioresour. Technol. 2018, 248, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Sikora, L.J. Beneficial Co-Utilization of Agricultural, Municipal and Industrial by-Products; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Boddula, R.; Pothu, R. Microbial fuel cells: Technologically advanced devices and approach for sustainable/renewable energy development. Energy Convers. Manag. X 2022, 13, 100160. [Google Scholar] [CrossRef]
- Rahimnejad, M.; Ghoreyshi, A.A.; Najafpour, G.; Jafary, T. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl. Energy 2011, 88, 3999–4004. [Google Scholar] [CrossRef]
- Tardast, A. Fabrication and Operation of a Novel Membrane-less Microbial Fuel Cell as a Bioelectricity Generator. Iran. J. Energy Environ. 2012, 3, 1–5. [Google Scholar] [CrossRef]
- Nair, G.L.; Agrawal, K.; Verma, P. Chapter 25—The Role of Microbes and Enzymes for Bioelectricity Generation: A Belief toward Global Sustainability. In Biotechnology Microbial Enzymes, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 709–751. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nižetić, S.; Ng, K.H.; Papadopoulos, A.M.; Le, A.T.; Kumar, S.; Hadiyanto, H.; Pham, V.V. Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. Chemosphere 2021, 287, 132285. [Google Scholar] [CrossRef]
- Xue, W.; Chanamarn, W.; Tabucanon, A.S.; Cruz, S.G.; Hu, Y. Treatment of agro-food industrial waste streams using osmotic microbial fuel cells: Performance and potential improvement measures. Environ. Technol. Innov. 2022, 27, 102773. [Google Scholar] [CrossRef]
- Rojas-Flores, S.; De La Cruz-Noriega, M.; Nazario-Naveda, R.; Benites, S.M.; Delfín-Narciso, D.; Angelats-Silva, L.; Murga-Torres, E. Use of Banana Waste as a Source for Bioelectricity Generation. Processes 2022, 10, 942. [Google Scholar] [CrossRef]
- Rojas-Flores, S.; Benites, S.M.; De La Cruz-Noriega, M.; Cabanillas-Chirinos, L.; Valdiviezo-Dominguez, F.; Álvarez, M.A.Q.; Vega-Ybañez, V.; Angelats-Silva, L. Bioelectricity production from blueberry waste. Processes 2021, 9, 1301. [Google Scholar] [CrossRef]
- Wang, J.; Ren, K.; Zhu, Y.; Huang, J.; Liu, S. A Review of Recent Advances in Microbial Fuel Cells: Preparation, Operation, and Application. BioTech 2022, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Nastro, R.; Jannelli, N.; Minutillo, M.; Guida, M.; Trifuoggi, M.; Andreassi, L.; Facci, A.; Krastev, V.; Falcucci, G. Performance Evaluation of Microbial Fuel Cells Fed by Solid Organic Waste: Parametric Comparison between Three Generations. Energy Procedia 2017, 105, 1102–1108. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Srinivasan, S.; Jeevanantham, S.; Kamalesh, R.; Karishma, S. Sustainable strategy on microbial fuel cell to treat the wastewater for the production of green energy. Chemosphere 2021, 290, 133295. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Zhao, Q.; Zhang, J.; Jiang, J.; Zhao, S. A microbial fuel cell using permanganate as the cathodic electron acceptor. J. Power Sources 2006, 162, 1409–1415. [Google Scholar] [CrossRef]
- Antonopoulou, G.; Ntaikou, I.; Pastore, C.; di Bitonto, L.; Bebelis, S.; Lyberatos, G. An overall perspective for the energetic valorization of household food waste using microbial fuel cell technology of its extract, coupled with anaerobic digestion of the solid residue. Appl. Energy 2018, 242, 1064–1073. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, X.; Ivanov, I.; Huang, X.; Logan, B.E. Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black. Environ. Sci. Technol. 2014, 48, 2075–2081. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; He, W.; Yang, W.; Liu, J.; Wang, Q.; Liang, P.; Huang, X.; Logan, B.E. Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells. Environ. Sci. Water Res. Technol. 2016, 2, 266–273. [Google Scholar] [CrossRef]
- Tanikkul, P.; Pisutpaisal, N. Membrane-less MFC based biosensor for monitoring wastewater quality. Int. J. Hydrogen Energy 2018, 43, 483–489. [Google Scholar] [CrossRef]
- Santos, J.B.C.; de Barros, V.V.S.; Linares, J.J. The Hydraulic Retention Time as a Key Parameter for the Performance of a Cyclically Fed Glycerol-Based Microbial Fuel Cell from Biodiesel. J. Electrochem. Soc. 2017, 164, H3001–H3006. [Google Scholar] [CrossRef]
- Anam, M.; Yousaf, S.; Ali, N. Comparative Assessment of Microbial-Fuel-Cell Operating Parameters. J. Environ. Eng. 2020, 146, 04020093. [Google Scholar] [CrossRef]
- EPA. Method 1684: Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids; US Environmental Protection Agency: Washington, DC, USA, 2001.
- APHA; AWWA; WEF. Standard Methods. 2018. Available online: https://www.standardmethods.org/ (accessed on 26 April 2021).
- Behera, P. Soil & Solid Waste Analysis: A Laboratory Manual; Dominant Publishers & Distributors (P) Ltd.: Delhi, India, 2014. [Google Scholar]
- Kamaruddin, M.A.; Halid, N.F.H.M.; Yusoff, M.S.; Zainol, M.R.R.M.A.; Alrozi, R. TOC, TKN and C/N ratio fractionation of organic wastes under elevated temperature regime by using hydrothermal approach. AIP Conf. Proc. 2019, 2129, 020083. [Google Scholar]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, A.; Poulsen, F.W.; Angelidaki, I.; Min, B.; Bjerre, A.-B. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate. Biomass-Bioenergy 2011, 35, 4732–4739. [Google Scholar] [CrossRef]
- Shin, H.-S.; Youn, J.-H. Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 2005, 16, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Kim, D.; Lee, K.; Lee, K.T.; Park, K.Y. Application of food waste leachate to a municipal solid waste incinerator for reduction of NOx emission and ammonia water consumption. Environ. Eng. Res. 2015, 20, 171–174. [Google Scholar] [CrossRef]
- Lim, S.J.; Fox, P. Biochemical methane potential (BMP) test for thickened sludge using anaerobic granular sludge at different inoculum/substrate ratios. Biotechnol. Bioprocess Eng. 2013, 18, 306–312. [Google Scholar] [CrossRef]
- Inoue, K.; Ito, T.; Kawano, Y.; Iguchi, A.; Miyahara, M.; Suzuki, Y.; Watanabe, K. Electricity generation from cattle manure slurry by cassette-electrode microbial fuel cells. J. Biosci. Bioeng. 2013, 116, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, K.; Ahn, Y.-H. Effectiveness of piggery waste treatment using microbial fuel cells coupled with elutriated-phased acid fermentation. Bioresour. Technol. 2017, 244, 650–657. [Google Scholar] [CrossRef]
- Karluvalı, A.; Köroğlu, E.O.; Manav, N.; Çetinkaya, A.Y.; Özkaya, B. Electricity generation from organic fraction of municipal solid wastes in tubular microbial fuel cell. Sep. Purif. Technol. 2015, 156, 502–511. [Google Scholar] [CrossRef]
- Xiao, B.; Yang, F.; Liu, J. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell. J. Hazard. Mater. 2013, 254–255, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Rosa-lee Cooke, “Water/Wastewater Distance Learning Website,” Mountain Empire Community College, 2002. Available online: https://water.mecc.edu/courses/Env149/lesson14_print.htm#:~:text=in%20one%20tank.-,In%20the%20process%20of%20anaerobic%20digestion%2C%20the%20food%20and%20all,sludge%20is%20Total%20Volatile%20Solids (accessed on 24 May 2024).
- Tariq, M.; Wang, J.; Malik, A.J.; Akhter, M.S.; Mahmood, Q. Effect of substrate ratios on the simultaneous carbon, nitrogen, sulfur and phosphorous conversions in microbial fuel cells. Heliyon 2021, 7, e07338. [Google Scholar] [CrossRef] [PubMed]
- Mshandete, A.; Björnsson, L.; Kivaisi, A.K.; Rubindamayugi, M.; Mattiasson, B. Effect of particle size on biogas yield from sisal fibre waste. Renew. Energy 2006, 31, 2385–2392. [Google Scholar] [CrossRef]
- Veluchamy, C.; Kalamdhad, A.S. A mass diffusion model on the effect of moisture content for solid-state anaerobic digestion. J. Clean. Prod. 2017, 162, 371–379. [Google Scholar] [CrossRef]
- Kumar, A.; Hsu, L.H.H.; Kavanagh, P.; Barrière, F.; Lens, P.N.; Lapinsonnière, L.; Lienhard, V.J.H.; Schroeder, U.; Jiang, X.; Leech, D. The ins and outs of microorganism–electrode electron transfer reactions. Nat. Rev. Chem. 2017, 1, 0024. [Google Scholar] [CrossRef]
- Mateo, S.; Rodrigo, M.; Fonseca, L.P.; Cañizares, P.; Fernandez-Morales, F.J. Oxygen availability effect on the performance of air-breathing cathode microbial fuel cell. Biotechnol. Prog. 2015, 31, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Xu, F.; Ge, X.; Li, Y. Biological Treatment of Organic Materials for Energy and Nutrients Production—Anaerobic Digestion and Composting, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 4. [Google Scholar] [CrossRef]
- Orhorhoro, O.W.; Orhorhoro, E.K.; Ebunilo, P.O. Analysis of the Effect of Carbon/Nitrogen (C/N) Ratio on the Performance of Biogas Yields for Non-Uniform Multiple Feed Stock Availability and Composition in Nigeria. Int. J. Innov. Sci. Eng. Technol. 2016, 3, 119–126. [Google Scholar]
- Tejedor-Sanz, S.; Stevens, E.T.; Li, S.; Finnegan, P.; Nelson, J.; Knoesen, A.; Light, S.H.; Ajo-Franklin, C.M.; Marco, M.L. Extracellular electron transfer increases fermentation in lactic acid bacteria via a hybrid metabolism. Elife 2022, 11, e70684. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.E.; Boghani, H.C.; Kim, H.S.; Kim, B.G.; Lee, T.; Jeon, B.-H.; Premier, G.C.; Kim, J.R. Electricity production by the application of a low voltage DC-DC boost converter to a continuously operating flat-plate microbial fuel cell. Energies 2017, 10, 596. [Google Scholar] [CrossRef]
- Du, H.; Guo, J.; Xu, Y.; Wu, Y.; Li, F.; Wu, H. Enhancing microbial fuel cell (MFC) performance in treatment of solid potato waste by mixed feeding of boiled potato and waste activated sludge. Water Sci. Technol. 2018, 78, 1054–1063. [Google Scholar] [CrossRef]
- You, S.J.; Zhao, Q.L.; Jiang, J.Q.; Zhang, J.N.; Zhao, S.Q. Sustainable approach for leachate treatment: Electricity generation in microbial fuel cell. J. Environ. Sci. Health Part A 2006, 41, 2721–2734. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Nirmalakhandan, N. Cattle wastes as substrates for bioelectricity production via microbial fuel cells. Biotechnol. Lett. 2010, 32, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
Waste Type | pH | TS (%) | VS/TS (%) | MC (%) | COD (g/L) | TOC (%) | TN (%) | C/N | References |
---|---|---|---|---|---|---|---|---|---|
Food waste | 6.5 | 27.5 ± 3.3 | 93.5 ± 1.2 | 72.5 ± 3.3 | 226.5 ± 32.1 a | 52.4 ± 3.8 | 1.9 ± 0.2 | 28.0 ± 3.8 | This study |
Piggery waste | 8.2 | 17.6 ± 2.6 | 88.7 ± 1.5 | 82.4 ± 4.0 | 26.2 ± 8.1 a | 46.3 ± 2.1 | 4.7 ± 0.2 | 9.8 ± 2.1 | This study |
Activated sludge | 7.1 | 4.8 ± 2.0 | 87.2 ± 1.6 | 95.2 ± 3.3 | 48.1 ± 11.3 a | 38.2 ± 2.2 | 2.9 ± 0.2 | 13.2 ± 2.0 | This study |
Food waste | n.a | 12.9 | 88.2 | 87.1 | 117 a | 49.8 | 4.0 | 12.5 | [35] |
Food waste | n.a | 17.5 | 0.94 | 82.5 | n.a. | 51.2 | 2.8 | 18.3 | [34] |
Cattle manure | n.a | 29.3 | n.a. | 70.7 | n.a. | 42.6 | 1.5 | 28.4 | [37] |
Raw piggery waste | 7.9 | n.a. | n.a. | n.a. | 19.3 a/7.0 b | n.a. | n.a. | n.a. | [38] |
Composting product | 6.5 | 39.0 | 62.0 | 61.0 | n.a | 38.0 | 1.7 | 22.4 | [39] |
Wastewater Activated sludge | n.a | 15.67 g/L | 10.5 g/L | n.a. | 11.4 a | n.a. | n.a. | n.a. | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parwate, S.A.; Xue, W.; Koottatep, T.; Salam, A. Organic Waste for Bioelectricity Generation in Microbial Fuel Cells: Effects of Feed Physicochemical Characteristics. Processes 2024, 12, 1110. https://doi.org/10.3390/pr12061110
Parwate SA, Xue W, Koottatep T, Salam A. Organic Waste for Bioelectricity Generation in Microbial Fuel Cells: Effects of Feed Physicochemical Characteristics. Processes. 2024; 12(6):1110. https://doi.org/10.3390/pr12061110
Chicago/Turabian StyleParwate, Shubham Arun, Wenchao Xue, Thammarat Koottatep, and Abdul Salam. 2024. "Organic Waste for Bioelectricity Generation in Microbial Fuel Cells: Effects of Feed Physicochemical Characteristics" Processes 12, no. 6: 1110. https://doi.org/10.3390/pr12061110
APA StyleParwate, S. A., Xue, W., Koottatep, T., & Salam, A. (2024). Organic Waste for Bioelectricity Generation in Microbial Fuel Cells: Effects of Feed Physicochemical Characteristics. Processes, 12(6), 1110. https://doi.org/10.3390/pr12061110