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Abstract: Healthcare professionals wearing personal protective equipment (PPE) during outbreaks
often experience heat strain and discomfort, which can negatively impact their work performance
and well-being. This study aimed to evaluate the physiological and psychological effects of a newly
designed wearable cooling and dehumidifying system (WCDS) on healthcare workers wearing PPE
via a 60 min treadmill walking test. Core temperature, mean skin temperature, heart rate, and
subjective assessments of thermal sensation, wetness sensation, and thermal comfort were measured
throughout the test. Additionally, ratings of wearing comfort and movement comfort were recorded
during a wearing trial. The results showed that the WCDS significantly reduced core temperature,
improved thermal sensation, and reduced wetness sensation compared to the non-cooling condition.
The microclimatic temperature within the PPE was significantly lower in the cooling condition,
indicating the WCDS’s ability to reduce heat buildup. The wearing trial results demonstrated general
satisfaction with the wearability and comfort of the WCDS across various postures. These findings
contribute to the development of enhanced PPE designs and the improvement in working conditions
for healthcare professionals on the frontlines during outbreaks.

Keywords: personal protective equipment; healthcare workers; wearable cooling and dehumidifying
system; thermal comfort; wearing comfort

1. Introduction

Healthcare professionals frequently work in environments with a high risk of viral
transmission. Personal protective equipment (PPE) is an essential component of isolation
precautions designed to protect these individuals from potential exposure to infectious
agents [1,2]. However, the prolonged use of PPE can lead to additional physical and mental
stress, such as heat strain, fatigue, and a potential decrease in work performance [3–6]. A
study revealed that healthcare professionals experienced heat strain symptoms approxi-
mately 25 times more frequently when working with PPE compared to working without
it [7].

To alleviate heat stress caused by PPE, personal cooling garments were developed
to enhance heat loss and improve thermal comfort by regulating body temperature and
reducing physiological stress. Several studies have evaluated the effects of existing per-
sonal cooling garments used with PPE, including PCM/ice vests [8–10], liquid cooling
garments [11–14], and ventilation cooling systems [15,16], all of which demonstrated sig-
nificant improvements in thermal comfort. However, PCM/ice vests and liquid cooling
garments have limitations in operating time [17,18], and both of these cooling methods
can cause skin wetness, which affects skin wetness comfort [19]. Additionally, existing
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air-cooling systems are impractical in environments with highly contagious infections as
they require air intake from the surroundings. Considering the limitations of phase-change
cooling vests, liquid cooling garments, and air-cooling systems, Lou et al. [20] developed
a novel and lightweight wearable cooling and dehumidifying system (WCDS) for use in
hazardous environments to reduce skin wetness and improve thermal comfort.

When examining the effects of personal cooling garments on healthcare professionals,
it is crucial to differentiate between thermal sensation and thermal comfort. Thermal
sensation refers to an individual’s immediate perception of coldness or warmth, which
is subjective and can vary among individuals. In contrast, thermal comfort is a state of
mind that indicates contentment with the surrounding thermal environment, taking into
account both physiological and psychological aspects. Although thermal sensation is an
essential aspect of thermal comfort, it is not the only determining factor. For example, a
healthcare worker may experience a neutral thermal sensation while wearing PPE but still
feel uncomfortable due to skin wetness caused by sweating. Consequently, when assessing
the effectiveness of personal cooling garments, it is necessary to consider both thermal
sensation and thermal comfort.

Previous studies have not considered the specific challenges posed by the use of PPE
during a pneumonia outbreak. Furthermore, the precise psychological and physiological
effects of wearing WCDS under personal cooling garments in real working conditions have
not been adequately investigated. To address this gap, additional research is necessary
to gain a comprehensive understanding of the psychological and physiological impact of
WCDS in the working environment, which will facilitate optimal design and improved
performance. Therefore, this study was conducted to evaluate the physiological and psy-
chological impact of a newly designed cooling suit on healthcare workers. The study
analyzed the impact of WCDS on the thermal comfort of healthcare workers by monitoring
skin temperature, core temperature, and heart rate. Additionally, a subjective evaluation
questionnaire and a wearing trial, which included assessments of wearing comfort and
movement comfort, were administered. The aim was to obtain a comprehensive assessment
of the effectiveness of the WCDS application by examining the thermal perception, phys-
iological responses, and wearing comfort of healthcare workers. This research provides
valuable insights for the design of future PPE and contributes to enhancing the occupational
environment for those on the healthcare frontlines.

2. Methods
2.1. Participants

Eight healthy male college students voluntarily participated in the study. The partici-
pants had a mean age of 27 ± 2.1 years, height of 178.3 ± 2.2 cm, weight of 69.6 ± 3.6 kg,
BMI of 21.8 ± 1.3 kg/m2, and body surface area of 1.8 ± 0.1 m2. Before participation, each
participant was comprehensively informed about the experimental procedure and potential
risks and provided written informed consent. None of the participants had a history of heat-
related illness, cardiovascular, metabolic, or respiratory disease. Additionally, they were
instructed to refrain from consuming tea, coffee, or alcohol for at least 24 h prior to each
test. The Human Subjects Ethics Sub-Committee of the Hong Kong Polytechnic University
approved the experimental procedures under protocol number [HSEARS20210514003].

2.2. Clothing

The wearable cooling and dehumidifying system (WCDS) (Figure 1), developed by
Lou et al. [20], is intended for use in hazardous and infectious environments without
compromising the protective capabilities of personal protective equipment (PPE). The
system is designed as a knitted vest with an embedded tube that provides cooling air.
During each test, participants wore a standard PPE ensemble recommended for use during
the COVID-19 pandemic, which included a surgical mask, eye protection, a Dupont Tyvek
600 (Tyvek 600 Plus, Dupont, Wilmington, DE, USA) plus coverall as a protective gown,
and gloves. In addition to the PPE, subjects wore basic undergarments consisting of
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a t-shirt, trousers, underwear, and socks [21]. The WCDS was worn underneath the
protective clothing. Prior to the human trials, all garments, including the cooling ones,
were conditioned in a climatic chamber for 24 h.
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Figure 1. Wearable cooling and dehumidifying system (WCDS).

2.3. Protocol

The study took place in a climatic chamber set to 23 ◦C, 50% relative humidity, and
an air velocity of 0.1 m/s, simulating the conditions of a clean workroom in a Hong Kong
hospital. Participants underwent two 120 min experimental trials: one with a cooling
garment (cooling) and a control trial (without cooling). Initially, subjects were given a
30 min acclimatization period in the chamber, during which they were briefed on the
test procedures and the interpretation of perceptual rating scales. Following this, they
were instructed to change into the provided attire and were equipped with monitoring
instruments. For 60 min, the participants walked on a treadmill at a speed of 3.0 km/h,
representing a typical work intensity level [22] (Figure 2). After a 30 min recovery period,
they removed their clothing and equipment and exited the chamber. To ensure safety,
the test was immediately terminated if any of the following conditions were met: (1) the
subject’s core temperature exceeded 38 ◦C, (2) the heart rate surpassed 95% of the average
maximum heart rate, or (3) the subject expressed a desire to stop due to volitional fatigue.
In such cases, subjects were scheduled to retake the same test during their next visit. It
is important to note that participants had the option to stop the test at any time for any
reason.
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2.4. Measurements
2.4.1. Physiological Measurement

Core body temperature measurements were recorded at one-minute intervals using a
wearable sensor device (CORE, greenTEG). The microclimatic temperature was monitored
every minute using digital thermometers (DS1923, iButton) attached inside the personal
protective garment on the upper back area. Skin temperature sensors (DS1923, iButton)
were placed at eight locations (forehead, left upper chest, right scapula, left and right
arm, left hand and calf, and right anterior thigh; see Figure 3) using waterproof adhesive
tape (PVC, 3M). These sensors consistently recorded local skin temperatures every minute
throughout the entire test period. To calculate the mean skin temperature, an eight-point
weighting scheme, as specified in the ISO 9886 standard, was employed (Table 1).
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temperature.

Table 1. Measuring sites and weighting coefficients.

Measuring
sites Forehead Right

scapula

Left
Upper
chest

Right
arm

Left
arm

Left
hand

Right
anterior

Left
calf

Weighting
coefficients 0.07 0.175 0.175 0.07 0.07 0.05 0.19 0.2

The mean skin temperature is obtained via the following formula:

tsk = ∑ ki tski

2.4.2. Subjective Evaluation

Thermal sensation, wetness sensation, and thermal comfort sensation were assessed
initially and then every 10 min throughout the entirety of the trials. The mean value was
calculated for each parameter. Thermal sensation for both the whole body and the upper
body was rated using a nine-point scale (Figure 4a), ranging from −4 (very cold) to +4
(very hot), with 0 indicating a neutral thermal sensation. Wetness sensation for the whole
body and the upper body was measured using a seven-point scale (Figure 4b), where
−3 corresponds to a very wet sensation, +3 to a very dry sensation, and 0 represents a
neutral wetness sensation. Thermal comfort for the whole body and the upper body was
assessed using a five-point scale (Figure 4c), ranging from −4 (extremely uncomfortable) to
0 (comfortable).
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2.4.3. Wearing Trial

Post-experimental assessments of wearing comfort were conducted using a seven-
point Likert scale, ranging from −3 (very unsatisfied) to 3 (very satisfied) (Figure 5a).
The assessed criteria included ease of wearing, ease of removal, fit, flexibility, and safety.
Additionally, evaluations of body movement comfort were carried out in the same climatic
chamber. Participants, dressed in identical clothing, simulated six distinct postures: transi-
tioning from standing to sitting, sitting to standing, walking, bending forward and then
straightening up, squatting and then standing upright, and twisting (refer to Figure 6).
After each posture, participants provided subjective ratings of their comfort and freedom
of movement using a seven-point scale, ranging from −3 (very uncomfortable) to 3 (very
comfortable) (Figure 5b).
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2.5. Statistical Analysis

Statistical data analysis was performed using IBM SPSS Statistics (Version 19.0, IBM
Corporation). Unless otherwise specified, all values are presented as mean ± standard
deviation. Paired t-tests were employed to assess both physiological and perceptual results
over time and between treatments (with and without cooling). A 95% confidence level was
set for all statistical analyses.

3. Results
3.1. Physiological Parameters

Core temperature, mean skin temperature and heart rate measurements were recorded
at one-minute intervals. A significant difference (p < 0.05) in core temperature between the
control and cooling conditions (Figure 7a) was observed from the 42nd minute onwards,
with a maximum difference of 0.22 ◦C between the two conditions. Although both groups
experienced an increase in core temperature throughout the exercise duration, the increase
was less pronounced in the cooling group. The cooling intervention effectively maintained
the core temperature at a lower level compared to the non-cooling condition, demonstrating
the potential benefits of cooling in maintaining a stable core temperature and preventing
excessive heat accumulation. Statistical analysis revealed no significant difference (p > 0.05)
in average skin temperature between the control and cooling conditions (Figure 7b). The
cooling group’s mean skin temperature was slightly higher than that of the control group
from the 29th minute of the testing period. This result could be attributed to the lower core
temperature of human subjects. It is known that the perspiration rate is closely related to the
change in core temperature. The cooling effect of the WCDS resulted in less perspiration
and lower skin wetness and therefore reduced the evaporative heat loss rate from the
skin. The thermal conditions of the experiment were carefully selected to avoid exposing
participants to severe thermal stress, simulating real hospital and working conditions while
ensuring participant safety under protective clothing. Regardless of the test variant, with
or without cooling, the heart rate did not exceed 101 bpm, and there was no significant
difference (p > 0.05) in the results (Figure 7c).
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3.2. Microclimatic Temperature

A significant difference in the microclimatic temperature was observed from the
2nd minute onwards (p < 0.05), suggesting that the WCDS has the ability to reduce the
temperature within personal protective clothing (Figure 8). The maximum temperature
difference (5.3 ◦C) of the microclimate under the protective garment was recorded at the
28th minute of the experiment.
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3.3. Subjective Assessments

As depicted in Figure 9a,b, the overall and upper body thermal sensations under
the cooling condition were consistently lower than those under the non-cooling condition
throughout the testing period. A significant difference (p < 0.05), ranging from 0.8 to 1.7,
was observed from the 10th minute in the overall body thermal sensation between the two
conditions, suggesting that the WCDS enhanced the overall body thermal sensation. A
significant difference (p < 0.05) was also noted in the upper body thermal sensation, with a
disparity ranging from 0.7 to 1.8 between the two conditions.
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Figure 9c,d illustrate that the overall and upper body wetness sensations under the
cooling condition were lower than those under the non-cooling condition throughout the
testing period. A significant difference (p < 0.05) in the overall body wetness sensation was
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observed from the 10th minute, with a maximum difference of 1 between the two conditions.
A significant difference (p < 0.05) in the upper body wetness sensation was also observed
from the 10th minute, with a maximum difference of 1.3 between the two conditions. This
result proves that the cooling effect of WCDS reduced the perspiration of human subjects.

The whole-body thermal comfort sensation and upper-body thermal comfort sensation
were presented in Figure 9e and 9f, respectively. Throughout the testing period, participants
reported a higher level of comfort under the cooling condition compared to the non-cooling
condition, suggesting that the WCDS is an effective method to improve thermal comfort.
A significant difference (p < 0.05) was observed in both the overall body thermal comfort
sensation and the upper body thermal comfort sensation between the two conditions, with
a range of 0.5 to 1.5.

3.4. Wearing Trial Results

The wearing comfort of WCDS is shown in Figure 10a. The data indicate a general
satisfaction with wearability. Figure 10b illustrates the comfort levels associated with body
movement in six different postures, as well as the evaluation of freedom of movement. The
participants provided relatively positive comfort ratings for the WCDS across the various
postures.
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4. Discussion

This study aimed to investigate the effectiveness of a wearable cooling and dehumidi-
fying system (WCDS) in mitigating thermal stress and enhancing comfort under protective
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clothing. The findings provide valuable insights into the physiological and subjective re-
sponses to the WCDS, as well as its impact on the microclimate within protective clothing.

The physiological data revealed that the cooling intervention effectively maintained
a lower core temperature throughout the exercise duration, indicating its potential to
prevent excessive heat accumulation. Importantly, the heart rate remained below 101 bpm
in both conditions, which may be associated with the exercise intensity [23], indicating that
the WCDS did not impose additional cardiovascular strain. Mean skin temperature was
more likely to be affected by skin wetness and sweat evaporation. The air-cooling system
tended to reduce the sweating rate and enhanced the ventilative heat exchange. But in
this experiment, the skin was covered by undergarments instead of being exposed to the
cooling air, so the evaporative heat loss from the skin and mean skin temperatures were
not significantly different for the cooling and non-cooling groups.

The WCDS also significantly altered the microclimatic temperature within the protec-
tive clothing. This is a crucial finding, as the microclimate is a key determinant of thermal
comfort [24]. Compared to a traditional air-cooling system, this system can effectively
lower the microclimatic temperature and reduce the risk of infectious diseases caused by
air cooling, which cools via air circulation from the surroundings. The significant reduction
in microclimatic temperature demonstrates the WCDS’s potential to enhance comfort and
reduce thermal stress in real-world settings.

The subjective assessments provide compelling evidence for the psychological benefits
of the WCDS. The significant improvements in overall and upper body thermal sensations,
along with reduced wetness sensations, highlight the WCDS’s role in enhancing wearer
comfort. This is particularly relevant for healthcare workers who must wear PPE for
prolonged periods, as discomfort can lead to distraction, decreased work performance, and
reduced compliance with necessary protective measures.

The wearing trial results further support the practicality of the WCDS, with partic-
ipants reporting general satisfaction with its wearability and movement comfort. This
suggests that the WCDS can be integrated into protective clothing without significantly
compromising mobility, which is critical for occupational settings.

It is important to recognize certain limitations of this laboratory study. To ensure
participant safety, variables such as environmental conditions and exercise intensity were
strictly controlled. A field study may provide a more realistic assessment of the cooling ef-
fect. Furthermore, the study’s participants were exclusively college students, not healthcare
workers. The influence of gender should also be considered in future research.

5. Conclusions

This study provides valuable insights into the effectiveness of a wearable cooling
device system (WCDS) in mitigating thermal stress and enhancing comfort under protective
clothing. The WCDS significantly reduced core temperature, improved thermal sensation,
and reduced wetness sensation compared to the non-cooling condition without imposing
additional cardiovascular strain or compromising mobility. The wearing trial results
indicated general satisfaction with the wearability and movement comfort of the WCDS.
This suggests that the WCDS can be integrated into protective clothing without significantly
compromising mobility, which is critical for occupational settings.

In conclusion, the WCDS appears to be a promising strategy for mitigating thermal
stress and enhancing comfort under protective clothing. Future research should explore
the long-term effects of the WCDS and its applicability in various occupational and clinical
settings. The findings of this study have important implications for the design of protective
clothing and the development of strategies to enhance comfort and safety for personal
protective clothing.
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