Classification of Microseismic Signals Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microseismic Signals Acquisition
2.1.1. Compressive Loading Test
2.1.2. Shear Loading Test
2.1.3. Indirect Tensile Loading Test
2.1.4. Feature Parameters Extraction
2.2. Type Identification Convolutional Neural Network (T_Net)
2.3. Model Training
2.3.1. Data Set
2.3.2. Hyperparameter Settings
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Wei, Y.; Jiang, T.; Hao, F.; Xu, H. Elastic–Plastic Criterion Solution of Deep Roadway Surrounding Rock Based on Intermediate Principal Stress and Drucker–Prager Criterion. Energy Sci. Eng. 2024. early view. [Google Scholar] [CrossRef]
- Du, J.; Chen, J.; Pu, Y.; Jiang, D.; Chen, L.; Zhang, Y. Risk Assessment of Dynamic Disasters in Deep Coal Mines Based on Multi-Source, Multi-Parameter Indexes, and Engineering Application. Process Saf. Environ. Prot. 2021, 155, 575–586. [Google Scholar] [CrossRef]
- Chen, B.-R.; Wang, X.; Zhu, X.; Wang, Q.; Xie, H. Real-Time Arrival Picking of Rock Microfracture Signals Based on Convolutional-Recurrent Neural Network and Its Engineering Application. J. Rock Mech. Geotech. Eng. 2023, 16, S1674775523001993. [Google Scholar] [CrossRef]
- Xie, C.; Chen, Z.; Xiong, G.; Yang, B.; Shen, J. Study on the Evolutionary Mechanisms Driving Deformation Damage of Dry Tailing Stack Earth–Rock Dam under Short-Term Extreme Rainfall Conditions. Nat. Hazards 2023, 119, 1913–1939. [Google Scholar] [CrossRef]
- Dai, F.; Li, B.; Xu, N.; Zhu, Y. Microseismic Early Warning of Surrounding Rock Mass Deformation in the Underground Powerhouse of the Houziyan Hydropower Station, China. Tunn. Undergr. Space Technol. 2017, 62, 64–74. [Google Scholar] [CrossRef]
- Xue, R.; Liang, Z.; Xu, N.; Dong, L. Rockburst Prediction and Stability Analysis of the Access Tunnel in the Main Powerhouse of a Hydropower Station Based on Microseismic Monitoring. Int. J. Rock Mech. Min. Sci. 2020, 126, 104174. [Google Scholar] [CrossRef]
- Zhang, C.; Jin, G.; Liu, C.; Li, S.; Xue, J.; Cheng, R.; Wang, X.; Zeng, X. Prediction of Rockbursts in a Typical Island Working Face of a Coal Mine through Microseismic Monitoring Technology. Tunn. Undergr. Space Technol. 2021, 113, 103972. [Google Scholar] [CrossRef]
- Mao, H.; Xu, N.; Li, X.; Li, B.; Xiao, P.; Li, Y.; Li, P. Analysis of Rockburst Mechanism and Warning Based on Microseismic Moment Tensors and Dynamic Bayesian Networks. J. Rock Mech. Geotech. Eng. 2023, 15, S1674775522002530. [Google Scholar] [CrossRef]
- Arosio, D.; Longoni, L.; Papini, M.; Boccolari, M.; Zanzi, L. Analysis of Microseismic Signals Collected on an Unstable Rock Face in the Italian Prealps. Geophys. J. Int. 2018, 213, 475–488. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Zhu, W.; Sheng, Y.; Beroza, G.C. CRED: A Deep Residual Network of Convolutional and Recurrent Units for Earthquake Signal Detection. Sci. Rep. 2019, 9, 10267. [Google Scholar] [CrossRef]
- Tonnellier, A.; Helmstetter, A.; Malet, J.-P.; Schmittbuhl, J.; Corsini, A.; Joswig, M. Seismic Monitoring of Soft-Rock Landslides: The Super-Sauze and Valoria Case Studies. Geophys. J. Int. 2013, 193, 1515–1536. [Google Scholar] [CrossRef]
- Xin, C.; Jiang, F.; Jin, G. Microseismic Signal Classification Based on Artificial Neural Networks. Shock Vib. 2021, 2021, 6697948. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, C.; Pazzi, V.; Li, T.; Casagli, N. Deep Convolutional Neural Network for Microseismic Signal Detection and Classification. Pure Appl. Geophys. 2020, 177, 5781–5797. [Google Scholar] [CrossRef]
- Zhu, W.; Mousavi, S.M.; Beroza, G.C. Seismic Signal Denoising and Decomposition Using Deep Neural Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9476–9488. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, C.; Jiang, Y.; Li, T.; Pazzi, V.; Casagli, N. Integrated Processing Method for Microseismic Signal Based on Deep Neural Network. Geophys. J. Int. 2021, 226, 2145–2157. [Google Scholar] [CrossRef]
- Ross, Z.E.; Meier, M.; Hauksson, E. P Wave Arrival Picking and First-Motion Polarity Determination with Deep Learning. J. Geophys. Res. Solid Earth 2018, 123, 5120–5129. [Google Scholar] [CrossRef]
- Guo, C.; Zhu, T.; Gao, Y.; Wu, S.; Sun, J. AEnet: Automatic Picking of P-Wave First Arrivals Using Deep Learning. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5293–5303. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Zhang, Z.; Arosio, D.; Hojat, A.; Zanzi, L. Reclassification of Microseismic Events through Hypocenter Location: Case Study on an Unstable Rock Face in Northern Italy. Geosciences 2021, 11, 37. [Google Scholar] [CrossRef]
- Ma, K.; Sun, X.; Zhang, Z.; Hu, J.; Wang, Z. Intelligent Location of Microseismic Events Based on a Fully Convolutional Neural Network (FCNN). Rock Mech. Rock Eng. 2022, 55, 4801–4817. [Google Scholar] [CrossRef]
- Calabrese, L.; Proverbio, E. A Review on the Applications of Acoustic Emission Technique in the Study of Stress Corrosion Cracking. CMD 2020, 2, 1–33. [Google Scholar] [CrossRef]
- Gholizadeh, S.; Leman, Z.; Baharudin, B.T.H.T. A Review of the Application of Acoustic Emission Technique in Engineering. Struct. Eng. Mech. 2015, 54, 1075–1095. [Google Scholar] [CrossRef]
- Saeedifar, M.; Zarouchas, D. Damage Characterization of Laminated Composites Using Acoustic Emission: A Review. Compos. Part B Eng. 2020, 195, 108039. [Google Scholar] [CrossRef]
- Song, Z. Experimental Study on the Characteristics of Acoustic Emission Source of Rock under Uniaxial Compression. IOP Conf. Ser. Earth Environ. Sci. 2021, 791, 012003. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Yu, G.; Li, H.; Xiao, W. Research on Damage and Acoustic Emission Properties of Rock Under Uniaxial Compression. Geotech. Geol. Eng. 2021, 39, 3549–3562. [Google Scholar] [CrossRef]
- Xu, X.; Liu, B.; Li, S.; Song, J.; Li, M.; Mei, J. The Electrical Resistivity and Acoustic Emission Response Law and Damage Evolution of Limestone in Brazilian Split Test. Adv. Mater. Sci. Eng. 2016, 2016, 8052972. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; He, X.; Song, D.; Guo, H. A Novel Acoustic Emission Parameter for Predicting Rock Failure during Brazilian Test Based on Cepstrum Analysis. E3S Web Conf. 2020, 192, 01004. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, W.; Zhang, C.; Chen, Y. Experimental Study on the Deformation Localisation and Acoustic Emission Characteristics of Coal in Brazilian Splitting Tests. Sci. Rep. 2022, 12, 6348. [Google Scholar] [CrossRef] [PubMed]
- Ban, Y.; Xie, Q.; Fu, X.; Abdullah, R.A.; Wang, J. Shear Failure Mechanism and Acoustic Emission Characteristics of Jointed Rock-Like Specimens. JSM 2021, 50, 287–300. [Google Scholar] [CrossRef]
- Luo, F.; Xu, P.; Guo, Y.; Diao, Y.; Li, M. Study on Failure Characteristics and Acoustic Emission Characteristics of Sandstone Under Variable Angle Shear. Geotech. Geol. Eng. 2022, 40, 2705–2718. [Google Scholar] [CrossRef]
- Li, J.; Lian, S.; Huang, Y.; Wang, C. Study on Crack Classification Criterion and Failure Evaluation Index of Red Sandstone Based on Acoustic Emission Parameter Analysis. Sustainability 2022, 14, 5143. [Google Scholar] [CrossRef]
- Shengxiang, L.; Qin, X.; Xiling, L.; Xibing, L.; Yu, L.; Daolong, C. Study on the Acoustic Emission Characteristics of Different Rock Types and Its Fracture Mechanism in Brazilian Splitting Test. Front. Phys. 2021, 9, 591651. [Google Scholar] [CrossRef]
- Vallejos, J.A.; McKinnon, S.D. Logistic Regression and Neural Network Classification of Seismic Records. Int. J. Rock Mech. Min. Sci. 2013, 62, 86–95. [Google Scholar] [CrossRef]
- Meier, M.; Ross, Z.E.; Ramachandran, A.; Balakrishna, A.; Nair, S.; Kundzicz, P.; Li, Z.; Andrews, J.; Hauksson, E.; Yue, Y. Reliable Real-Time Seismic Signal/Noise Discrimination with Machine Learning. JGR Solid Earth 2019, 124, 788–800. [Google Scholar] [CrossRef]
- Provost, F.; Hibert, C.; Malet, J.-P. Automatic Classification of Endogenous Landslide Seismicity Using the Random Forest Supervised Classifier. Geophys. Res. Lett. 2017, 44, 113–120. [Google Scholar] [CrossRef]
- Wilkins, A.H.; Strange, A.; Duan, Y.; Luo, X. Identifying Microseismic Events in a Mining Scenario Using a Convolutional Neural Network. Comput. Geosci. 2020, 137, 104418. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, G.; Dong, L.; Chen, G.; Zhang, C. A Comparison of Mine Seismic Discriminators Based on Features of Source Parameters to Waveform Characteristics. Shock Vib. 2015, 2015, 919143. [Google Scholar] [CrossRef]
- Shang, X.; Li, X.; Morales-Esteban, A.; Chen, G. Improving Microseismic Event and Quarry Blast Classification Using Artificial Neural Networks Based on Principal Component Analysis. Soil Dyn. Earthq. Eng. 2017, 99, 142–149. [Google Scholar] [CrossRef]
- Tang, S.; Wang, J.; Tang, C. Identification of Microseismic Events in Rock Engineering by a Convolutional Neural Network Combined with an Attention Mechanism. Rock Mech. Rock Eng. 2021, 54, 47–69. [Google Scholar] [CrossRef]
- Chien, C.-C.; Jenkins, W.F.; Gerstoft, P.; Zumberge, M.; Mellors, R. Automatic Classification with an Autoencoder of Seismic Signals on a Distributed Acoustic Sensing Cable. Comput. Geotech. 2023, 155, 105223. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Horton, S.P.; Langston, C.A.; Samei, B. Seismic Features and Automatic Discrimination of Deep and Shallow Induced-Microearthquakes Using Neural Network and Logistic Regression. Geophys. J. Int. 2016, 207, 29–46. [Google Scholar] [CrossRef]
- Ulusay, R. (Ed.) The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-07712-3. [Google Scholar]
- Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Doha, Qatar, 2014; pp. 1746–1751. [Google Scholar]
- Trottier, L.; Giguere, P.; Chaib-draa, B. Parametric Exponential Linear Unit for Deep Convolutional Neural Networks. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; IEEE: Cancun, Mexico, 2017; pp. 207–214. [Google Scholar]
- Lei, X.; Ma, S. Laboratory Acoustic Emission Study for Earthquake Generation Process. Earthq Sci 2014, 27, 627–646. [Google Scholar] [CrossRef]
Sandstone | Mudstone | Coal | ||||
---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | |
Uniaxial compression test | 389 | 41 | 6035 | 583 | 574 | 59 |
Shear test | 589 | 103 | 846 | 98 | 5087 | 589 |
Brazilian splitting test | 5248 | 815 | 662 | 107 | 88 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Cui, Y.; Pu, Y.; Rui, Y.; Chen, J.; Mengli, D.; Yu, B. Classification of Microseismic Signals Using Machine Learning. Processes 2024, 12, 1135. https://doi.org/10.3390/pr12061135
Chen Z, Cui Y, Pu Y, Rui Y, Chen J, Mengli D, Yu B. Classification of Microseismic Signals Using Machine Learning. Processes. 2024; 12(6):1135. https://doi.org/10.3390/pr12061135
Chicago/Turabian StyleChen, Ziyang, Yi Cui, Yuanyuan Pu, Yichao Rui, Jie Chen, Deren Mengli, and Bin Yu. 2024. "Classification of Microseismic Signals Using Machine Learning" Processes 12, no. 6: 1135. https://doi.org/10.3390/pr12061135
APA StyleChen, Z., Cui, Y., Pu, Y., Rui, Y., Chen, J., Mengli, D., & Yu, B. (2024). Classification of Microseismic Signals Using Machine Learning. Processes, 12(6), 1135. https://doi.org/10.3390/pr12061135