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Abstract: Wearing safety helmets is an important way to ensure the safety of workers’ lives. To
address the challenges associated with low accuracy, large parameter values, and slow detection speed
of existing safety helmet detection algorithms, we propose a receptive field-enhanced lightweight
safety helmet detection algorithm called YOLOv5s-CR. First, we use a lightweight backbone, a high-
resolution feature fusion network, and a small object detection layer to improve the detection accuracy
of small objects while substantially decreasing the model parameters. Next, we embed a coordinate
attention mechanism into the feature extraction network to improve the localization accuracy of the
detected object. Finally, we propose a new receptive field enhancement module (RFEM) to substitute
the SPPF module in the original network, enabling the model to acquire features under multiple
receptive fields, thereby enhancing the detection precision of multi-scale objects. Using the Safety
Helmet Detection dataset for validation, in contrast to the initial YOLOv5s, the parameters of the
improved algorithm were reduced by 62.8% to 2.61 M, and P, R, and mAP0.5 were increased by 1.5%,
1.2%, and 2.0%, respectively. The detection speed can reach 149FPS on the RTX3070 GPU, which
satisfies the accuracy and real-time requirements for detecting safety helmets.

Keywords: safety helmet detection; YOLOv5s; attention mechanism; lightweight; receptive field
enhancement module

1. Introduction

With the continuous development of science and technology, and the acceleration
of the industrialization process, all walks of life are developing rapidly, corresponding
with a variety of potential security risks that are also emerging. In industrial production,
especially in high-risk areas such as construction and manufacturing, accidents may lead
to serious personal injury and property losses [1]. To ensure the life safety of workers to
the greatest extent, wearing safety helmets has become an essential safety measure [2].
Safety helmets can alleviate the instantaneous impact force to reduce head injury caused
by the impact force [3]. However, in many construction sites, there are still many serious
production accidents caused by construction personnel not wearing safety helmets, so
safety helmet-wearing detection technology has gradually become a research hotspot; the
research in this field aims to improve the accuracy, real-time capacity and automation of
detection, to inject more advanced and intelligent solutions for site safety management.

The birth of the safety helmet has a history of more than one hundred years. As
important personal protective equipment, safety helmets can effectively protect the heads
of workers from accidental injury. In 1993, the Golden Gate Bridge project in the United
States made it clear that workers must wear safety helmets during construction. Under
such a requirement, the number of casualties in the project was reduced by three-quarters
compared to other projects in the same period [4]. To urge production personnel to
wear protective equipment, the state has also formulated a series of standards to ensure
construction safety, and each unit also has its safety norms. The act of not wearing a safety
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helmet on the construction site has been expressly prohibited. However, most construction
workers have high labor intensity, weak safety awareness, and inadequate implementation
of the relevant management systems, resulting in the occurrence of the non-wearing of
safety helmets, which leads to serious production accidents [5]. Therefore, it is necessary
to strengthen the safety education of construction personnel and gradually improve their
independent safety awareness, as well as to do an excellent job in detecting helmet-wearing.

The traditional safety helmet-wearing detection method mainly relies on manual
inspection, and the site management personnel need to inspect the wearing situation
of workers regularly. However, the efficiency of manual inspection is low, especially in
large construction sites. It is difficult to achieve comprehensive monitoring, and it is easy
to have a problem with missing and false inspections [6]. With the rapid development
of deep learning technology, especially the progress in the field of target detection, the
safety helmet-wearing detection scheme based on deep learning has gradually emerged.
Compared with the traditional way, the deep learning algorithm can learn more complex
features through large-scale data to improve the accuracy of the identification of the helmet-
wearing situation, avoid the leakage and false detection that easily occurs in the traditional
method, and to also ensure uninterrupted detection 24 h a day, so as to improve the
efficiency and accuracy of safety production management [7].

Based on the above aspects, the research on safety helmet-wearing detection algorithms
has important practical significance in the current social background. With the help of
deep learning technology, we can more comprehensively and accurately monitor the safety
helmet-wearing situation of site personnel, and provide more intelligent and efficient
safety protection for industrial production. The results of this research will not only inject
new vitality into industrial safety management, but also promote the application and
development of deep learning technology in this field.

At present, object detection algorithms based on deep learning are mainly divided
into one-stage algorithms represented by the You Only Look Once (YOLO) series [8–11],
and two-stage algorithms represented by the R-CNN series [12–14]. Researchers mostly
improve these two types of object detection algorithms to realize the detection of safety
helmets. Li introduced PANet with a skip connection and CBAM attention mechanism into
the YOLOv3 network, and adopted CIoU loss to improve the average accuracy of safety
helmet detection [15]. Zhu combined ResNet101 with FPN to improve the feature extraction
network of Faster R-CNN and adjust the size of the prior box. The improved model has
a certain generalization ability and robustness [16]. Ding added the ECA-Net attention
mechanism to the neck of YOLOX, and used CIoU to calculate the loss. The improved
algorithm has a high accuracy while ensuring real-time detection [17]. Liu introduced
the RepVGG module to the lightweight backbone network of YOLOv5s, used Soft-NMS
to reduce the missed detection rate of occlusion targets, and used the mix-up method
to enhance and expand the dataset, which provided a practical reference for substation
safety helmet detection [18]. Zhao introduced the transformer self-attention module in the
backbone network of YOLOv5, and used the Ghost module and EIoU Loss to reduce the
model’s parameters and improve the detection accuracy. The algorithm is more effective
than the original algorithm at detecting safety helmets [19]. Deng proposed a safety helmet
detection method based on improved YOLOv4. By collecting a self-made data set of on-site
construction site videos, the K-means algorithm clusters the data set, and a multi-scale
training strategy is used in the network training process to improve the model’s adaptability
to different detection scales. The model mAP value reached 92.89%. The detection speed
reached 15 f/s [20].

Table 1 shows the comparison of the above safety helmet detection algorithms, from
which it can be seen that although the above safety helmet detection algorithms improve
the detection performance, they still have problems, such as large model parameters and a
slow detection speed.

To solve the above problems, we take the YOLOv5s algorithm as the baseline to make
improvements. The main contributions of this paper are as follows:
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(1) Redesign the overall structure of the network, thereby significantly reducing network
parameters and improving the detection accuracy of small objects.

(2) The coordinate attention mechanism is added to the feature extraction part of the
network to enhance the ability of the network to locate the object.

(3) Use the Max-Pooling module and three dilated convolutions with different dilation
rates to design a new Receptive Field Enhancement Module (RFEM) to make the
network have richer receptive fields and improve the detection accuracy of multi-
scale objects.

Table 1. The comparison of different safety helmet detection algorithms.

Model Improvements mAP0.5 Parameters FPS

YOLO3-CPANet-CIoU [15] CPANet, CIoU 0.920 298 M 21
Improved Faster R-CNN [16] ResNet101, Anchor 0.909 - -

Improved YOLOX [17] ECA-Net, CIoU 0.917 - 71.9
Improved YOLOv5s [18] RepVGG, Soft-NMS, Mixup 0.804 10.6 M 83.3
Improved YOLOv5s [19] Detect layer, Self-attention, Ghost module, EIoU 0.960 13 M -
Improved YOLOv4 [20] Anchor, Multi-scale training strategy 0.929 - 15

2. Improved YOLOv5s Model
2.1. Network Structure Improvements

With the deepening of the layers of the original YOLOv5s backbone network, the
feature map’s size continues to shrink, and the output channels multiply, which leads to
the original smaller objects occupying too few pixels in the feature map, which affects
the precision in detecting small objects, and leads to the excessive amounts of parameters
in the last few layers of the network. Therefore, we redesigned the network structure of
YOLOv5s. The convolution layer and down-sampling layer at the tail towards the end of
the backbone network were removed so that the down-sampling rate of the network was
reduced from 32 to 16, significantly reducing the network parameters while retaining more
detailed information. The improved high-resolution feature fusion network obtains 40× 40,
80 × 80, and 160 × 160 high-resolution feature maps after the 40 × 40 feature map is passed
through FPN [21] and PAN [22]. It can retain richer semantic information than the original
YOLOv5s feature fusion network. The large object detection layer with a size of 20 × 20
in the original YOLOv5s detection head is removed, and the small object detection layer
with a size of 160 × 160 is added to obtain the YOLOv5s-r model. Its network structure
is illustrated in Figure 1 (consider an input image of size 640 × 640). Since the 20 × 20
detection layer has a larger receptive field, and is used to detect large-size targets, according
to the proportion of the width and height of the helmet target in the training dataset in
Figure 2, it can be seen that the width and height of most helmet targets are within 0.2
of the whole picture size, which belongs to small size targets. Therefore, removing this
detection layer will not affect the detection accuracy of the helmet, and can greatly reduce
the number of network parameters, as shown in Table 2.

Table 2. Comparison of network parameters before and after.

Model Parameters GFLOPs Head Size

YOLOv5s 7.02 M 15.8 20/40/80
YOLOv5s-r 2.03 M 13.9 40/80/160
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Lightweight backbone network
High-resolution feature fusion network
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Figure 1. YOLOv5s-r network structure. It consists of three parts: a lightweight backbone network, a
high-resolution feature fusion network, and a small object detection head.
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Figure 2. Training dataset label width and height distribution. Where the color is darker, the samples
are more densely distributed.

2.2. Coordinate Attention Mechanism

By adaptively creating different weight parameters for the information in the image,
the attention mechanism can strengthen the attention to key information while weakening
the attention to useless information [23], thereby improving the neural network’s perfor-
mance. For deep learning, usually the deeper the model and the more parameters, the
stronger the learning ability of the model, but the more information and computation
are required, which can easily lead to information overload. The attention mechanism is
introduced to make the model focus on important information, reduce the processing of
redundant information, and improve the model’s estimation speed and accuracy [24]. The
attention mechanism is more like a weight vector, giving a higher weight to important con-
tent. Common attention mechanisms include SE [25], ECA [26], CBAM [27], etc. However,
the general attention mechanism usually ignores the location information, resulting in the
network being unable to learn the object’s coordinate information. At the same time, the
increase in parameters brought by most attention mechanisms greatly impacts lightweight
networks. The coordinate attention mechanism is an attention mechanism that almost
does not increase network parameters [28]. It enhances the representation of the region of
interest by incorporating location information into the channel attention, and its structure
is illustrated in Figure 3.

The coordinate attention mechanism’s operation is as follows: for the input x of size
C × H × W, a pooling kernel with dimension (H, 1) or (1, W) is first used to encode each
channel along the horizontal and vertical coordinate directions. The output of the c-channel
with height h can be stated as:

zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (1)
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Figure 3. Coordinate attention mechanism. It is mainly composed of horizontal and vertical Avg-
Pooling, Conv2d, BatcNorm, and non-linear layers, which can enhance the ability of the network to
locate the target to be detected.

Likewise, the output of the c-channel with width w can be expressed as:

zw
c (w) =

1
H ∑

0≤j≤H
xc(j, w) (2)

Then, the encoded output is first concatenated and then transformed by a 1 × 1
convolution transformation F1:

f = δ(F1([zh, zw])) (3)

where [ ·, ·] represents the concatenation operation in the spatial dimension, δ is the
hard Swish activation function, and f ∈ RC/r×(H+W) is the intermediate feature when
spatial information is encoded horizontally and vertically. Then, f is divided in the spatial
dimension to obtain two independent tensors: f h ∈ RC/r×H and f w ∈ RC/r×W . Finally, two
1 × 1 convolution transforms Fh and Fw are used to adjust f h and f w to the same channel:

gh = σ(Fh( f h)) (4)

gw = σ(Fw( f w)) (5)

where σ represents the sigmoid activation function, while gh and gw are the attention
weights. Finally, the output y of the attention mechanism is achieved by multiplying the
input feature map with the attention weights:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (6)

The CA attention mechanism is a plug-and-play module, which is generally embedded
into the feature extraction part of the network to improve the feature extraction effect of
the network on the key part. We propose two ways of embedding:

(a) Integrate CA attention into each C3 module of the backbone network;
(b) Add the CA attention mechanism to the end of the backbone network.

After experiments, the second method has higher detection accuracy, and is compared
with the detection accuracy of three attention mechanisms where SE, CBAM, and ECA (as
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shown in Table 3) were inserted. It can be found that inserting the CA attention mechanism
in the b mode can effectively improve the detection accuracy, and mAP0.5 reaches the
highest value (93.1%).

Table 3. Comparison of four different attention mechanisms.

Model P R mAP0.5 Parameters GFLOPs

YOLOv5s 0.917 0.877 0.920 7.02 M 15.8
+SE 0.925 0.865 0.922 7.05 M 15.8

+CBAM 0.924 0.879 0.925 7.06 M 15.9
+ECA 0.923 0.861 0.914 7.02 M 15.8

+CA(a) 0.924 0.864 0.923 6.71 M 15.2
+CA(b) 0.925 0.882 0.931 7.03 M 15.8

The heatmap effect after adding various attention mechanisms is shown in Figure 4.
It can be easily seen from the visualization results that the heat map after adding the
coordinate attention mechanism is brighter on the safety helmet target, indicating that the
coordinate attention mechanism is more accurate for the positioning of the safety helmet
target, which can effectively avoids the interference caused by the complex environment.
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Figure 4. Comparison of heatmaps of various attention mechanisms. The more concentrated the dark
color is on the safety helmet targets, the better the effect of the attention mechanism is.

2.3. Improved Receptive Field Enhancement Module

In convolutional neural networks, the receptive field can be defined as the size of
the mapped area of each pixel in the output feature map of each layer of the network on
the input feature map [29]. The richer the receptive field is, the more global and local
information can be obtained.

Spatial pyramid pooling [30] is a commonly used receptive field enhancement method.
It can avoid image distortion caused by image area cropping and zoom operation. In
YOLOv5s, the structure of SPP is improved, and a fast version of spatial pyramid
pooling–SPPF, is proposed; its structure is shown in Figure 5. CBS modules are added
before and after SPP, the parallel structure of SPP is changed to a serial structure, and the
pooling kernel of max pooling is uniformly set to 5 × 5. In total, SPPF can obtain receptive
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fields of 5 × 5, 9 × 9, and 13 × 13 scales. In addition, the commonly used receptive field
enhancement methods include dilated convolution, ASPP [31], RFB [32], PPM [33], etc.

CBS Concat
MaxPooling

k=5, s=1, p=2

MaxPooling

k=5, s=1, p=2

MaxPooling

k=5, s=1, p=2
CBS

Figure 5. SPPF structure. It consists of three Max-Pooling modules and two CBS modules.

In deep learning, the convolutional layer is the basic module in the convolutional
neural network, whose role is to extract features from the input data. The convolution
layer can be regarded as a sliding window operation, and the convolution operation is
performed between the convolution kernel and the input data to obtain the output data. In
a traditional convolution operation, each element in the convolution kernel is multiplied
once with each element in the input data, and these results are then added to produce
an element in the output data. Therefore, if the convolution kernel size is 3 × 3, then a
convolution operation will involve nine input data elements. If the convolution kernel
size increases, the amount of computation required for the convolution operation increases
accordingly. In practical applications, the data sets that need to be processed are usually
large. If the size of the convolution kernel is too large, the computational amount required
for the convolution operation will be too large, which will affect the training and prediction
efficiency of the model.

Dilated convolution is a method to solve the above problem. Dilated convolution can
increase the network receptive field without reducing the resolution, increasing parameters,
and increasing the depth of the network [34]. Therefore, the number of parameters in
the convolution layer can be reduced by dilated convolution, thus reducing the size and
complexity of the model and improving the efficiency of the model. This is done by
introducing dilation into the convolution kernel. In dilated convolution, every element in
the convolution kernel is not multiplied by every element in the input data, but by elements
separated by a certain distance in the input data. This spacing distance is called the dilation
rate and can also be understood as the step size of the element in the convolution kernel [35].
In dilated convolution, when the dilated rate is 1, it is a traditional convolution operation.
As an essential technique in convolutional neural networks, dilated convolution has been
widely used in image processing and other fields.

The structure of dilated convolution is shown in Figure 6. Among them, the outer-most
box represents the input image, the black dot represents the convolution kernel, and the
blue area represents the convolution receptive field. Figure 6a is an ordinary convolution
process, the dilation rate is 1, and the convolution receptive field is 3; Figure 6b is a dilated
convolution with dilation rate 2, and the receptive field after convolution is 5; Figure 6c is a
dilated convolution with dilation rate 3, and the receptive field after convolution is 7.

(a)  d=1 (b) d=2 (c)  d=3  

Figure 6. Dilated convolution structure. The blue area represents the convolution receptive field.



Processes 2024, 12, 1136 8 of 14

As shown in Equation (7), for a convolution kernel of size k× k, a, a dilated convolution
of size ki × ki can be obtained after the dilation operation with dilation rate d :

ki = k + (k − 1)× (d − 1) (7)

For example, in a traditional convolution operation, when the convolution kernel size
is 3 × 3 (that is, k = 3, d = 1), the effective receptive field is 3 × 3. When the dilation rate
is 2, multiplication is performed between each element in the convolution kernel and the
input data by one pixel, and the size of the effective receptive field of each element in the
convolution kernel is 5× 5, which is larger than the effective receptive field of the traditional
convolution operation. Similarly, when the dilation rate is 3, the effective receptive field
size of each element in the convolution kernel is 7 × 7, and so on. Therefore, by adjusting
the dilation rate, the effective receptive field of the convolution kernel can be expanded,
and the receptive field size of the model can be improved; that is, multi-scale information
can be obtained, and features in the input data can be better captured. In practice, the
size of the target under detection is usually very rich; at this time, only relying on the
SPPF module will not be able to fully deal with the multi-scale changes in the detection
target. Therefore, we use the Max-Pooling module and dilated convolution to design a new
receptive field enhancement module called RFEM.

Since the resolution of the output feature map of the YOLOv5s-r feature extraction
network is 26 × 26 (the input is 416 × 416), we, respectively, use dilated convolution with 3,
8, and 13 dilation rates. According to Equation (7), they can obtain receptive fields with
scales of 7 × 7, 17 × 17, and 27 × 27, which can adapt to the size of the output feature map.

As shown in Figure 7, The process of the RFEM module is as follows: the input feature
map M0 is passed through three dilated convolutions Di with dilation rate i to obtain their
output Ni:

Ni = Di(M0) (i = 3, 8, 13) (8)

At the same time, the input feature map M0 is passed through three Max-Pooling
modules MP in series to obtain their output Mi :

Mj = MP(Mj−1) (j = 1, 2, 3) (9)

Finally, Ni, Mi, and the feature map obtained after 1 × 1 convolution F1 are concate-
nated, and then the channel is adjusted by 1 × 1 convolution F2 as the output Out of the
whole module:

Out = F2([F1(M0), Ni, Mj]) (i = 3, 8, 13; j = 1, 2, 3) (10)

MaxPooling

k=5,s=1,p=2

MaxPooling

k=5,s=1,p=2

MaxPooling

k=5,s=1,p=2

CC

Conv 1×1

Conv 1×1

Conv 3×3  d=3

Conv 3×3  d=8

Conv 3×3  d=13

Figure 7. Receptive field enhancement module structure. It is mainly composed of three Max-Pooling
modules and dilated convolutions with dilated rates of 3, 8, and 13.
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In this way, the RFEM module can obtain receptive fields of six different scales: 5 × 5,
9 × 9, 13 × 13, 7 × 7, 17 × 17, and 27 × 27, so that the network can cope with multi-scale
changes in the target under detection and enhance the precision of detection. The coordinate
attention mechanism is inserted into the tail of the YOLOv5s-r backbone, and the RFEM
module is used to replace the original SPPF model to obtain the improved final model
YOLOv5s-CR, whose structure is shown in Figure 8.

CBS

CBS

C3

CBS

CBS

C3

C3

RFEM CBS

Upsample

Concat

C3

CBS

Upsample

Concat C3

CBS

Concat

C3

CBS

Concat

C3

Conv

Conv

Conv

Y1Y1

Y2Y2

Y3Y3

C3

C3C3

640×640×3

160×160×255

80×80×255

40×40×255Backbone Neck Head

CA

Figure 8. YOLOv5s-CR network structure. Its backbone is a more lightweight backbone embedded
with coordinate attention mechanism and RFEM, and it also has a small object detection layer.

3. Experimental Results and Analysis
3.1. Datasets and Experimental Environments

Using Safety Helmet Detection, a public dataset of safety helmet detection on Kaggle
(https://www.kaggle.com/), the dataset contains 5000 pictures of workers wearing safety
helmets and not wearing safety helmets in various scenarios and randomly divides them
into training sets, validation sets, and test sets in the ratio of 7:1.5:1.5.

To evaluate the effectiveness of the YOLOv5s-CR algorithm, the following evaluation
indicators are selected: Precision, Recall, mean Average Precision, Parameters, GFLOPs,
and FPS. The system used in the experimental equipment was Windows 10, the CPU was
an Intel (R) Core(TM) i7-11800H@ 2.30 GHz (MSI Technology Co., Ltd., Shanghai, China),
the memory was 16 GB, the GPU was an NVIDIA RTX3070(MSI, China), and the deep
learning framework was Pytorch v1.11.

3.2. Ablation Experiments

To verify the effectiveness of the improvements in this paper, we use the 6.2 version of
the YOLOv5s model as a baseline for ablation experiments. The input image has dimensions
of 416× 416, and the batch size is configured as 32, and each model is trained for 150 epochs.
Experiment with each improvement step and record the results. The experimental outcomes
are presented in Table 4.

Table 4. Ablation experiment.

Model P R mAP0.5 Parameters GFLOPs FPS

YOLOv5s 0.917 0.877 0.920 7.02 M 15.8 138
YOLOv5s-r 0.926 0.878 0.932 2.03 M 13.9 158

YOLOv5s-r+CA 0.928 0.883 0.934 2.04 M 14 153
YOLOv5s-r+RFEM 0.928 0.888 0.936 2.61 M 15.8 156

YOLOv5s-CR 0.932 0.889 0.94 2.61 M 15.8 149

https://www.kaggle.com/
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Table 4 reveals that, in comparison to the initial YOLOv5s version, the P, R, and mAP0.5
of the YOLOv5s-r after the redesigned network structure are increased by 0.9%, 0.1%, and
1.2%, respectively, under the condition that the parameters are reduced by 71% and the
GFLOPs are reduced by 12%. Using YOLOv5s-r as the baseline, after adding the coordinate
attention mechanism, although the parameters and GFLOPs are slightly increased, P, R, and
mAP0.5 are increased by 0.2%, 0.5%, and 0.2%, respectively. After introducing the RFEM
module to replace the SPPF module in YOLOv5s-r, P, R, and mAP0.5 are increased by 0.2%,
1.0%, and 0.4%, respectively. The above two improvements are integrated into YOLOv5s-r
to obtain the improved final model, YOLOv5s-CR. Compared with the baseline YOLOv5s,
the P, R, and mAP0.5 of YOLOv5s-CR are increased by 1.5%, 1.2%, and 2.0%, respectively,
and the detection speed is increased by 11FPS under the condition that the parameters are
reduced by 62.8% and the GFLOPs are almost unchanged.

Figure 9a is the P-R curve of YOLOv5s, and Figure 9b is the P-R curve of YOLOv5s-CR.
As can be seen from the figure, the area surrounded by the P-R curve of YOLOv5s-CR is
larger, which shows that the accuracy, recall rate, and robustness of the model are better.
Moreover, the mAP0.5 of YOLOv5s-CR reaches a higher value of 0.940, indicating that the
improved algorithm has better detection performance.

Recall
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Figure 9. YOLOv5s Precision-Recall curve and YOLOv5s-CR Precision-Recall curve. The larger area
enclosed by the curve indicates the better robustness of the model.

Figure 10 shows the change in the confidence loss of YOLOv5s and YOLOv5s-CR
during training. It can be seen from the figure that the loss value of YOLOv5s-CR decreases
faster in the training process; that is, the model converges faster. The loss of YOLOv5s
drops from 0.04 to 0.02 at about 70 epochs. The confidence loss of YOLOv5s-CR dropped
to 0.02 in the first few epochs, and to around 0.08 at 150 epochs, which is lower than that of
YOLOv5s, indicating that the model can achieve higher detection accuracy.

In summary, we prove the effectiveness of the improvements, and the improved
YOLOv5s-CR model has better performance.

Figure 11 shows the detection effect comparison of YOLOv5s and YOLOv5s-CR. In the
first picture with occlusion, YOLOv5s-CR correctly detected all targets, while YOLOv5s had
two missed targets. The second and third pictures are from a top-down angle; YOLOv5s-CR
can correctly detect all the targets, while the YOLOv5s still have undetected phenomena.
In the last picture, the YOLOv5s have a false detection, while YOLOv5s-CR has no false
detections. Therefore, in the actual situation, the detection effect of the improved YOLOv5s-
CR algorithm is better than that of the original YOLOv5s algorithm to a large extent.
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图 3.18 YOLOv5s 和 YOLOv5s-CR 的损失曲线

Figure 3.18 YOLOv5s and YOLOv5s-CR loss curve

图 3.19 为 YOLOv5s 与 YOLOv5s-CR 的检测效果对比。在第一张存在遮挡

的图像中，YOLOv5s-CR 能够正确检测到所有目标，而 YOLOv5s 有两个目标未

检测到。第二和第三张图片是从自上而下的角度，YOLOv5s-CR 可以正确检测到

所有目标，而 YOLOv5s 仍然存在未检测到的现象。在最后一张图中，YOLOv5s

存在误检现象，而 YOLOv5s-CR 没有误检现象。因此，在真实情况下，改进的

YOLOv5s-CR 算法的检测效果在很大程度上优于原始 YOLOv5s 算法。

Figure 10. YOLOv5s and YOLOv5s-CR loss curve. It is clear that YOLOv5s-CR converges faster and
ends up with a lower loss.
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Figure 11. Comparison of detection results between YOLOv5s and YOLOv5s-CR. Obviously, the
improved YOLOv5s-CR can correctly detect all targets.

3.3. Comparative Experiments

To further validate the effectiveness of the YOLOv5s-CR algorithm in helmet detection,
we select some representative object detection algorithms for comparative experiments.
Under identical experimental conditions, the algorithm in this paper is compared with
SSD, Faster-RCNN, YOLOv3-tiny, YOLOv7-tiny, and YOLOv8n object detection algorithms
using the same data set; data set division method and model training strategy. The results
of the experiments are presented in Table 5.

Table 5. Comparative experiment.

Model P R mAP0.5 Parameters GFLOPs FPS

SSD 0.592 0.613 0.592 91.1 M 26.3 64
Faster-RCNN 0.752 0.822 0.752 108 M 137 15
YOLOv3-tiny 0.888 0.81 0.87 8.67 M 12.9 178
YOLOv7-tiny 0.922 0.88 0.932 6.01 M 13.9 112

YOLOv8n 0.926 0.876 0.931 3.01 M 9.3 107
YOLOv5s-CR 0.932 0.889 0.94 2.61 M 15.8 149

Since most of the safety helmet objects in this experimental dataset are small objects
and dense objects, Table 5 illustrates that SSD and Faster-RCNN algorithms have poor
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detection effects and slow detection speed; although the YOLOv3-tiny algorithm has
a fast detection speed, the detection effect is poor. The YOLOv7-tiny and YOLOv8n
algorithms have high detection accuracy, but the detection speed is slow. YOLOv5s-CR
has greatly improved detection accuracy and recall when the parameters are only 2.61 M.
In comparison to YOLOv3-tiny, the detection performance was improved by 4.4%, 7.9%,
and 7%, respectively. Compared with YOLOv7-tiny, it was improved by 1.0%, 0.9%, and
0.8%, respectively. In comparison to YOLOv8n, it was improved by 0.6%, 1.3%, and 0.9%,
respectively. Simultaneously, the speed of detection is increased by 37FPS and 42FPS,
respectively, compared with YOLOv7-tiny and YOLOv8n. It is evident that although the
GFLOPs of the proposed algorithm are slightly increased compared with other algorithms,
the parameters are greatly reduced, the detection performance is better, and it can satisfy
the requirements for detecting safety helmets.

Figure 12 shows the comparison of the detection effects of the four YOLO algorithms in
the above comparison models in different scenarios. The first figure shows the scene containing
long-distance small objects; it is evident that YOLOv3-tiny, YOLOv7-tiny, and YOLOv8n all
have missed detection phenomenon, while YOLOv5s-CR has not missed detection due to the
small object detection layer. The second picture shows the scene of working at height from an
elevation perspective. YOLOv3-tiny, YOLOv7-tiny, and YOLOv8n all have false detections. The
third picture is the scene when the light intensity is weak, YOLOv3-tiny and YOLOv7-tiny also
have false detections, and YOLOv5s-CR has no false detections in both cases. The fourth figure
shows the object dense scene, YOLOv3-tiny, and YOLOv7-tiny both have different degrees of
false detection, and YOLOv5s-CR can correctly detect all objects. Evidently, the algorithm in
this paper has good robustness in various scenarios.辽宁工程技术大学硕士学位论文 
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YOLOv5s-CR. YOLOv5s-CR has the best detection effect among the four algorithms.



Processes 2024, 12, 1136 13 of 14

4. Conclusions

Taking version 6.2 of the YOLOv5s algorithm as the baseline, we propose a lightweight
YOLOv5s-CR safety helmet detection algorithm. At the same time, we propose a new
receptive field enhancement module called RFEM, which enables the network to have
richer receptive fields so that the network can cope with multi-scale changes in objects.
Using the public dataset Safety Helmet Detection for verification, in contrast to the initial
YOLOv5s, the parameters of YOLOv5s-CR are reduced by 62.8%, only 2.61 M, while
mAP0.5 is increased by 2.0%, and the detection speed can reach 149FPS. Compared with
the commonly used object detection algorithms, the highest mAP can be achieved while
having the fewest parameters. Experiments show that our algorithm can meet the needs of
safety helmet detection tasks and has strong practicability.
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