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Abstract: For mitigating global warming, polymer electrolyte membrane fuel cells have become
promising, clean, and sustainable alternatives to existing energy sources. To increase the energy
density and efficiency of polymer electrolyte membrane fuel cells (PEMFC), a comprehensive nu-
merical modeling approach that can adequately predict the multiphysics and performance relative
to the actual test such as an acceptable depiction of the electrochemistry, mass/species transfer,
thermal management, and water generation/transportation is required. However, existing models
suffer from reliability issues due to their dependency on several assumptions made for the sake of
modeling simplification, as well as poor choices and approximations in material characterization and
electrochemical parameters. In this regard, data-driven machine learning models could provide the
missing and more appropriate parameters in conventional computational fluid dynamics models.
The purpose of the present overview is to explore the state of the art in computational fluid dynamics
of individual components of the modeling of PEMFC, their issues and limitations, and how they
can be significantly improved by hybrid modeling techniques integrating with machine learning
approaches. Furthermore, a detailed future direction of the proposed solution related to PEMFC and
its impact on the transportation sector is discussed.

Keywords: fuel cell; numerical modeling; mass transfer; electrochemical; progress; limitations;
machine learning; PEMFC

1. Introduction

Fossil fuels, such as coal, oil, and natural gas, have been the primary sources of energy
over the past 50 years, despite their significant impact on increasing CO2 emissions and
contributing to global warming [1,2]. This trend is unlikely to stop owing to the growing
population and economic development unless a reliable and sustainable energy source
replaces fossil fuels [3]. According to the modified Klass model [4], the depletion of oil,
coal, and natural gas will take approximately 35, 107, and 37 years, respectively. The fuel
infrastructure cannot be constructed overnight, even in light of the dire situation, because
the process is costly and slow.

In this regard, hydrogen is seen as a suitable alternative to conventional fuels as both
an energy source and carrier that could help alleviate the detrimental impacts of fossil
fuel combustion on the environment [5,6]. Hydrogen utilizes electrochemical reactions
to convert it into fuel and directly oxidize it for generating electricity [5]. Based on the
electrolyte and working temperature, hydrogen fuel cells are classified as low temperature
(20–100 ◦C), medium temperature (200–300 ◦C), and high temperature (600–1500 ◦C) fuel
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cells [7]. Low-temperature fuel cells have made notable advancements in transportation
applications because of their rapid startup, compact size, and lighter weight in comparison
to high-temperature fuel cells [8]. Proton exchange membrane fuel cells (PEMFCs) and
alkaline fuel cells (AFCs) are among the most common types of low-temperature fuel
cells. Both PEMFCs and AFCs are relatively low cost, though there is a lack of waste
heat recovery. PEMFCs require costly platinum as an electrode and are prone to carbon
monoxide (CO) and sulfur (S) poisoning, whereas AFCs require pure hydrogen (H2) and
oxygen (O2) in addition to a potential risk of carbon dioxide (CO2) poisoning [9]. However,
based on their power densities, efficiency, and sensitivity to fuel impurities, PEMFCs
are the most prominent options for low-temperature fuel cells [9–11]. PEMFCs have
the potential to satisfy the power demands of various sectors, such as transportation
(e.g., hybrid electric vehicles (HEV) [12], ships [13,14], and stationary and portable power
generation [15]. However, PEMFCs have several shortcomings, including limited power
density (<3 kW·L−1), low durability (<5000 h) [16], and high material cost [17], which
hinder their market competitiveness [18]. Hence, further research is required to address
the following issues to achieve the potential of PEMFCs:

Water management: Maintaining an appropriate amount of water inside the cell
during PEMFC system operation is challenging because good proton conductivity must be
achieved without compromising the performance by flooding the reaction site [19].

Thermal issue: In most cases, PEMFCs have an energy efficiency of approximately 50%
because they produce waste heat almost equal to their electric power output [20]. Moreover,
to maintain good proton conductivity, the temperature needs to be kept below 80 °C to
prevent dehydration, and temperatures below 60 °C can lead to water condensation and
cell flooding [21].

Cost and durability: The high Pt catalyst loading and membrane account for almost
80% of the cost of the PEMFC stack [22]. In addition, the materials used must have adequate
temperature and humidity tolerance as well as suitable mechanical strength to withstand
compression [23]. The degradation of materials and their impact on cell performance must
also be considered [24].

To address the aforementioned issues, various experimental studies [25–30] have been
conducted. However, experiments are expensive, sequential, time-consuming [31], limited
to laboratory-scale models, and can be employed to measure only one quantity at a time,
which is not convenient for improving the performance over existing designs [32]. By
contrast, computational fluid dynamics (CFD) can significantly reduce the time and cost
of experimentation by predicting real-life scenarios, and it can explore conditions that
are not possible to observe experimentally [33]. Furthermore, advances in computational
capabilities have enabled the implementation of more sophisticated and complicated three-
dimensional (3D) PEMFC models, which are far more accurate than one-dimensional
(1D) and two-dimensional (2D) models [33,34]. However, realistic modeling of PEMFCs
still suffers from obstacles because material properties, environmental conditions, and
material degradation are difficult to predict. Reasonable assumptions are still required,
or a sensitivity analysis must be performed to obtain a model that reflects real-world
scenarios [35].

Because of the accelerated growth of artificial intelligence (AI)-based methods such
as machine and deep learning, a whole new dimension is opened for improving the
current 3D CFD model of PEMFC. Machine learning is not only used for the prediction of
performance [36–42], optimization of boundary conditions [43–47] for maximum output,
water management [48–51], thermal condition [52,53], and degradation of PEMFC and
various components [54–56], but also to provide accurate experiment parameters (linear
and non-linear) [36,47,57,58] for reliable CFD modeling.

The purpose of this study is to provide an overview of the current state of the art in
PEMFC simulations, identify their limitations, and potential for machine learning (ML)
in PEMFC modeling, and discuss future directions for integrating ML in conventional
CFD. In Section 2, the applications of PEMFC and their corresponding advantages and
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limitations are discussed, followed by the evaluation of the models required for each
PEMFC component. Their limitations, various ML approaches, and ML-integrated model-
ing approaches are described in Section 3. In Sections 4 and 5, the final outlook of these
integrated models and their potentials for solving PEMFC issues for future applications are
reviewed, respectively.

2. Applications, Potentials, and Hurdles of PEMFC System Integration

PEMFCs utilize various integration styles to accommodate variations in operating
environments and power demands across different application fields. Table 1 shows the
present status of PEMFC system integration.

Table 1. Current status of PEMFC system integration across diverse sector.

Sector Application (Power) Potential Advantages Limitations Reference

Portable

Laptops, cell phones,
and military ra-

dio/communication
devices.

(5 to 50 W)

-Provide continuous
power as long as
hydrogen fuel is
available.
-Can be fabricated in
small sizes without
efficiency loss.

-Low acoustic and
thermal signatures,
high reliability, quick
recharging, and high
energy density.

-Complex system with
water and heat
management issues.
-Hydrogen storage
system.
-Costly.

[59]

Stationary

Backup power
system, off grid
power supply,

combined heat and
power unit (CHP)

(to 300 kW)

-Can be co-located
other renewable
power sources.
-Significant cost
benefits compared to
battery-generator
systems for shorter
durations.

High energy and
power densities, high
modularity, longer
operation times,
compact size, and
ability to operate
under unkind ambient
conditions.

-Coolant leakage for
longer run.
-Coolant and bipolar
plate compatibility.
-Reliability of
components.

[60,61]

Vehicle
Passenger car, utility

vehicles, and bus.
(20 to 250 kW)

-Can be used in
hybrid power
system in addition to
battery and
supercapacitor.

-Efficiency is higher
than the vehicles
powered by internal
combustion engines.
-Low refueling time
(<5 min)
-No noise.
-Zero emissions.

-Cost of the
components (catalyst).
-High operation cost.
-Low durability
(2500–3000 h).

[59,62]

Marine

Container,
demonstrator, yachts,

ferries, submarine
(12–300 kW)

-Can be used both as
main and auxiliary
power system.

-High power to weight
ratio.
-Low maintenance cost.
-Low noise.
-Good
modularity/part load
performance

-Low power capacity.
-Safety and reliability.
-Durability.
-High cost.
-Storage issue.

[63]

Aviation
Small scaled

manned/unmanned
aircraft, drones.
(100 W–33 kW)

Main power source
of unmanned aerial
vehicle (UAV),
auxiliary power unit
(APU) for large
aircrafts.

-High power
output.-Light weight.
-Simple design.

-Additional space
requirements for
hydrogen storage.
-Heat and water
management.

[59,64,65]

3. PEMFC Modeling Approaches

PEMFC models are divided into three distinctive categories: (a) Black box, (b) grey
box, and (c) white box [66,67] as can be seen in Table 2. Black box models are obtained
from the experimental data and based on a statistical data-driven approach [67,68]. The
experimental data is divided into two distinct sets: One specifically for training to identify
the complex non-linear correlations between input and output, and another for validating
the model. Therefore, the black box models do not consider the features and characteristics
of physical phenomena inside the PEMFC. In addition to that, black box models require low
computational costs and are mostly used to investigate the health of PEMFC and predict
performance. Artificial neural network (ANN), fuzzy modeling, support vector machines
(SVM), and gradient boosting are some common black box models [69]. Nevertheless, these
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models suffer from uncertainty as soon as the trained models encounter new operational
parameters. On the other hand, white box models, known as mechanistic or theoretical
models, are utilized to evaluate internal physical interactions in PEMFC, such as the
polarization curve, water and heat management, by implementing a series of complicated
algebraic and differential equations [67,70,71]. This equation includes Nernst–Planck,
Butler–Volmer, and Fick’s laws. Hence, the CFD simulations of PEMFC are white box
models [72]. In contrast to these two models, grey box models utilize semi-empirical
equations derived from the experimental data, balancing between complex and simple
solutions [73,74]. Machine learning-assisted CFD simulation, which is a combination of
black box and white box models, is referred to as grey box models [75].

Table 2. PEMFC model categories and their distinctive features, adapted from [68,70].

Physical Insight
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4. PEMFC Fundamentals and Modeling Consideration of Components with ML

PEMFCs are devices that convert chemical energy into electrical energy. They consist
of a membrane electrode assembly (MEA) and bipolar plates (BPs) on both sides, as shown
in Figure 1.

The MEA consists of a membrane sandwiched between an anode (negatively charged)
and a cathode (positively charged) catalyst layer (CL), followed by a gas diffusion layer
(GDL). On the anode side, hydrogen enters as a fuel and is oxidized into a proton (H+) after
hydrogen oxidation reaction (HOR) occurs (Equation (1)), whereas on the cathode side, the
oxygen reduction reaction (ORR) happens (Equation (2)). A potential difference is formed
between the sides owing to the flow of electrons, and water is generated as a byproduct on
the cathode side (Equation (3)). The electrochemical reactions are as follows [8,28]:

Anode side: H2 → 2H+ +2e− (1)

Cathode side : 2H+ + 2e− − 1
2

O2 → H2O (2)

Overall reaction : H2 +
1
2

O2 → H2O + Electricity + Waste heat (3)

Table 3 shows the functions of each component, state of the art, and future trends.
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Table 3. Functions and materials used for PEMFC components.

Components Functions Materials (Present) Materials (Future) Reference

Polymer electrolyte
Membrane

-Conduction of protons
-Separating barriers of
reactants.
-Blockade of electrons.

-Perfluorosulfonic acid
(PFSA) membranes
(~90 ◦C operations).

-Composite membranes
such as
Polytetrafluoroethylene
(PTFE) and
Polyvinylidene
difluoride (PDDF)
membranes
(>100 ◦C operations).
-PEM with ionogels

[23,76,77]

Catalyst layer Site of electrochemical
reactions.

-Platinum (Pt) loading
(0.1–0.2 g kW−1).
-Heterogenous coverage
of ionomer.

-Platinum (Pt) loading
(<0.1 g kW−1).
-Lower and better
distribution of ionomer.
-Pt monolayer catalysts,
nanometer
film catalysts, controlled
crystal shape catalysts,
and non-PGM catalysts.

[23,76]
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Table 3. Cont.

Components Functions Materials (Present) Materials (Future) Reference

Gas diffusion layer

-Distribution of reactants.
-Water management.
-Electricity and heat
distribution through
conduction.

-Carbon paper with
fiber structure
-Carbon black and
hydrophobic agents

-Carbon paper with
modified fiber
configurations.
-Carbon black with super
hydrophobic additives.
-Metal foam.

[23,76]

Bi-Polar plate

-Transport of reactants.
-Water management.
-Dissipation of heat.
-Current collector.

-Graphite (~1 mm thick).
-Metal (~0.6 mm thick).

-Metal foam.
-Metal (~0.5 mm thick). [23,76]

4.1. Modeling of Polymer Electrolyte Membrane

The PEM is one of the key components of the PEMFC. It enables protons (H+) to move
from the anode to the cathode to react with O2 and produce water. An ideal membrane
should possess high proton conductivity at low humidity, good chemical and mechan-
ical stability, low electronic conductivity, low water permeability, and impermeability
to reactants [78,79]. Moreover, manufacturing it should be easy and economical. The
most commonly used membrane is Nafion, which is composed of perfluorosulfonic acid
(PFSA). Membrane modeling is generally classified into two approaches: microscopic
and macroscopic.

4.1.1. Microscopic

To understand the effect of ionic moieties [80], which are responsible for making the
membrane more soluble in water despite being made of hydrophobic polymers, and the
backbone dynamics [81,82] of Nafion as well as the oxygen permeation [83], conduction,
and mobility of protons, various approaches such as statistical [84] and molecular dynamic
(MD) simulations [85] have been used. Harvey et al. [84] proposed a one-dimensional (1D)
MEA performance model, which includes liquid water transportation, an agglomerate
catalyst structure, and various statistical MEA characteristic parameters. This model
provided insights into the effect of Pt loading near the interface between the CL and
membrane on the reaction distribution. Figure 2a shows the experimental validation of the
statistical simulation model, and Figure 2b depicts the partial effect of high liquid water on
a low oxygen partial pressure when the Pt loading is low. Kwon et al. [85] performed MD
simulations to measure the solubility and permeability of O2 in saturated PFSA ionomers
on a Pt surface using two types of PFSA ionomers by varying the water content.
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Figure 2. (a) Polarization curve of the statistical simulation model of the baseline MEA with exper-
imental validation. (b) Liquid water distribution across the nondimensional distance (t*) of MEA
where colored line indicates different saturation level; reproduced with permission [84]; copyright
2013, IOP publishers. (c) Snapshots of equilibrated systems comprising the Pt (111) surface, hydrated
Nafion ionomers, and O2 molecules with different λ (water molecules per sulfonic acid group).
Illustrations show the hydrated Nafion thin film (A–D) and hydrated Aquivion thin film (E–H) on a
Pt surface; reproduced with permission [85]; copyright 2021, Springer Nature. (d) Mean square dis-
placement of water at 300 and 350 K measured from MD simulation; reproduced with permission [83];
copyright 2018, Elsevier Ltd.

Their simulation results provided guidance for designing better PFSA ionomers for
PMFCs. Figure 2c presents an equilibrated structure where Nafion ionomers with high
water content and water molecules are denser in the region of saturated Nafion–Pt interfaces
because of their strong attraction. Additionally, dissolved O2 molecules have the highest
density, whereas water molecules (hydronium ions) have the lowest inside the hydrated
Nafion. Table 4 lists some microscopic-level research methods and their results.

Despite the importance of the results of microscopic models, integrating them into
a complete fuel cell model is difficult, which leads to the separation of the microscopic
model research. However, one particular membrane property, that is, the water content
(the number of H2O moles per mole of sulfonic acid group), can be utilized in macroscopic
models because it influences the membrane structure.
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Table 4. Microscopic research of PEMFC membrane.

Research Method Software/Code Findings Reference

MD simulation Materials studio (MS) 4.3
COMPASS

Instead of Nafion, most widely used membrane
material, a natural polymer Chitosan (a

derivative of chitin a natural polysaccharide
found in insects, fungi, and yeast) was used. The
highest conductivity of 7.14 × 10−2 S/cm was
observed when the system contained 40% of

water.

[86]

MD simulation Materials studio (MS) 4.4
COMPASS

The diffusion of water molecules and hydronium
ions in Nafion 117 are measured using MD
simulation. They found that the diffusion

coefficient of both water molecules and
hydrogen ions increase with the water content

when the temperature in constant. Similar to this,
both the diffusion coefficient increases with the

temperature at constant water content.

[87]

MD simulation COMPASS

Proton conductivity of three different types of
polymer membrane; Dow, Nafion and Aciplex
was compared. The Aciplex membrane has the

optimum proton mobility and best water
molecules and hydronium mobility at 350 K.

[88]

MD simulation Materials Studio
COMPASS II

Sulfonated polynorbornene-based (SPNB)
membranes swell upon after getting hydrated
and divided into hydrophobic and hydrophilic

regions having sulfonic acid groups at their
interfaces. Also, more water molecules can

absorb the sulfur atoms and hydronium due to
the rise of water at increasing temperature.

[89]

MD simulation LAMPPS

Pt/C models were investigated with various
PTFE-binder content in the presence of H3PO4 at

298.15 K and 433.15 K. It was found that the
coverage of H3PO4 is higher at high temperature

in comparison to lower temperature as the
H3PO4 could still manage to contact the Pt

surface through PTFE-binder due to
favorable interactions.

[90]

4.1.2. Macroscopic

When modeling a membrane from a macroscopic perspective, two models are com-
monly used: sorption and transport.

Sorption Model

In PEMFCs, the membrane material adsorbs water when the environment is humid.
The water content, λ, is defined as the number of water molecules per mole of sulfonic acid
and is expressed as follows [91]:

λ ≡ n(H2O)

n(SO3)
(4)

The water content could be equivalently expressed as a function of total mass of water
(mw) within the same reference volume (V) [92]:

λ =
mw

Mwc f V
(5)

Again, sorption of water is the measurement of the amount of water adsorbed by
the membrane when the membrane is in equilibrium with water vapor/liquid at a given
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temperature. This term is known as the sorption isotherm, and it relates to the equilibrium
water content λeq, which is the function of water activity aw in the membrane phase [92]:

λeq = λeq(aw) (6)

Water could be in a position where it sorbed from or desorbed to a nearby phase. These
conditions are referred to as vapor-equilibrated (VE), where a gas phase reacts with water
vapor at a certain water activity, and liquid-equilibrated (LE), a liquid phase. Both saturated
water vapor and pure liquid water are treated as same, as they equally processed the same
aw = 1, generates a thermodynamically unexpected scenario often known as “Schröder’s
paradox” [93]. Though some of the experiments did not observe this [94,95], research
suggests VE water contents are closer to a typical LE value, suggesting the presence of thin
water film.

In the membrane, the activity of water can be expressed as the activity of water vapor
in the equilibrating gas phase under VE conditions [91]:

aw = aw,vap(equilibrium) (7)

However, the aw in the vapor phase can be approximated from the ration between the
partial pressure of water, pw,vap and the saturated partial pressure of water, psat(T) as a
function of temperature (T) [92]:

aw,vap ≈
pw,vap

psat(T)
≡ xw p

psat
(8)

where partial pressure of water is the function of mole fraction of water vapor, xw and p is
the pressure of the gas mixture in the pore region.

The above equation ignores the fugacity correction considering the operating condition
of PEMFC is close to the absolute pressure [92]. The saturated vapor pressure Psat can be
expressed as the following empirical equation [96]:

log10

(
psat

p0

)
= a0 + a1(T − T0) + a2(T − T0)

2 + a3(T − T0)
3 (9)

Table 5 contains the water contain measurement equation at various conditions.

Table 5. Variations of water content, λ.

Equation Remarks Ref.

λ =


1.41 + 11.3aw − 18.8a2

w + 16.2a3
w 0 ≤ aw ≤ 1

10.1 + 2.94(aw − 1) 0 < aw ≤ 3
16.0 3 < aw

This equation is obtained from the fitting
experimental data of water uptake in

Nafion membrane at 80 ◦C
[97]

λ =


0.3 + 6aw[1 − tanh(aw − 0.5)] + 3.9

√
aw[1 + tanh( aw−0.89

0.23 )]
s ≤ 0

16.8s + λ|(a=1)(1 − s) s > 0

[98,99]

λ =

{
0.043 + 17.18aw − 39.85a2

w + 36a3
w 0 ≤ aw ≤ 1

14 + 1.4(aw − 1) 1 ≤ aw ≤ 3

Although the relation in aw > 1 obtained
from 80 ◦C, the polynomial relation

comes at 30 ◦C
[96]

λ = 1.4089 + 11.26aw − 18.768a2
w + 16.209a3

w 0 ≤ aw ≤ 1
A fit data obtained from the experiment

under VE conditions at 80 ◦C [100]

Transport Models

The macroscopic transport models are mainly distinguished into three approaches depend-
ing on the driving forces: (1) Chemical potential, (2) diffusion, and (3) hydraulic models.
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Diffusive Model

This model considers the membrane as a system of single and homogeneous phases
where protons and water move and dissolve by the diffusion process. Though both water
and protons can be moved in a stationary membrane system, water movement is neglected
or treated as constant for the sake of simplicity. Thus, the differential form of Ohms law is
implemented for defining proton movement [97]:

i2 = −κ∇Φ2 (10)

where κ is the ionic conductivity of the membrane, Φ2 is the chemical potential of the
membrane. This model can be described using the dilute solution theory proposed by
Newman [101]. This theory is evaluated only by the dilute concentration theory (DCT),
which treats ionomers as solvents and water and protons as solute species. Assuming the
negligible effect between the water and proton (most solute species are dilute in water),
DCT implements the following Nernst–Planck equation to measure the interaction between
the solute species and ionomer [101]:

Ni︸︷︷︸
Flux

= −ziuiFci∇Φ2︸ ︷︷ ︸
migration

− Di∇ci︸ ︷︷ ︸
diffusion

+ civ2︸︷︷︸
convection

(11)

The migration term (1st part of the equation), containing the information of motion of
charged species, related to potential gradient (−∇Φ2) and charged number, zi, Faraday’s
constant, F, (9.6487 × 107 C/kmol) concentration, ci and mobility, ui. The midterm (diffu-
sion) is composed of a concentration gradient, ∇ci and a diffusion coefficient, Di which is
the function of mobility, ui and can be expressed by the Nernst–Einstein equation [101–103]:

Di = RTui (12)

The convective term (final part of the equation) is the function of the concentration and
motion of the solvent. However, this term will become null for the analysis of a single-phase
system. The migration term of Equation (11) becomes zero as the water has a zero valence
and is converted to Fick’s law [104].

Nw = nd
i2
F
− Dw∇cw (13)

where ξ is the electroosmotic drag coefficient.

Chemical Potential Model

In this model, though the main force of transport is chemical potential, diffusion
(gradients of species concentration) and convection (gradient of pressure) are also included.
Based on the concentrated solute theory proposed by Bennion [105,106], three independent
transport properties should be considered:

a. Chemical potential of proton, Φ2
b. Transport coefficient of water, αw
c. Chemical potential of water, µw

The final equation containing these transport systems is as follows [105]:

i2 = −κnd
F

∇µw − κ∇Φ2 (14)

Nw = nd
i2
F
− αw∇µw (15)

In addition to the above equations, the irreversible thermodynamics approach [107,108],
generalized Stefan–Maxwell equations [109–112], and dusty fluid model [113–115] are also
used. Unlike the diffusion model, proton–water interaction is considered in this model.
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Though this interaction is very rare, it should be considered in situations where the gradient
of water is very high, such as low humidity or high current density conditions. It should be
noted that Equations (12) and (14) are similar except that the concentration and diffusion
coefficient of water have been replaced by the chemical potential and transport coefficient
of water, respectively. However, the chemical potential model is not well recognized for
modeling PEMFC because of the difficulties in obtaining the transport parameters.

Hydraulic Model

This model treats the membrane as a two-phase system, unlike the diffusive and chem-
ical potential models. Also, the addition of a second phase facilitates the hydraulic model
to consider the pressure gradient responsible for the convective in the water. However,
the water content of the membrane is assumed to remain constant (λ = 22) [116] as long as
the water contains the pores to assist convective transportation. Bernardi et al. [117,118]
proposed this model based on previous works [119–121], where a dilute solution approach
with Equation (10) (Nernst–Planck equation) is used to characterize the movement of
proton, and instead of zero, the velocity of the water is given by Schlogl’s equation [122]:

vw = −
(

k
µ

)
∇pL −

(
kΦ

µ

)
z f c f F∇Φ2 (16)

where k, kΦ, pL, µ, and z f c f are the effective hydraulic permeability, effective electrokinetic
permeability, liquid pressure, water viscosity, charge and concentration of fixed ionic sites,
respectively.

This model also assumes a constant gas volume fraction in the membrane, though it
does not represent the real experiment. This assumption (constant gas volume fraction)
allows the gas to crossover through the membrane. However, the anode side near the
membrane quickly dried out most of the time due to the vigorous EOD effect during
PEMFC operation, which contradicts the assumption of a fully hydrated membrane. Thus,
this model suffers from an unrealistic scenario by neglecting diffusive water transport [123].

Also, the concentration solution approach could be utilized in this model as previously
conducted by Weber and Newman [124], where the same Equations (14) and (15) are used
except the chemical potential is replaced by liquid pressure and the transport coefficient is
changed to permeability through comparison of Darcy’s law.

Hence, Equation (15) transforms [124]:

Nw = nd
i2
F
− k

µVw
∇pL (17)

Here, Vw is the molar volume of water.

Combination Model

In order to portray the real experimental condition, diffusive and hydraulic models
should be utilized together to cancel out the limitations of each model. A modeling of
differentially pressurized PEMFC should consider both diffusive and convective water
transport by adding diffusive, convective, and EOD terms, which result in a combination
of diffusive and hydraulic models [114,125–128]. Hence, the new equation becomes [114]:

Nw = nd
i2
F
− k

µ
∇pG − Dw∇cw (18)

4.1.3. Combined Model (Microscopic and Macroscopic)

Only one component of the microscopic model, namely the water content λ, can
be successfully integrated into the macroscopic model [100]. Water is absorbed by the
dry membrane to solvate the acid groups, and as the water content increases, the water
droplets agglomerate and form interconnecting channels. Figure 3 displays the changes
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in the membrane structure depending on the water content, where the gray, black, and
light gray areas represent the fluorocarbon matrix, polymer side chain, and liquid water,
respectively, whereas the dotted line denotes the collapsed channel. When the amount
of water exceeds the percolation threshold (λ = 2), a complete cluster channel is formed,
as illustrated in Figure 3c. The formation of water channels indicates whether the water
at the boundary is in the vapor (Figure 3c) or liquid (Figure 3d) state, termed VE or LE
membranes, respectively. In the VE case, the channels are not well connected, whereas in
the LE case, they are filled with water, expanded, and connected. These two distinctive
structures form the foundation of the two macroscopic models: diffusive and hydraulic.
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4.1.4. Issues Related to State-of-Art Membrane Modeling

When it comes to water transport, the chemical potential model remains the most
comprehensive solution among the membrane modeling approaches. However, a combined
diffusive and hydraulic model with the addition of EOD remains a better choice because it
considers most of the aspects of experimental findings [116]. Regardless of various options,
current membrane modeling has the following issues:

Despite the technological advancement of membrane materials, the majority of re-
search papers on the numerical investigation of PEMFC still rely on the springer model [96]
and the Weber–Newmann model [124], which are based on experimental work [96,129–131],
dating back to 1998 [92].

Electroosmotic drag (EOD) could have a different value depending on the electrodes
(anode and cathode) [132]. As a result, the standard practice is to consider EOD as a
source term on the cathode side and a sink term on the anode side, according to previous
research [132,133].
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Even though the EOD increases with the water content, λ based on a number of corre-
lations observed from the experiment [96,134–136] as mentioned in Table 3, the differences
among them introduce certain uncertainties during modeling [35].

Due to small pressure imbalances and low membrane permeability, the effect of cross-
diffusion of reactants through the membrane is usually neglected [35], which is not true
in some cases. The results indicate that this effect is not always insignificant, particularly
when calculating cell efficiency. In some instances, the cross-over effect has been observed
to impact cell efficiency by approximately 2% [137].

The recent introduction of reinforced membrane (typical thickness of 25–35 µm) in
PEMFC helps to mitigate membrane degradation by reducing resistance and improving wa-
ter management without compromising mechanical strength [138]. However, the composite
nature of this type of membrane and the effect of its conductivity, diffusivity, water intake,
and mechanical coupling in MEA to transport phenomena are not well understood [92].

Previous research [139,140] found that the convection type of transport, by considering
the microporous membrane and its percolation phenomena, could give the membrane
resistance close to the experimental value in comparison to the model that utilizes diffusion
transport. However, convection models are not widely used due to their underestimation
of dehydration.

Modeling approaches are still not considering the effect of free radical scavengers [141]
or different additives [142] to alleviate the chemical degradation of modern membranes.

The effect of mechanical and chemical degradation [143] of membranes on the perfor-
mance of PEMFC was not considered in the modeling.

4.1.5. ML in the Field of Membrane

Previous researchers are trying to use ML to design and optimize membranes [44,144–151],
predict membrane properties [36,43,152], diagnose membrane conditions [153,154], and
prevent membrane degradation [155–157]. Cho et al. [43] collected data from a 1.2 kW
PEMFC in a MATLAB/Simulink environment and used that data to train a nonlinear
autoregressive network (NARX) with Bayesian optimization to predict the voltage, tem-
perature, and membrane water content (Max. error of MSE 2.14 × 10−4). Figure 4a
shows the architecture of the proposed NARX network. Huo et al. [154] utilized a genetic
algorithm-based back propagation (GA-BP) neural network to predict membrane hydration
in PEMFC. A dynamic model of PEMFC was used, which contains cathode mass flow,
anode mass flow, membrane water content, and a stack voltage sub-model. Figure 4b
depicts the GA-BP neural network, showing a better prediction of hydration in comparison
to a least-squares support vector machine (LS-SVM) regarding mean square error (MSE),
mean absolute error (MAE), and root mean square error (RMSE). In order to reduce the
extensive work, resources, and time, Huo et al. [145] proposed a random forest feature
selection process to identify the important features as input parameters, as verified by
the previous studies. Subsequently, a convolutional neural network (CNN) with batch
normalization and dropout methods is implemented to predict the performance of PEMFC,
such as the I–V curve, as can be seen in Figure 4c. It is important to note that, among the
important factors, the membrane contains hot press time (HPT), hot press pressure (HPP),
hot press temperature (HPT), which is required for manufacturing, MEA, and the thickness
of the membrane. Gu et al. [155] established a long short-term memory (LSTM) network
model to diagnose the flooding fault of a bench test of a 92 kW vehicle with a fuel cell
system, which is essential for the identification of membrane hydration conditions. Once
the LSTM diagnosis network was built, it could effectively predict the condition of fuel
cells instead of relying on a large number of sensors, which can effectively reduce the cost
of an efficient system. Figure 4d shows the input parameters of the LSTM network and the
results of the network in comparison to the diagnosis from actual THDA (total harmonic
distortion analysis) diagnostic equipment.
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Figure 4. (a) The architecture of trained NARX network for membrane water content, λ prediction;
reproduced with permission [43]; 2012 Elsevier Ltd. (b) Simulink dynamic model with GA-BP
to estimate real-time water content of membrane; reproduced with permission [154]; 2023 MDPI
(c) performance prediction model by CNN, where membrane thickness, hot press time, and pressure
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permission [145]; 2021 Elsevier Ltd.; (d) input vectors of LSTM that are responsible for PEMFC water
transport across the membrane; and (e) comparison of flooding fault diagnosis by experiment and
LSTM network; reproduced with permission [155]; 2021 Elsevier Ltd.

4.1.6. Integration of ML in Membrane Modeling

A potential integration of ML and CFD modeling is shown in Figure 5. For mem-
brane modeling, a large number of datasets could be obtained from experiments and MD
simulations. That includes boundary conditions from the real test, such as temperature,
pressure, RH, etc.; water content from the MD simulation; and variables such as tempera-
ture, pressure, and time to manufacture MEA by the hot pressing method [158] as input. In
addition to that, the ML method was used to optimize the input parameters and predict the
corresponding output parameters by considering the degradation of membrane properties.
Finally, the governing equations are modified depending on the change in properties due
to more precise input parameters, the change in output due to material degradation, and
membrane modeling.
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4.2. Modeling of Catalyst Layer (CL)

The CL is the location where the HOR and ORR occur (Equations (1) and (2)). It is
often the thinnest component [159] (5 to 30 µm) in the PEMFC because of its high material
cost, yet it handles the most complex transport phenomena [160]. Usually, fine particles
of Pt and its alloys are sprayed on high-surface-area carbon in the active porous layer
of the electrode to minimize Pt loading (0.1–0.4 mg·cm−2) [161]. For effective usage, the
CL must be positioned to form a triple-phase reaction interface at the intersection of e−,
H+, and reactive gas transfer channels. The different CL models are as follows: interface,
microscopic, single pore, and simple macrohomogeneous.

4.2.1. Interface Model

Among the CL models, the simplest model treats the CL as an interface between the
GDL and membrane. For this purpose, the CL is assumed to be an infinitely thin layer, and
its physical structure is completely ignored. Although computationally economical and
efficient, this model is not appropriate when the main focus is on the CL [116]. Therefore, the
CL can be considered the location where H2 and O2 are consumed and water is produced.
The generation and consumption terms are expressed using Faraday’s law [116]:

Ni,k = ∑
h

Si,k,h
ih,1−k

nhF
(19)

Here, Si,k,h is the stoichiometric coefficient of species i in phase k; ih,1−k is the normal
interfacial current transferred per unit interfacial area across the interface between the
electronically conducting phase and phase k owing to the electron-transfer reaction h, and
it is positive in the anodic direction.

For the aforementioned model, detailed information on the potential is not essential.
In previous research [99,162–164] on water management, a similar technique was used by
quantifying it with the current density. Both the resultant water on the cathode side and the
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electroosmotically dragged water are proportional to the current density [162]. In addition
to Equation (19), researchers [125,165–168] have utilized a slightly more sophisticated
approach by fitting a polarization curve to a single expression as follows [125]:

E = U′ − R′i − RT
αcF

ln(i) +
RT
αcF

ln
(

1 − i
ilim

)
(20)

where E is the cell potential and i is the superficial current density through the MEA,
whereas αc is the cathodic transfer coefficient.

To obtain a more sophisticated interface model, reaction kinetics such as the Tafel
equation have been incorporated [169,170] with the Butler–Volmer equation [171–173],
which can be expressed as:

ih,k−p = i0h

 a

∏
i

pi

pre f
i

exp
(
αaF
RT

(Φk−Φp−Ure f
h ))

−
c

∏
i

pi

pre f
i

exp
(
−αcF

RT
(Φk−Φp−Ure f

h ))

 (21)

New models have utilized a kinetic expression that considers multidimensional as-
pects, which is an improvement over the previous model (Equation (10)). However, this
model (Equation (21)) is based on the assumption that the surface overpotential and concen-
tration of reactant gases are uniform in the CL, and it uses the overpotential of the kinetic
expression as a fitting parameter. Despite its simplicity and efficient calculation, this model
is still limited because it does not consider multiple aspects of the CL that are not actually
uniform. This model is not suitable for optimizing CL fabrication in terms of the effects of
Pt loading, compressive load, and pore size.

4.2.2. Microscopic and Single Pore Models

Most of the earliest CL models were microscopic and single-pore models that were
easily solvable. These models were utilized for the CL of phosphoric acid fuel cells with
Teflon-coated pores for gas diffusion, whereas the rest of the area was flooded with a
liquid electrolyte. Although a detailed microstructure is required for this model, effective
values such as diffusivity and conductivity are not required because they are assumed to
be homogeneous throughout the microstructure. Single-pore models are divided into two
types according to their nature.

In the first model, known as the gas pore model, the pores are considered straight and
cylindrical with a specific radius [174–177]. In addition, these pores extend to the length of
the CL, and reactions occur on the surface.

Among the single-pore models, the flooded agglomerate model shows potential for
real experimental data. This model still uses gas pores, although some of them are filled
with electrolyte and catalyst [178–183]. In those filled pores, reactions, diffusion, and
migration occur. Consequently, this model works better than the gas pore model because it
covers a larger area.

However, pores with different porosities and tortuosities exist in real cases, and the
electrolyte in PEMFCs is solid, unlike in phosphoric acid fuel cells, which are not supposed
to penetrate the pores. Although the single-pore model is adequate, it is not suitable for
simulating the CL in detail.

In addition to the two aforementioned models, a spherical agglomerate model, which
considers special agglomerate structures in three-dimensional (3D) hexagonal arrays, was
introduced by Antoine et al. [184]. Among the agglomerates, either gas pores or regions
are flooded with electrolyte [185,186]. This model examines the interactions that depend
on the placement of these agglomerates. In addition to Ohm’s and Fick’s laws, the reaction
kinetic equation can be solved by employing this model.

The concentration contours around the electrocatalyst particles and can be validated
by experimental current density trends. In contrast to the interface model, this model
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can depict the occurrence of HOR near the membrane and the effect of the packing and
structure of agglomerate particles on the overall efficiency of the CL.

4.2.3. Simple Macrohomogeneous Model

Introduced initially by Tiedemann and Newman [187], the macrohomogeneous model
neglects exact geometric details by treating the CL structure as a randomly arranged porous
domain. Only a few variables, such as porosity, volume fraction, and surface area per
volume, are used to represent the structure of the CL. Moreover, the transport properties
should be averaged over the CL volume. Although this model does not include the detailed
structure of the domain, it shares many similar theoretical expressions with the single-pore
model. Two of the main length scales of this model are explained here [116].

Porous Electrode Model

Although it is based on the assumption of a single-pore model, the porous electrode
model calculates the overall reaction without considering the detailed structure of the
computational domain. In this model, the concentration and potential are assumed to be
uniformly distributed in the agglomerates, indicating that the main interaction does not
affect the agglomerates. The equations governing the simple porous electrode models are
listed in Table 6. Although the thickness of the CLs serves as the characteristic length scale,
there are some variations in the treatment of the simple porous electrode model.

Table 6. Important variables and governing equations for the CL [116].

Variable Porous Electrode Model Agglomerate Model

Overall liquid water
flux, NL

∂ϵkci,k
∂t

= −∇· Ni,k − ∑
h

al,ksi,k,h
ih,1−k
nhF

+∑
I

Si,k,l ∑
p ̸=k

ak,pri,k−p

+∑
g

si,k,gϵkRg,k

Overall membrane
water flux, NW Equation above.

Gas-phase component
flux, NG,i Equation above.

Gas-phase component
partial pressure, pG,i

∇xi = − Ni

cT De f f
Ki

+ ∑
j ̸=i

xi Nj − xj Ni

cT De f f
i,j

Liquid pressure, pL Nw,L = − k
Vwµ

∇pL = − k
Vwµ

(
∇pc +∇pG

)
= − k

Vwµ
∇pc

Membrane water
chemical potential, µw Equation (14)/Equation (16)

Electronic-phase
current density, i1 i1 = −σ0ϵ1.5

1 ∇Φ1

Membrane current
density, i2 Equation (9)/Equation (13)

Electronic-phase
potential, Φ1 ∑

k
∇·ik = 0

Membrane
potential, ΦL is = −κ

e f f
s ∇ϕs

∇·is = 4F
PO2
H

(
1

Erkc(1−εcat)
+

(ragg+δ)δ

aaggragg D

)−1

Where Er =
1

ΦL

(
1

tanh(3ΦL)
− 1

3ΦL

)
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Table 6. Cont.

Variable Porous Electrode Model Agglomerate Model

Temperature, T

∑
k

ρkĈPk

(
∂T
∂t

+ vk· ∇T
)

= ∑
k

hk,extak,ext(Text − T) +∇

·
(

ke f f
T ∇T

)
−∑

k
∑
i

Ji,k· ∇Hi,k

+ ∑
1−k

∑
h

a1,kih,1−k(ηsORR,1−k + Πh)

+∆Hevaprevap

Or
Q = ∑

k−p
∑
h

ak,pih,k−p
(
UHh − V

)
Total gas pressure, pG vG = − kG

µG
∇pG

Liquid saturation, S εG = ε0(1 − S)

In the first variation, the CLs are integrated and included as boundary conditions
when calculating the cell potential or current density [128,188,189]. This treatment is similar
to that of the interface models, except that it considers potential drops for the matrix and
solution phases. The rationale for the integration is that it does not result in a loss of
numerical accuracy and provides numerical stability and easier convergence, particularly
when the reaction distribution is mainly uniform.

The second variation uses a simple porous electrode modeling approach, considering
a CL of finite thickness and using the equation in Table 6. Although most of these models
allow the diffusion mass transfer of reactant gases [112,118,190–192], in some previous
studies, the concentration of the reactant gases has been assumed to be uniform throughout
the CL [193–195]. In the final variation of the porous electrode model, rather than gas
diffusion in the CL, the reactant gases are assumed to be dissolved in the electrolyte and
transported by diffusion and reaction [196–199]. This model is closer to the thin film model,
which does not consider gas pores [200,201]. The governing equations in Table 6 are well
suited for solving this model, except that a concentration term should be added to the
kinetic expressions instead of the partial pressure. Accordingly, a mass transport equation
for the reactant or product gas should be added to account for diffusion effects on the
membrane or water.

Agglomerate Model

This model considers the radius of the agglomerate as a characteristic length scale in
addition to the CL thickness. Most of these agglomerates are assumed to be either large
spheres, a combination of Nafion, carbon, and Pt particles [202–204], or small spheres, a
void consisting of carbon and Pt particles filled with liquid water [205,206]. In the simple
homogeneous agglomerate model, the main effects are assumed to occur at the agglomerate
length scale. Hence, the reaction rate distribution, that is, gas concentration and surface
overpotential, is uniform throughout the thickness of the CL. It is assumed that oxygen
diffuses through the gas pores, dissolves into agglomerates through the electrolyte/water,
and then reaches the reaction site by diffusion again. The mathematical expressions are
similar to those of the microhomogeneous model indicated in Table 4, except that spherical
and cylindrical coordinates are added for the gradients. Another agglomerate model,
known as the embedded macrohomogeneous model, considers both the aforementioned
macrohomogeneous model and reaction and overpotential distribution in the agglomerates
that are disregarded in the simple homogeneous agglomerate model. These effects are
essential when CL hydration and dehydration are considered. Figure 6 shows the distinctive
features of the three catalyst models.
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In addition to the equations presented in Table 6, in this model, either a mass transfer
term [207–209] (1st approach) or an effectiveness factor incorporating the agglomerate
equation [210–212] (2nd approach) is used. Previous studies have reported that the agglom-
erate model is better than the macrohomogeneous model because it uses more empirically
controlled parameters [204,213]. In particular, at higher current densities, the agglomerate
model can predict the voltage drop, unlike the macrohomogeneous model. The differences
between the equations of the macrohomogeneous and agglomerate models are displayed
in Table 6.

Electrochemical Kinetics Equation of CL

The CL is the location where the HOR and ORR occur, consuming hydrogen and
oxygen and producing water. Therefore, Faraday’s law (Equation (19)), in combination
with the molecular weight, is used to determine the rate of H2, O2, and H2O consump-
tion/production. Table 7 presents the source and sink terms related to the electrochemical
reactions that are proportional to the exchange current density. The molecular weights
of hydrogen MH2 and oxygen MO2 are 2 g·mol−1 and 32 g·mol−1, respectively. Although
some simulation studies do not consider the back diffusion of water from the cathode to
the anode side [214,215], an additional electroosmotic drag coefficient nd = 2.5λ

22 is included
in both the anode and cathode CL water species source terms for simplicity. In more
sophisticated approaches, additional mass transfer rates of the vapor-to-liquid water phase
change Sv−l and membrane absorption/desorption rates Sn−v are considered, as listed in
Table 7. The Butler–Volmer equation is used to determine the electrochemical reaction rates
for these source terms, as summarized in Table 8.
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Table 7. Various source terms for species consumption and production from the literature.

Anode Side Cathode Side
Ref.

Source Term SH2 SH2O,liq SH2O,vap SO2 SH2O,liq SH2O,vap

1 −
(

MH2
2F

)
Ia 0 0 −

(
MO2
4F

)
Ic

(
MH2O

2F

)
Ic 0 [214,215]

2 −
(

MH2
2F

)
Ia −

(
MH2O

2F

)
nd Ia 0 −

(
MO2
4F

)
Ic

(
MH2O

2F

)
Ic

+(
MH2O

F

)
nd Ic

0 [123,216]

3 −
(

MH2
2F

)
Ia Sv−l

−Sv−l +
Sn−v MH2O

−
(

MO2
4F

)
Ic Sv−l

−Sv−l +
Sn−v MH2O

[123,216]

4 −
(

MH2
2F

)
Ia

−Sv−l + Sn−v
Sv−l 0 −

(
MO2
4F

)
Ic

−Sv−l + Sn−v

Sv−l +
Sn−v MH2O

0 [217]

Table 8. Exchange current densities from the literature.

Anode Exchange Current Density, Ia Cathode Exchange Current Density, Ic Ref.

−av Ire f
0,a

[
(αa+αc)F

RT ηa
act

]
av Ire f

0,c

(
CO2

Cre f
O2

)
e(−

αc F
RT ηc

act) [218]

(1 − s)Ire f
0.a

(
(1−s)εCH2

Cre f
H2

)0.5(
e(
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RT ηa

act) − e(
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act)
)
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0.a
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act)
)

[123,219]

ζa Ire f
0.a

(
CH2

Cre f
H2

)0.5(
e(

Fαa
RT ηa

act) − e(
Fαc
RT ηc

act)
)

ζc Ire f
0.c

(
CO2

Cre f
O2

)1.0(
−e(

Fαa
RT ηa

act) + e(
Fαc
RT ηc

act)
)

[35]

Ire f
0.a e(−1400( 1

T −
1

298.15 )) Jre f
0.c e(−7900( 1

T −
1

298.15 )) [214,220]

Ire f
0.a

(
PH2

Pre f
H2

)0.5(
e(

Fαa
RT ηa

act) − e(
Fαc
RT ηc

act)
) 4F

PO2

Hna f
O2

1
δNa f

aratio DNa f
O2

+ δw
aratio DWater

O2

HWater
O2

HNa f
O2

+ 1
ξ∥η

[221]

4.2.4. Heat Transfer in the CL

Heat transfer in the CL is a critical aspect for accurately predicting the CL model
because it affects the electrochemical reaction rate and species transport. Compared to other
components of the PEMFC, the CL has the most complex thermal process, which involves
the conduction of solid material parts and convection heat transfer during species transport.
Additionally, the porous structure of the CL complicates the heat transfer between the solid
and gas phases. The following two expressions are applied, depending on the absence or
presence of additional latent heat of condensation and absorption/desorption [216,219]:

CL : ST,a = Ia|ηa
act|+ Ia

∆SaT
2F︸ ︷︷ ︸+

Electrochemical reaction

∥∇φe∥2κ
e f f
e︸ ︷︷ ︸

Ohmic

; (22)

ACL : ST,an = Ian|ηan
act|+ Ian

∆SanT
2F︸ ︷︷ ︸+

Electrochemical reaction

∥∇φe∥2κ
e f f
e + ∥∇φion∥2κ

e f f
ion︸ ︷︷ ︸

Ohmic

+ (Sv−l + Sn−v)hevap︸ ︷︷ ︸
Latent heat

(23)

CCL : ST,cat = Icat
∣∣ηcat

act
∣∣+ ∥∇φe∥2κ

e f f
e + ∥∇φion∥2κ

e f f
ion + Icat

∆ScatT
2F

+ (Sv−l + Sn−v)hevap (24)

4.2.5. Issues Related to State-of-Art CL Modeling

When it comes to the modeling of CL of PEMFC, there is no proper experimental validation
to clarify whether the governing equations are working or the parameters that are used are
appropriate [222]. Regardless of experimental validation, CL modeling has the following issues:
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Various CL modeling approaches were successfully utilized by the researchers with
experimental validations, even though they had certain limitations. Interface modeling
approaches suffer from overestimation of the current density, whereas macro-homogeneous
modeling approaches are not suitable for the CL of complex structures with different
materials [35]. Till now, the agglomerate model seems promising as it combines both the
structural distribution and composition of CL material [35], including more parameters to
fit experimental data [116]. Sui et al. [160] found that the agglomerate model had a better
prediction of the polarization curve in comparison to other catalyst models. However, the
agglomerated model still considers only one length scale and fails to fully consider the
reaction distribution and proton migration across the CL [116].

Most of the numerical simulations related to PEMFC validated their simulation results
with the polarization curve obtained from the experiment [223,224] though the majority of
the important parameters such as reaction kinetics, ohmic resistance, and voltage drop off
due to concentration loss depend on CL. Hence, the simulation results are not satisfactory,
even though the validation was performed with an experimental polarization curve [223].
In order to solve this problem, validation and characterization should be performed on the
same length scale, considering the real microstructure of the CL [160].

Contemporary simulation researchers heavily depend on the Butler–Volmer (BM)
equation [171,172] for electrochemical reactions in CL (Table 8). In most simulation cases,
the value of the reference exchange current density was measured from experiments [225],
from previous solutions [215,217,226], and assumed [220] to match the polarization curve.
Previous research [227,228] collected 10 papers and found 6 different values of reference
exchange current densities and 9 different values of transfer coefficients. Based on their
study, they found that the only polarization curves were not sufficient for the validation,
as the two groups of parameters resulted in identical polarization curves. Furthermore,
a curve-fitted exchange current density [229–231] (function of temperature) and variable
exchange current density [232] (function of RH) were also proposed for CL. Dickinson
et al. [233] heavily criticized the BM equation for its excessive parameterization, which
makes PEMFC modeling complex and hampers experimental validation.

In most cases, the porosity, tortuosity, and contact angles (hydrophobic) of the pore walls of
CL are considered homogenous, which is not real. A heterogeneous porous structure of CL could
give a better prediction of PEMFC regarding mass transport and chemical reactions [234–236].
As a result, the contact angle between pore walls also changes depending on the size, Pt loading,
C (support), and ionomer (Nafion/other perforluorosulfonic acid) [237].

Degradation of CL due to degeneration of the Pt-based catalyst, C support, and Nafion
ionomer results in limiting the electrochemically active area, subsequently lowering the per-
formance of fuel cells [238]. During the unsteady or lifetime of fuel cell modeling, modeling
degradation is one challenge that researchers need to overcome. Franco et al. [239,240]
proposed a mechanistic transient model, considering cathodic potential sensitivity to the
boundary conditions due to catalyst layer aging. Later, this model is used to investigate
the effect of CO contamination on CL and cell degradation [241,242]. Nevertheless, the
majority of previous degradation models do not take into account the change in geometry
and influence of material degradation on the local operating conditions of PEMFC [24] and
provide an adequate model to predict mass transport in CL [243].

4.2.6. ML in the Field of CL

Machine learning approaches have been used in CL for feature extraction [244],
optimization [58,147,245,246], predicting performance [247], and degradation of CL on
PEMFC [156,248–252]. Wang et al. [244] implemented deep learning super-resolution and
multi-label segmentation to process the images from X-ray micro-computed tomography,
followed by LBM with multi-relaxation time (MRT) for water management modeling.
Figure 7a shows the multilabel segmented image from super-resolution images for fea-
ture extraction such as void space, MP layer, membrane, CL, perpendicular, and parallel
layers. To determine key parameters, Ding et al. [147] collected 64 high-quality journals
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related to the PEFMC experiment from 2010–2020, containing 10,000 datapoints with 140 IV
curves. An ANN model was used where catalyst physical, chemical, and test operating
conditions were used as inputs and voltages at different current densities were used as
outputs (Figure 7b). The final algorithm can successfully predict the performance of the
real test with a great accuracy of R2 = 0.99. In addition to that, the trained model shows
the best performance for predicting maximum power density on unexplored polarization
curves with 26 inputs. Lou et al. [253] utilized an ML-assisted model that has two functions:
(1) Quantitative sensitive analysis and (2) multi-objective optimization, in alignment with
the main benefits of interpretability and prompt prediction, respectively, as can be seen in
Figure 7c. Among the datasets, various structural parameters of cathode CL, including Pt
loading, ratio of Pt to carbon-supported Pt, ionomer to carbon-supported Pt, agglomerate
radius, C particle radius, Pt nanoparticle radius, pore diameters, thickness, and surface
tension, were used. Four critical features were identified, and peak power density and
limiting current density were increased to 9.96% and 10.47%, respectively, by optimizing
the catalyst ratio and agglomeration. Elçiçek et al. [247] utilize a multilayer perceptron
ANN model (Figure 7d), where they used reaction temperature, pH, and reaction duration
as inputs to predict electrochemical active surface area (EASA) and reduction of Pt. The
MLP-ANN model exhibited superior performance, standing out as the best among various
machine learning algorithms when considering accuracy, overall performance, and gener-
alization capabilities in comparison to SVR and RF. Moreover, the suggested model proves
to be effective for optimizing electrocatalyst performance and prediction modeling, with an
impressive R2 of 99.99%. Figure 7e shows a framework for quantitative analysis and accurate
prediction, proposed by Yao et al. [246], to improve the design efficiency of CL. A combination
of the response surface method (RSM) and ANN is utilized to investigate the effect of CL
composition on the performance of PEMFC regarding current density, thermal, and water man-
agement. Among the compositions, the volume fraction of dry ionomers has ben proven to be
the most sensitive parameter. Data-driven ML has also been employed to predict performance
reductions resulting from PEMFC degradation [248,251,252,254], although it cannot be clearly
pinpointed whether it is due to membrane, CL, or GDL. Pt loss and reorganization are critical
factors resulting from the high temperature, humidity, and load cycling [255]. Considering this,
Ma et al. [256] proposed a grid LSTM-based recurrent neural network (RNN) (Figure 7f, top)
to avoid vanishing gradients or investigating problems during training and effectively predict
both short-term (Figure 7f, down) and long-term voltage degradation of PEMFC.
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Figure 7. (a) Network architecture of the U-ResNet (bottom), for image feature extraction and useful 
feature decoding for various components of PEMFC, including CL; reproduced with permission 
[244]; 2023 Springer Nature, (b) ANN architecture for PEMFC performance prediction where CL 
properties are some of the input parameters; reproduced with permission [147]; 2020 John Wiley 
and Sons, (c) prediction of the CCL performance of a PEMFC by data-driven ML model where 
various structure parameters of CCL are utilized; reproduced with permission [253]; 2022 Elsevier 
Ltd., (d) architecture for ANN model for predicting electrocatalyst performance regarding EASA 
and reduction of Pt in CL surface where columns of circular nodes represents the layers for inputs, 
hidden and outputs; reproduced with permission [247]; 2022 John Wiley and Sons; (e) framework 
for CL parameter optimization, combining RSM and ANN model; reproduced with permission 
[245]; 2023 Elsevier Ltd. and (f) the structure of the G-LSTM with RNN for predicting voltage 
degradation due to carbon corrosion, Pt loss of CL, and membrane degradation.; reproduced with 
permission [256]; 2018 Elsevier Ltd. 
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Figure 7. (a) Network architecture of the U-ResNet (bottom), for image feature extraction and useful
feature decoding for various components of PEMFC, including CL; reproduced with permission [244];
2023 Springer Nature, (b) ANN architecture for PEMFC performance prediction where CL properties
are some of the input parameters; reproduced with permission [147]; 2020 John Wiley and Sons,
(c) prediction of the CCL performance of a PEMFC by data-driven ML model where various structure
parameters of CCL are utilized; reproduced with permission [253]; 2022 Elsevier Ltd., (d) architecture
for ANN model for predicting electrocatalyst performance regarding EASA and reduction of Pt in
CL surface where columns of circular nodes represents the layers for inputs, hidden and outputs;
reproduced with permission [247]; 2022 John Wiley and Sons; (e) framework for CL parameter
optimization, combining RSM and ANN model; reproduced with permission [245]; 2023 Elsevier
Ltd. and (f) the structure of the G-LSTM with RNN for predicting voltage degradation due to
carbon corrosion, Pt loss of CL, and membrane degradation.; reproduced with permission [256]; 2018
Elsevier Ltd.

4.2.7. Integration of ML in CL Modeling

Likewise, for membrane modeling, Figure 8 shows the framework of ML/CFD hy-
bridization for modeling of CL. In the case of CL, image segmentation through CNN has
proven to be a useful tool to extract features of complex porous CL structures such as
porosity, tortuosity, and permeability. Instead of homogeneous approximations of material
properties, CFD simulation can use more real-time heterogeneous properties of CL. Various
ML methods, such as SVM, LSTM, and BP, can further optimize the properties based on
experimental validation and improve the database. In addition to that, changes in current
densities, conductivity, water, and thermal management due to mechanical and chemical
degradation of CL can be modified in the governing equations of transport mechanisms of
CFD simulation for more effective prediction.
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4.3. Modeling of Gas Diffusion Layer (GDL)

The GDL is situated between the CL and flow channel, surrounding the two sides of the
MEA. The purpose of the GDL is to create an electronic and thermal bridge between the flow
channels and MEA, providing a transport path for the reactant gas flow and excess water
for removal. Hence, an ideal GDL should be cost-effective and possess high thermal and
electronic conductivities, appropriate wetting characteristics (hydrophobic/hydrophilic),
and high chemical and mechanical durability. Carbon-based papers and woven/non-
woven carbon fibers [257] are mainly used as GDLs, with pore sizes ranging from 1 to
100 µm, which are larger than those of the CL. The thickness of the GDL is generally
between 200 and 400 µm, with a fiber diameter of 7–10 µm [258]. The modeling approach
for the GDL is described in the following subsections.

4.3.1. Modeling Porous Structure

The GDL is primarily a carbon-based material and a wet-proofed, nonuniform porous
medium. Hence, its transport properties suffer from heterogeneous porosity distribu-
tions [259]. To model such a structure, the following properties must be considered:
porosity, wettability, permeability, capillary effect, and electrical conductivity.

Porosity

As mentioned previously, the porosity and pore size distribution affect the transport
properties of the reactants and products [260], ohmic resistance [261], and variation in the
liquid saturation profile [262]. Based on the pore size, GDLs can be categorized into three
types. GDLs with micropores (pore sizes < 0.01 µm) mostly utilize Knudsen diffusion,
whereas mesopores (pore sizes of 0.01–5 µm) employ bulk diffusion. By contrast, GDLs with
large pores, known as macropores (pore sizes > 5 µm), contain gas molecules that mainly
diffuse owing to molecular collisions. As mesopores remain in the transition between
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micro- and macropores, they are preferred because they have balanced transportation. The
transport properties are discussed in Section 4.3.2.

Wettability, Permeability, and Capillary Effect

In the GDL, liquid water management strongly depends on the pore size and resulting
wall adhesion effect. Based on the surface wettability (hydrophilic or hydrophobic), the
water movement changes completely in the PEMFC. Polytetrafluoroethylene (PTFE) is
added to the GDL to make it hydrophobic, which helps to remove water effectively. Dif-
ferent surface wettabilities of the pores produce a pressure difference, and subsequently,
the water moves owing to capillary pressure. This capillary pressure is responsible for
the liquid water transport in PEMFCs and is a function of the liquid water surface tension(

σlq

)
, contact angle (θ), porosity (ε), permeability (K0), and liquid water volume fraction

(s l) and can be expressed as follows [263,264]:

pc =


σlqcos θ

(
ε

K0

)0.5[
1.42(1 − s)− 2.12(1 − s)2 + 1.26(1 − s)3

]
θ < 90◦ (Hydrophilic)

σlqcos θ

(
ε

K0

)0.5[
1.42s − 2.12s2 + 1.26s3

]
θ > 90◦ (Hydrophobic)

(25)

Furthermore, during water transportation, a capillary pressure gradient is required to
overcome the negative gas pressure gradient. Therefore, low permeability is required [257].

Electric Conductivity

Modeling the electrical conductivity of the GDL is vital because carbon has a high
electrical conductivity. However, despite its high conductivity, the GDL causes ohmic losses
owing to the periodic interfaces between the flow channel and the GDL [265]. In most
CFD models, the electrical conductivity is assumed to be isotropic [266,267], which is not
accurate in real-world situations [268]. Ohm’s law is used to explain this [116]:

i1 = −σ0ϵ1.5
1 ∇Φ1 (26)

where ϵ1 and σ0 are the volume fraction and electrical conductivity of the electronically
conducting phase, respectively. Subsequently, the aforementioned equation is corrected for
additional porosity and tortuosity using the Bruggeman correction [269,270].

4.3.2. Transport Properties in GDL

There are two modes of transport in the GDL: gas phase and liquid phase.

Transport of Gas Phase

Almost every model uses the Stefan–Maxwell equation to treat gas transport, which is
a function of the total concentration of gas species, cT , mole fraction of species i, xi, and
effective binary interaction parameter between i and j, De f f

i,j [116]:

∇xi = ∑
j ̸=i

xi Nj − xjNi

cT De f f
i,j

(27)

where
De f f

i,j =
ϵG
τG

Di,j (28)

Here, sg and τG represent the volume fraction and tortuosity of the gas phase, respectively.
In the absence of liquid water, the gas-phase porosity (εG) is equivalent to the bulk

porosity (ε0) of the medium. However, in the presence of liquid water, a different approach
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is required, as explained in the following section. In these cases, a commonly used method
is to determine the tortuosity value using the Bruggeman expression [269,270].

τG = ϵ−0.5
G (29)

For a GDL with microscopic pores, the effective Knudson diffusion coefficient, De f f
Ki

,
is added to Equation (27) [104,271].

∇xi = − Ni

cT De f f
Ki

+ ∑
j ̸=i

xi Nj − xjNi

cT De f f
i,j

(30)

Although the diffusion mode has been emphasized in most previous models, convec-
tion has been considered in a few [111,169,189]. This can be accomplished by including an
additional Darcy’s law term [116]:

vG = − kG
µG

∇pG (31)

As per the dusty gas model [113–115], Equation (31) can be integrated into Equation
(30) to account for the pressure-driven flow [116]:

∇xi = − Ni

cT De f f
Ki

+ ∑
j ̸=i

xi Nj − xjNi

cT De f f
i,j

− xikG

De f f
Ki

µG

∇pG (32)

Transport of Liquid Phase

For single-phase modeling, the liquid phase can be treated as a solid phase with a spe-
cific volume fraction [96,110,260,272] or as droplets carried by the gas stream [190,273,274].
The former approach provides an understanding of how flooding occurs and propagates,
whereas the latter highlights the location of droplets and, in some cases, changes in water
pressure and concentration.

Although these single-phase approaches are adequate to some extent, two-phase mod-
els are necessary for precise calculations because porous media such as GDLs have signifi-
cant gas–liquid interactions. The two-phase model can be expressed as follows [263,275,276]:

pc = pL − pG = −
2σlqcos θ

r
(33)

where σlq, r, and θ are the surface tension of water, pore radius, and internal contact angle
that a drop of water forms with a solid, respectively.

This two-phase model can also predict liquid saturation at different positions. The
liquid saturation is defined as the amount of pore volume occupied by the liquid water
and is expressed as [116]:

ϵG = ϵG(1 − s) (34)

As the effective gas-phase diffusion coefficient is a function of liquid saturation, it
is characterized by a water-flooding phenomenon. To calculate the saturation of the two-
phase model, the gas and liquid capillary pressures should be measured using Darcy’s law
for each phase [116]:

Nw,L = − k
Vwµ

∇pL = − k
Vwµ

(∇pC +∇pG) = − k
Vwµ

∇pC (35)

The last part of the equation is derived under the assumption of uniform gas pressure
in the PEMFC. The effective permeability, k, can be obtained by applying the following
equation [116]:

k = krksat (36)
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Here, kr and ksat are the relative permeability and saturated permeability (or perme-
ability at complete saturation), respectively.

4.3.3. Lattice Boltzmann Method (LBM)

The LBM is a mesoscopic CFD method based on the MD theory, which is used to
simulate two-phase flow in porous GDL in PEMFCs [277–279]. This method enables a
more straightforward simulation of the twin-flow model compared to conventional CFD
methods based on the Navier–Stokes equations. In addition, the LBM is more appropriate
for microscale simulations because it is formulated based on the kinetic theory. This method
is mainly used to predict liquid water dynamics in a GDL under different nonuniform
compression cases with nonuniform pore size distribution [279], oxygen diffusion [278],
and water removal at the GDL wall with mixed wettability [280].

4.3.4. Issues Related to State-of-Art GDL Modeling

An accurate prediction of the effective transport properties of GDL is dependent on
understanding and then utilizing the precise physical and electrochemical parameters in
CFD simulation. State-of-the-art GDL modeling has the following issues:

The heterogeneity of GDL is not considered well during CFD simulation for the sake
of simplicity. However, porosity, permeability, bulk resistance, and interfacial contact resis-
tance (ICR) of GDL greatly affect the performance of PEMFC [281–283]. Nitta et al. [218]
considered heterogeneous GDL in their 2D modeling and obtained better cell performance
by optimizing porosity, effective thermal conductivity, and effective gas diffusion coeffi-
cient. Shinde et al. [284] implemented heterogeneous GDL with 8 different porosities with
their corresponding permeability and ICR and compared their numerical model with a
homogeneous one. In comparison to homogeneous GDL, heterogeneous models underes-
timate cell performance. Also, depending on the pore size, different diffusion kinetics or
transport mechanisms also need to be considered.

The wettability of GDL greatly influences the water removal from the PEMFC. Hence,
it is common practice to make GDL surfaces hydrophobic [285,286]. However, GDL surface
wettability changes due to the loss of polytetrafluoroethylene (PTFE) during mechanical
compression cycles [287,288] and various degradation mechanisms [289,290], which are
responsible for altering PTFE distribution. Even though GDL has a heterogeneous wettabil-
ity [291,292] and its corresponding capillary pressure, Pc [293], most of the CFD modeling
involves implementing a single contact angle for the whole GDL. In addition to that, the
effect of the surface roughness of GDL is important for effective water management [294],
which is always neglected during numerical investigation.

For a long period of time, GDL corrosion, such as carbon corrosion and loss of PTFE, is
responsible for limiting mass transfer, water management, and electrical conductivity [290].
Mostly, two types of degradation can be seen in GDL: (1) During compression, fiber break-
age, and carbon corrosion, and (2) changes in wettability because of oxidation and PEFE
loss. Though there is individual research related to the change in GDL wettability [295]
and porosity [284], to the best of the authors’ knowledge, the integration of GDL surfaces
with heterogeneous characteristics into PEMFC modeling has yet to be conducted.

4.3.5. ML in the Field of GDL

Likewise, CL and ML have also been implemented in the field of GDL for feature
extraction [296–298], optimization [290–301], and degradation [302,303], though they par-
ticularly do not consider the degradation of GDL. Mahdaviara et al. [297] implemented
2D and 3D U-net deep learning models for multiphase segmentation of images from
high-resolution X-ray tomography (micro-CT). These images include GDL with different
percentages of hydrophobic polytetrafluoroethylene (PTFE). Figure 9a shows the workflow
of the deep learning model for segmentation of wet GDL images (top) with distinctive
features such as water, air, and fiber colored as blue, red, and green, respectively (bottom).
Finally, they were able to measure the absolute permeability, which is close to the findings
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from the experiment. Froning et al. [298] utilize a CNN-based prediction model based
on the LB simulation of GDL with stochastic arrangement of fibers, four types of binder
distribution, and up to 50% compression, as can be seen in Figure 9b. The model could
successfully predict GDL characteristics such as permeability and tortuosity without the
need for high-performance computing (HPC) simulations. To optimize the properties of
GDL, Lobato et al. [299] collected 110 experimental data, where the inputs were PTFE
content (%), porosity from Hg-porosity (%), mean pore diameter (mm), permeability (m2),
hydrophobicity level (%), and current density (mA/cm2), and the outputs were cell voltage
(mV), tortuosity, and trained direct neural modeling. Furthermore, inverse neural modeling
was utilized to inversely produce the GDL properties, making the neural network model
an effective optimization tool (Figure 9c). Although there is a reduction in the performance
of PEMFC due to various components, it is not possible to pinpoint the reason specifically
to the CL, GDL, or other parts. However, it is a well-known fact that the hydrophobic
deterioration of the GDL stands out as a primary factor leading to both ohmic and mass
transfer degradation, ultimately causing a decrease in the power output of PEMFC [304].
By keeping that in mind, Nagulapati et al. [302] utilize three data-driven models, including
Gaussian process regression (GPR), support vector machine (SVM) and artificial neural
network (ANN), with raw data obtained from a dynamic load durability test of 10,000 h for
a single PEMFC. In their investigations, the GPR model demonstrates the highest predictive
accuracy as the training data size increases to 50% and beyond, achieving the lowest RMSE
value of 0.0071 using 70% training data, making it more suitable for machine learning-based
fault detection and state-of-health SOH estimation (Figure 9d).

Processes 2024, 12, x FOR PEER REVIEW 32 of 54 
 

 

 

Figure 9. Cont.



Processes 2024, 12, 1140 31 of 51

Processes 2024, 12, x FOR PEER REVIEW 32 of 54 
 

 

 

Processes 2024, 12, x FOR PEER REVIEW 33 of 54 
 

 

 
Figure 9. (a) Workflow for developing deep learning-based model for segmentation from wet 
images of GDL (top), original GDL images at a resolution of 384 × 384 pixels, along with the 
segmented images produced using trainable 3D Weka segmentation (down). The aqueous phase is 
shown in blue, air in red, and fibers in green in the segmented images whereas rectangles highlight 
examples of potential segmentation errors; reproduced with permission [297]; 2023 Elsevier Ltd., 
(b) ML approach for predicting the permeability of GDL from image data from previous lattice 
Boltzmann (LB) simulations; reproduced with permission [298]; 2022 MDPI, (c) architecture of 
neural network to investigate effect of GDL properties on PEMFC; reproduced with permission 
[299]; 2010 Elsevier Ltd., and (d) schematic of ML-based prognostics of PEMFC where carbon 
corrosion and hydrophobic loss of GDL are among the reasons for degradation; reproduced with 
permission [302]; 2023 Elsevier Ltd. 

Figure 9. (a) Workflow for developing deep learning-based model for segmentation from wet images
of GDL (top), original GDL images at a resolution of 384 × 384 pixels, along with the segmented
images produced using trainable 3D Weka segmentation (down). The aqueous phase is shown in
blue, air in red, and fibers in green in the segmented images whereas rectangles highlight examples
of potential segmentation errors; reproduced with permission [297]; 2023 Elsevier Ltd., (b) ML
approach for predicting the permeability of GDL from image data from previous lattice Boltzmann
(LB) simulations; reproduced with permission [298]; 2022 MDPI, (c) architecture of neural network to
investigate effect of GDL properties on PEMFC; reproduced with permission [299]; 2010 Elsevier Ltd.,
and (d) schematic of ML-based prognostics of PEMFC where carbon corrosion and hydrophobic loss
of GDL are among the reasons for degradation; reproduced with permission [302]; 2023 Elsevier Ltd.
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4.3.6. Integration of ML in GDL Modeling

Figure 10 shows the framework for ML integration of GDL modeling, which is almost
close to the CL framework. Unlike CL modeling, GDL does not need to consider additional
electromechanical parameters. The degradation of GDL, which affects the wettability of its
surface, should be a vital parameter for GDL modeling.
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4.4. Modeling of Bi-Polar Plate (BP)

Among the components of PEMFCs, BPs are the most important because they provide
an adequate number of reactants to the GDL and CL, effectively remove excess water
(which is responsible for flooding), broaden the contact area between the flow channel and
GDL to maximize proton transport, and minimize the pressure drop between the inlet and
outlet [305,306]. In addition, BPs account for 80% of the total weight and 45% of the cost of
the fuel cell stacks [307,308]. Graphite plates are mainly used for BPs because of their high
electrical conductivity [309–311].

4.4.1. Flow Inside the Channel

It is well established that the flow inside the channel is primarily laminar [60,312].
The steady-state continuity equation for the gas phase is expressed by the following
equation [60]:

∂ρmix.umix,i

∂xi
= Sm (37)

where ρmix and umix,i are the mixture multiphase density and velocity in direction i, respec-
tively, and Sm is the mass consumption/production in the flow channels. Although Sm
remains null in most cases, gas-to-liquid and liquid-to-dissolution transitions are considered
in flow channels [35].

4.4.2. Modeling of Pressure Drop

The fluid flow inside the channel depends on the pressure difference between the inlet
and outlet of the channel and is proportional to the flow rate in the channel. Thus, the
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pressure drop can be approximated by using the following expression for incompressible
flow in pipes [159]:

∆P = f
Lchan
DH

ρ
V2

2
+ ∑ KLρ

V2

2
(38)

where f , Lchan, DH , ρ, V, and KL are the friction factor, channel length, hydraulic diameter,
fluid density, average velocity, and local resistance, respectively.

The hydraulic diameter of a rectangular flow field can be expressed as [159]

DH =
2wcdc

(wc + dc)
(39)

where wc and dc are the width and depth of the channel, respectively.
However, for porous flow fields, Equation (38) can be replaced by [159]

∆P = µ
Qc

kAc
Lchan (40)

where µ, Qc, k, and Ac are the fluid viscosity, geometric flow rate through the cell, perme-
ability, and cross-sectional area of the flow field, respectively.

4.4.3. Issues Related to State-of-Art BP Modeling

Though the flow and transport of the reactants are not complicated in the flow channel
of BP, the following issues remain during the 3D modeling of the PEMFC:

The reactant flow rate, velocity, or stoichiometry from each inlet of the anode and
cathode can be either implemented as a constant value from experiments [215,313,314], a
function of pressure, temperature, RH, etc. [217,315,316], or an exact solution considering
various cross-sectional areas with laminar profiles [214,317]. However, despite the proce-
dure to choose this flow condition, researchers are able to validate their simulation results
with experiments. Hence, there should be some clear-cut guidance for flow conditions.

The degradation of the bi-polar plate is clearly neglected during the PEMFC modeling.
However, bi-polar plates can significantly induce the degradation of MEA, especially in
high-temperature PEMEC [318] and in metallic bi-polar plates [319].

The recent PEMFC research trend introduces new types of porous flow channels
instead of conventional flow channels, which show great potential regarding high mass
transport, heat removal, electrical conductivity, and enhanced performance [320,321]. How-
ever, numerical modeling is yet to be conducted for the optimization of this type of flow
field. It is important to note that, unlike the conventional hollow flow channel, the transport
phenomena and flow field-GDL interactions would be completely changed.

4.4.4. ML in the Field of BP

In order to optimize the design parameters of the bi-polar plate [40,322,323], ML has
proven to be an efficient tool. In addition to that, data-driven ML also utilizes PEMFC
optimization of operating conditions and performance predictions [324–328]. Seyhan
et al. [40] implement an ANN to optimize a wavy serpentine flow channel. Experimental
parameters such as hydrogen, air flow rate, cell temperature, and the amplitude of the
channel were used to train the ANN model (Figure 11a). Furthermore, the train model
was able to optimize the operating conditions and design parameters of the flow channel.
Figure 11b shows the work schematic of a single PEMFC with flow field configuration
and the dimensions of the divided unit (top) [322]. A CFD, combined with ANN and an
intelligent optimization algorithm, was used to extract the key geometry of the divided
part based on the power density and oxygen uniformity index (Figure 11c). Moreover, in
comparison to the base model and design of single-objective optimization (SOO), multi-
objective optimization (MOO) is superior according to the oxygen concentration, the oxygen
uniformity index, and the water removal capacity. Li et al. [327] used a ML base bagging
neural network (BNN) (Figure 11d) to predict the PEMFC performance from the parameters
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of different block structures. The database was created using the optimized height and
width of an imitated water block, and the prediction performance of BNN was compared
to that of the BP neural network (Figure 11e). The performance prediction model by
BNN produces high precision predictions with less data and has proven to be an effective
optimization tool for flow channels.
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Figure 11. (a) Schematic of ANN model (top) for predicting current densities (bottom) of different
types of flow channels where w1

ij and w2
ij represent the weights between the input and the first

hidden layer, and the weights between the first and second hidden layers, respectively; reproduced
with permission [40]; 2017 Elsevier Ltd.; (b) ANN structure to improve the 3D fine-mesh flow field;
(c) comparison of performance for 2 optimized flow configuration with the base model regarding
molar concentration of O2; reproduced with permission [322]; 2022 Elsevier Ltd.; (d) diagram of bagging



Processes 2024, 12, 1140 36 of 51

ensemble algorithm to predicting the performance of PEMFC using different block arrangements in
the flow channel; and (e) corresponding polarization in comparison to BP and simulation; reproduced
with permission [327]; 2022 Elsevier Ltd.

4.4.5. Integration of ML in BP Modeling

The input parameters for back propagation (BP) are easily obtainable, such as flow
rates, pressure, and temperature, from external sensors. However, more optimized parame-
ters and the nonlinear relationship between the given input and output can be accurately
predicted using ML methods, as illustrated in Figure 12. Though ML approaches are also
employed for design optimization of the flow channel and the selection of better materials
for BP, these aspects are not included in the proposed framework as they are not essential
for improving CFD modeling.
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5. Final Overview

Despite ongoing research to enhance the efficiency and commercialization of large-
scale PEMFC, achieving this goal through standalone experiments is unlikely. In this regard,
computational fluid dynamics (CFD) modeling emerges as an effective tool, circumventing
the time-consuming, costly, and labor-intensive nature of experimental processes. However,
as we deviate from assumptions and dynamic parameters for more accurate modeling, the
model describing physical phenomena becomes increasingly complex.

Fortunately, computational costs are no longer a significant issue. However, the chal-
lenge lies in the adequacy of governing equations to solve the flow and its corresponding
effects. Additionally, the intricate pattern of PEMFC generates copious data with a non-
linear relationship between parameters, necessitating more processing time and complex
flow equations. ML algorithms, with their superior accuracy in pattern recognition and
optimization techniques, hold the potential to address certain aspects of CFD modeling.
As illustrated in Figure 13, the PEMFC development cycle involves a combination of ex-
periments, CFD modeling, and ML approaches. Experimental results inform operational
parameters, establish databases for future development, and subsequently validate simula-
tions and ML algorithms. CFD modeling optimizes component design, contributes new
data in conjunction with experiments for ML, and, based on data from experiments and
CFD, ML provides more generalized yet accurate equations. This enhances the hetero-
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geneity of components in CFD simulations, ultimately leading to optimized designs and
material properties for maximizing PEMFC efficiency. Therefore, the ML-assisted CFD
model will have the following impacts:
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Development of materials: In terms of cost, weight, and durability, state-of-the-art
PEMFC materials suffer from heavy bi-polar plates, costly and degradable catalyst layers,
and PEM. Innovative materials with enhanced chemical stability, mechanical strength, and
degradation resistance hold the promise of elevating PEMFC components to unprecedented
levels of longevity and performance. Therefore, ML-assisted approaches could provide
more diverse sets of material options that will be more durable, efficient, and cost-effective,
depending on the operation condition.

Optimum design: After developing the material for each component, integration into
one single cell needs further research. These include optimum wettability of GDL for better
water drainage, efficient flow channel design for uniform reactant distribution, thermal and
water management, and adequate pressure drop. In this regard, ML-integrated modeling
approaches will replace the lengthy and costly experimental setup.

Future transport sector: Based on Table 1, future transportation will require more
durable, cost-effective, and efficient PEMFC or stacks. Thus, new materials and designs are
vital for replacing conventional fuel with PEMFC.

6. Conclusions and Outlooks

The purpose of this overview is to provide a comprehensive modeling guideline for
conducting PEMFC simulations to optimize the design and enhance performance with the
assistance of machine learning (ML). This study covers individual modeling methods for
each component of PEMFCs, detailing the advantages and disadvantages of each model,
addressing state-of-the-art modeling issues, reviewing previous ML studies, and proposing
a framework to combine computational fluid dynamics (CFD) with ML. ML can either
use experimental data to establish correlations between the parameter of interest and the
expected output or utilize CFD data as a surrogate model to find optimal parameters, thus
saving computational costs. Despite the potential for higher accuracy in ML-integrated
CFD, the limited additional data from experiments and CFD could sometimes lead to
overfitting and over/underestimation of generalization. Moreover, understanding the
selection of input parameters to train the model for specific problems and the relationships
obtained between the data for prediction is an aspect that requires further exploration.

Hence, the future integration of data-driven ML methods and CFD methods should
involve a trade-off between model accuracy and computational cost. For CFD-based
modeling, accuracy can be enhanced by obtaining curve-fitting transport properties from
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the experiment at various conditions, generalizing the relation, reducing the dimensionality,
and avoiding the less sensitive parameters with the data-driven ML method to improve
the governing equations of numerical models. However, this is not work that can be
accomplished overnight, and further research is required to achieve high model accuracy
with low computational costs.
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Abbreviations

CFD computational fluid dynamics
CL catalyst layer
GDL gas diffusion layer
HOR hydrogen oxidation reaction
HPT hot press time
HPP hot press pressure
ORR oxygen reduction reaction
MD molecular dynamics
MEA membrane electrode assembly
MSD mean square displacement
MHA Meta-heuristic algorithms
PFSA perfluorosulfonic acid
Pt platinum
PTFE polytetrafluorethylene
LE liquid equilibrated
SPNB sulfonated polynorbornene
PEMFC proton electrolyte membrane fuel cell
VE vapor equilibrated
Symbols
a water activity (1/m)
A specific external surface area, cm2

ak,p interfacial surface area between phases k and p per unit volume, 1/cm
c molar concentration, kmol/m3

cb solubility of oxygen, mol/cm3

ci,k interstitial concentration of species i in phase k, mol/cm3

cT total solution concentration or molar density, mol/cm3

ĈPk heat capacity of phase k, J/(g·K)
D mass diffusivity (m2/s)
DH hydraulic diameter, cm
DKi Knudsen diffusion coefficient of species i, cm2/s
Di,j diffusion coefficient of i in j, cm2/s
Er effectiveness factor
E cell potential, V
Fs interaction force between phases, N/cm3

f friction factor
F Faraday’s constant

Ji,k
flux density of species i in phase k relative to the mass-averaged velocity of
phase k, mol/(cm2·s)
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Jdi f f oxygen flux per unit volume, mol/(cm2·s)
h heat transfer coefficient, J/(cm2·s·K)
hevap latent heat of evaporation, J/kg
Hi,k partial molar enthalpy of species i in phase k, J/mol
∆Hevap heat or enthalpy of evaporation, J/mol

ih,1−k

normal interfacial current transferred per unit interfacial area across the
interface between the electronically conducting phase and phase k due to
electron-transfer reaction h, A/cm

ih,k−p
transfer current density of reaction h per unit interfacial area between phases k
and p, A/cm

i0h exchange current density for reaction h, A/cm2

L length, cm
k permeability, m2

ḱ ORR rate constant
m mass
M molecular weight, g/mol
nd electroosmotic drag coefficient
Ni,k superficial flux density of species i in phase k, mol/(cm2·s)
p partial pressure, atm
Qc geometric flow rate, cm3/s
ri,k−p rate of reaction per unit of interfacial area between phases k and p, mol/(cm2·s)
R′ total ohmic resistance, Ω/cm2

R ideal gas constant, 8.3143 J/(mol·K)
Rg,k rate of homogeneous reaction g in phase k, mol/(cm3·s)
revap rate of evaporation, mol/(cm3·s)
s water volume fraction
sg gas volume fraction
S source term

Si,k,h
stoichiometric coefficient of species i residing in phase k and participating in
electron transfer reaction h

si,k,g
stoichiometric coefficient of species i residing in phase k and participating in
electron transfer reaction g

T temperature, K
u mobility, (m2·kmol)/(J·s)
→
u m velocity vector, cm/s
U′ potential intercept for a polarization equation, V
Uh reversible cell potential of reaction h, V
UHh enthalpy potential, V
V volume, m3

V molar volume, cm3/mol
xi mole fraction of species i
z charge number of valence
Greek letters
α transfer coefficient, water transport coefficient kmol2/(J·m·s)
γ roughness factor
δ f ilm electrolyte thickness, cm
ε porosity
η overpotential, V
θ contact angle
κ ionic conductivity of the membrane, S/cm
λ water content
µ dynamic viscosity, kg/(m·s)
µw membrane water chemical potential
v velocity, cm/s
νavg fluid density average velocity, cm/s
ρ density, g/cm3

σ standard conductivity in the electronically conducting phase, S/cm
σlq liquid–water surface tension, N/m
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τG tortuosity
Φ chemical potential
ϕ Thiele modulus
∥ thermal conductivity, W/(m·K)
Subscripts and superscripts
agg agglomerate
act activation
an anode
cat cathode
chan channel
eq equilibrium
ext external to the control volume
f sulfonic acid group
G gas phase
H2 hydrogen
H2O water
i, j ith and jth components
ion ionic
lim limiting
L, l liquid phase
k phase
O2 oxygen
ref reference
sat saturated
sol solvent (ionomer)
n − v non-frozen membrane water to vapor
Naf Nafion
w water phase
vap vapor
v − l water to liquid (and vice versa)
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