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Abstract: This study examines the use of injection moulding to evaluate mechanical properties in
plastic products, such as shear and residual stresses. Key process variables like melt temperature,
mould temperature, hold pressure duration, and pure hold duration are meticulously chosen for
study. A full factorial experiment design is utilised to determine the best settings. These variables
notably influence the end product’s physical and mechanical properties. Computational techniques,
like the finite element method, are used to analyse behaviours based on varied input parameters.
A CAD model of a dashboard part is incorporated into a finite element analysis to measure shear
and residual stresses. Four specific parameters from the injection moulding process are subjected
to an in-depth experimental design. It is worth noting that the injection moulding process does not
incorporate a type-2 fuzzy neural network (T2FNN). However, in this particular investigation, T2FNN
was employed to replicate the mechanical stress model associated with dashboard injection moulding.
Its purpose was to estimate shear and residual stress levels. Additionally, the multi-objective genetic
algorithm (MOGA) was utilised to extract the most optimal parameters for the injection moulding
process, aiming to minimise shear and residual stress and thereby increase the resistance of the final
product. The proposed model was developed and implemented using MATLAB software. A Pareto
front was derived from the MOGA by employing the T2FNN within the process, identifying fourteen
optimal solutions.

Keywords: injection moulding; shear/residual stress; type-2 fuzzy neural network; multi-objective
optimisation; genetic algorithm

1. Introduction

The process of plastic injection moulding encompasses multiple steps. First, polymer
substances and additives are introduced into the machine’s heating system. After inject-
ing the melted polymer into the mould cavity during filling, additional polymer melt is
supplied under increased pressure during the packing phase to compensate for shrinkage.
Subsequently, cooling occurs until the component solidifies. Finally, the mould opens, and
the plastic component is extracted using ejector pins, marking the completion of one cycle
of the process, which then begins anew, as illustrated in Figure 1 [1–3].

The mechanical properties of moulded items can be unpredictable. Experienced op-
erators often accumulate vast knowledge to discern the best process variables. There is a
distinct link between these variables and the mechanical properties of the moulded com-
ponent in injection moulding. Inadequate adjustments can result in different mechanical
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characteristics, notably shear and residual stress [4]. In injection moulding, shear and
residual stresses are frequently examined. Shear stress arises from shear forces, a force
vector component aligned with the material’s cross-section, creating internal tension [5].
Additionally, even after the original stress source is gone, residual stresses can remain in a
solid material [6], which can either be beneficial or detrimental.
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vestigated pressure-controlled injection moulding on recycled high-density polyeth-
ylene’s mechanical properties and embodied energy. 

Chin and Wong [12] introduced a knowledge-based system for efficient plastic prod-
uct design, including material selection and injection mould feature generation. Kenig et 
al. [13] demonstrated the accurate prediction of plastic mechanical properties using Arti-
ficial Neural Networks, advancing potential self-taught control in injection moulding. Tan 
and Tang [14] introduced a learning-enhanced PI control for injection moulding machines, 
combining feedback and feedforward with an iterative learning algorithm for improved 
performance and disturbance compensation. Abbasalizadeh et al. [15] investigated the im-
pact of injection moulding parameters on polymer shrinkage. They emphasised the sig-
nificant influence of material crystallinity and flow direction on the shrinkage phenome-
non. By employing the Taguchi approach, they identified optimal conditions for minimis-
ing shrinkage. Abdul et al. [16] proposed combining a multilayer perceptron model and 
the Taguchi approach to predict and minimise part shrinkage in injection moulding. Their 
approach not only improved the quality of the final product but also facilitated the setup 
process for moulding. 

Similarly, Song et al. [17] developed a hybrid model incorporating a genetic algo-
rithm, a multilayer perceptron, and support vector regression. This model aimed to opti-
mise design parameters and accurately predict warpage and volume shrinkage in the in-
jection moulding process. Gao et al. [18] introduced machine learning methods such as 
the multilayer perceptron, support vector regression, and kernel ridge to design confor-
mal cooling channels in injection moulding. Their approach reduced temperature vari-
ance and enhanced cooling quality compared to conventional designs. Jung et al. [19] eval-
uated various machine learning techniques to assess their effectiveness in predicting in-
jection moulding quality. Lastly, Uğuroğlu [20] introduced a real-time application for 
plastic injection moulding machines. Their approach involved using machine learning 
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Schwetz et al. [7] investigated the mechanical properties of the B4C–C ceramics in
the injection moulding process. Torres et al. [8] investigated the influence of different
process parameters of injection moulding on the thermal and mechanical properties of the
final product. Ozcelik et al. [9] investigated the injection moulding process parameters
and mould material influences on the final product of injection moulding using ABS
materials. Kuzmanović et al. [10] studied the influence of moulding temperature on the
mechanical properties of PP/PET blends and microfibrillar composites. Recently, Krantz
et al. [11] investigated pressure-controlled injection moulding on recycled high-density
polyethylene’s mechanical properties and embodied energy.

Chin and Wong [12] introduced a knowledge-based system for efficient plastic prod-
uct design, including material selection and injection mould feature generation. Kenig
et al. [13] demonstrated the accurate prediction of plastic mechanical properties using Arti-
ficial Neural Networks, advancing potential self-taught control in injection moulding. Tan
and Tang [14] introduced a learning-enhanced PI control for injection moulding machines,
combining feedback and feedforward with an iterative learning algorithm for improved
performance and disturbance compensation. Abbasalizadeh et al. [15] investigated the
impact of injection moulding parameters on polymer shrinkage. They emphasised the sig-
nificant influence of material crystallinity and flow direction on the shrinkage phenomenon.
By employing the Taguchi approach, they identified optimal conditions for minimising
shrinkage. Abdul et al. [16] proposed combining a multilayer perceptron model and the
Taguchi approach to predict and minimise part shrinkage in injection moulding. Their
approach not only improved the quality of the final product but also facilitated the setup
process for moulding.

Similarly, Song et al. [17] developed a hybrid model incorporating a genetic algorithm,
a multilayer perceptron, and support vector regression. This model aimed to optimise
design parameters and accurately predict warpage and volume shrinkage in the injection
moulding process. Gao et al. [18] introduced machine learning methods such as the
multilayer perceptron, support vector regression, and kernel ridge to design conformal
cooling channels in injection moulding. Their approach reduced temperature variance and
enhanced cooling quality compared to conventional designs. Jung et al. [19] evaluated
various machine learning techniques to assess their effectiveness in predicting injection
moulding quality. Lastly, Uğuroğlu [20] introduced a real-time application for plastic
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injection moulding machines. Their approach involved using machine learning methods
such as k-nearest neighbour, random forest, logistic regression, and multilayer perceptron
to enhance the performance and functionality of the machines.

In recent times, considerable attention has been devoted to enhancing the effectiveness
of process parameters within injection moulding. Párizs et al. [21] undertook a compar-
ative analysis of diverse machine learning methods to predict the quality of multi-cavity
injection moulding. Their findings revealed that the decision tree model outperformed
others, achieving an impressive accuracy rate exceeding 90%. Similarly, Ke and Huang [22]
introduced an optimised multilayer perceptron model featuring a Sigmoid activation func-
tion and a learning rate of 0.1. Remarkably, this model achieved a remarkable accuracy
of 95.8%. Moayyedian et al. [23] developed a computationally efficient model employing
genetic programming techniques to optimise injection moulding parameters in another
study. Their approach yielded significantly lower mean squared error (MSE) values than
alternative methods like support vector regression, decision trees, and multilayer percep-
tron. Demonstrating their versatility, Gim et al. [24] utilised transfer learning techniques to
optimise process parameters for achieving superior surface quality in injection moulding.
By training a multi-task multilayer perceptron model on data collected from the original
production site and subsequently transferring it to a new site, they not only improved
surface gloss prediction but also reduced the size of the dataset. Consequently, this ap-
proach facilitated the efficient production of high-quality moulded parts. Fernández-León
et al. [25] introduced a surrogate model using an encoder–decoder approach for simulating
dual-phase flow in liquid moulding. Novel loss functions and sampling strategies enhance
accuracy and efficiency, improving the predictions of pressure, front flow, and structural
properties. Zhang et al. [26] introduced an IDD-Net, a deep learning method for industrial
defect detection. It addresses diversity, similarity, and scale challenges using a novel local-
global feature network and a three-layer feature aggregation network with a specialised
IoU loss. Experimental results demonstrate superior performance on various datasets and
real industrial applications.

Also, Moayyedian, Dinc, and Mamedov (2021) conducted research on optimising
injection moulding processes to minimise defects in plastic parts. They utilised Artificial
Neural Networks, Taguchi Techniques, and Analytic Hierarchy Process to determine
optimal parameters. Finite Element Analysis validated the parameters, showing the best
quality with specific settings like filling time, cooling time, pressure-holding time, and
melt temperature. The study highlighted filling time as the most influential factor and
concluded with a 1.5% margin of error due to uncontrollable process parameters [27].

The primary objective of this study is to develop a highly efficient machine-learning
approach for accurately determining the shear and residual stress within the injection
moulding process of plastic products. Notably, the utilisation of a type-2 fuzzy neural
network (T2FNN) for this purpose is a novel contribution, as previous investigations
have primarily focused on other methodologies such as knowledge-based systems [12,13],
linear regression [19,20], multilayer perceptron [14,16–18,20,22,23], support vector regres-
sion [17–19,23], random forest [19,20], decision tree [19,21,23], k-nearest neighbour [20,21],
genetic programming [23], deep learning [25,26], and transfer learning [24]. These earlier
studies have successfully extracted models with the ability to emulate the behaviour of
the injection moulding process. Nevertheless, the specific application of a T2FNN within
this domain has not been explored, thus signifying this current investigation’s novelty
and innovative nature. Consequently, a T2FNN has been employed in this study as a
key component of the research methodology. The versatility of this approach becomes
evident when considering its ability to effectively manage uncertainty within a dynamic
optimal learning framework. Furthermore, the inherent strength of this method lies in its
exceptional estimation capabilities, enabling the precise identification of complex systems.
It is important to note that, in contrast to type-1 fuzzy neural networks, the secondary
membership in type-2 systems is expressed as a fuzzy set. As a result, type-2 fuzzy sys-
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tems possess additional freedom, enhancing their adaptability and flexibility in handling
diverse scenarios.

Acquiring the necessary dataset for training/testing purposes of machine learning
methods can be accomplished through two primary approaches: experimental setups
and finite element simulation. Conducting experimental studies is not only costly but
also time-consuming. Conversely, finite element simulation offers a more convenient
alternative, allowing for easier dataset extraction without actual experiments. It is worth
highlighting that in this particular study, the required dataset for training/testing of the
machine-learning method was obtained through finite element simulation. Various inputs
were selected, including melt temperature, mould temperature, pressure holding time, and
pure holding time. Applying a type-2 fuzzy model in this study enhances the model’s
accuracy, specifically in handling the uncertainties inherent in the process.

Moreover, the integration of neural networks and fuzzy systems, forming the T2FNN,
significantly reduces the training and testing duration of the system, making it highly
suitable for online applications. Notably, this is the first instance in which T2FNN has been
utilised for modelling the injection moulding procedure. Additionally, the extracted T2FNN
model is incorporated into the multi-objective genetic algorithm (MOGA) to calculate the
optimal solution of the injection moulding process, resulting in reduced shear and residual
stress, ultimately minimizing internal defects. It is essential to acknowledge that MOGA is
a pioneering technique in multi-objective optimisation, proficient in determining optimal
parameters for complex systems across various sectors.

Section 2 comprehensively examines the injection moulding process, specifically
on producing intricate dashboard components. Furthermore, this section outlines the
methodology for acquiring the necessary datasets, utilizing the finite element simulation
environment. Moving forward to Section 3, a detailed explanation regarding the innova-
tive approach incorporating the combined utilisation of T2FNN and MOGA is provided.
Section 4 of this manuscript offers a comprehensive comparative analysis and thought-
provoking discussion, delving into the outcomes extracted through the developed model
implemented within the MATLAB framework (MATLAB R2017B). Finally, in Section 6, the
study reaches its culmination as key conclusions derived from the research are summarised
and highlighted.

2. Injection-Moulding Process for Dashboard

Shear and residual stress are the main important mechanical properties of injection
moulding. In injection moulding, shear stress is the tension created within the molten
polymer when it navigates through the mould. As the liquefied plastic is pushed into the
mould’s channels and cavities, it encounters resistance, leading to shearing forces. This
stress is born out of the velocity differences, or the change in flow speed, within the molten
polymer’s path. The molten plastic layers near the mould boundaries tend to move slower
than the central layers because of the friction against the mould surfaces. Such variation in
movement between these layers is what produces shear stress.

The literature review pinpointed shear and residual stresses for the comprehensive
examination. A full-factorial design is applied to determine the paramount factors impact-
ing the selected plastic component’s mechanical properties for optimal design. Figure 2
presents the dashboard’s modelling, with (a) depicting its solid form. The simulation
methodology leverages finite element analysis and SOLIDWORKS Plastic. The cooling
framework for the plastic component is conceived using a cool pipe model, integrating
the cooling channels into the mould’s solid depiction. In this cyclical approach, the fluc-
tuating thermal profiles of the heated mould and cavity are calculated through the cool
solver. Ambient temperature serves as a reference for the initial heating. Finite element
analysis is instrumental in the simulation, ensuring the analytical results’ integrity and
precision. Within this analysis, surface meshes adopt triangular configurations aligning
with the specimen’s geometric nuances, as illustrated in Figure 2b. After assessing multiple
dimensions, a 1 mm surface mesh size is chosen for the injection segment.
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Figure 2. (a) Solid modelling of the dashboard; (b) the meshed model with triangle meshes. 
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boxes. Given the many parameters and associated levels detailed in Table 1, 180 simula-
tions were performed utilizing SolidWorks Plastics. 

  

Figure 2. (a) Solid modelling of the dashboard; (b) the meshed model with triangle meshes.

Shear and residual stress are crucial for product quality. Elevated shear stress during
molding can cause internal flaws and weaken bonds, reducing resilience and durability.
Residual stresses post-cooling can lead to warping or cracking, compromising structural
integrity. Additionally, dimensional discrepancies and surface imperfections affect function,
aesthetics, and visual appeal. Long-term performance may suffer due to stress-induced
material degradation or instability. Effective stress management is vital for ensuring
product quality and longevity across industries [1,28].

This study delves into diverse process parameters, such as pure cooling duration,
melt temperature, mould temperature, and hold pressure duration. The viscosity of the
polymer melt is influenced by melt temperature, where higher temperatures typically result
in lower viscosity, potentially decreasing shear stress during filling. Mold temperature,
on the other hand, affects the rate of cooling and polymer crystallisation, influencing
the residual stresses present in the final part. Extended pressure holding times facilitate
better mold cavity packing, which may decrease voids and enhance part density, thus
affecting shear stress. Similarly, prolonged cooling times promote controlled polymer
solidification, potentially reducing residual stresses by minimising thermal gradients and
internal stress accumulation [1,28]. Achieving optimal results necessitates balancing these
parameters to minimise both shear and residual stresses while ensuring the desired prop-
erties and dimensional accuracy of the injection-molded plastic parts. These parameters
undergo examination at varying levels, with melt temperature—identified as the most
critical parameter—assessed at five distinct levels. In comparison, pure cooling time is
evaluated at three levels. Simulation-based determinations ascertain each parameter’s
lowest and highest efficacious thresholds and the necessary intermediate levels. Acry-
lonitrile Butadiene Styrene (ABS) has been chosen as the focus material for this research.
Generic ABS (Acrylonitrile Butadiene Styrene) is a favored choice among manufacturers
for car glove boxes because of its robustness, resistance to impact, and heat, rendering it
well-suited for the rigors of automotive interiors. ABS boasts dimensional stability across
different temperature and humidity conditions, ensuring a snug fit of the glove box over its
lifespan. Its versatility in molding intricate shapes enables the creation of designs meeting
both functional and aesthetic requirements. In comparison to alternative plastics, ABS
offers a harmonious blend of strength, impact resistance, heat resilience, and mouldability,
solidifying its position as a premier option for automotive components such as glove boxes.
Given the many parameters and associated levels detailed in Table 1, 180 simulations were
performed utilizing SolidWorks Plastics.
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Table 1. The selected parameters and their levels.

Parameters L1 L2 L3 L4 L5

Melt temperature T1 (◦C) 200 215 230 255 280

Mould temperature T2 (◦C) 25 50 65 80 -

Pressure holding time t1 (s) 10 20 30 - -

Pure cooling time t2 (s) 60 80 100 - -

3. Methodology

This section’s focal point lies in the proposed methodology, which revolves around
integrating T2FNN and MOGA. A comprehensive investigation is undertaken, employing
a full factorial analysis of the injection moulding process. This study embraces the power
of the finite element simulation environment to capture the system’s outputs, namely
internal shear and residual stress, contingent upon a range of inputs: melt temperature,
mould temperature, pressure holding time, and pure holding time. The subsequent step
entails the utilisation of T2FNN to derive a surrogate model that faithfully emulates the
behaviour exhibited by the injection moulding process. Concurrently, MOGA comes
into play, extracting the optimal process parameters for the injection moulding machine.
Crucially, the surrogate model extracted through T2FNN finds its place within the objective
function of MOGA, fuelling its efficacy. In the ultimate stage, the obtained results from
MOGA, manifesting as the Pareto front distribution of optimal solutions, are subjected
to validation through the finite element simulation. This crucial step aims to increase
the model’s performance by presenting real-world examples where it excels in handling
complex parts.

The proposed framework is visualised in Figure 3, presenting a concise representation
of the innovative approach. This methodology unveils its true potential by comprising two
pivotal steps. In the initial phase, emphasis is placed on training and extracting the T2FNN.
Leveraging the invaluable datasets acquired from the preceding section, two distinct
T2FNN models are developed, each catering to the prediction of specific outputs: maximum
internal shear (T2FNN-Shear) and residual stress (T2FNN-Residual). Transitioning to the
subsequent step, the utilisation of MOGA comes into play. This powerful algorithm
takes centre stage, extracting the optimal process parameters. The primary objective is
to minimise internal shear, residual stress, and defects, effectively enhancing the overall
quality of the plastic parts. Notably, the raw datasets cannot be directly fed into the
algorithm, which would compromise the model’s accuracy. Hence, we delve into the
importance of data preprocessing, which is extensively discussed in the initial subsection
of this section. Through this preprocessing stage, we ensure the fidelity and reliability
of the subsequent MOGA and T2FNN components. The following subsection provides
a comprehensive breakdown of the MOGA and T2FNN techniques. This hybrid model
serves as the key catalyst, facilitating the extraction of optimal process parameters within
the injection moulding procedure of plastic parts.

3.1. Preprocessing

The dataset undergoes a crucial preprocessing stage to enhance the network’s accu-
racy, aimed at mitigating the system’s complexity. The process commences by removing
out-of-range data, as these entries significantly impede the network’s precision. Subse-
quently, normalisation takes centre stage, facilitating the allocation of mean and standard
deviation values within a rational range. By achieving this, the system’s complexity is
effectively reduced, streamlining the network’s operations. The calculations involved in
this normalisation process are as follows:

nxi =
xi − x
x − x

(1)
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where x and x are the maximum and minimum values of the dataset. Additionally, let xi
represent the raw data at the ith position while nxi symbolises the corresponding normalised
data. The normalised values are constrained within the interval [0, 1]. Acknowledging that
the normalisation procedure is conducted independently for input and output data is vital.
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Concluding the data preprocessing stage involves partitioning the dataset into distinct
training and testing samples. For this study, 80% of the dataset is allocated for training.
The remaining 20% is reserved for testing the network’s performance.

3.2. Type-2 Fuzzy Neural Network

T2FNN emerges as a powerful fusion, integrating a neural network and a type-2 FIS
to achieve optimal tuning. Within this study, the type-2 FIS takes centre stage, meticu-
lously calculating both shear and residual stress in the injection moulding process. These
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individual components, denoted as T2FNN-Shear and T2FNN-Residual, respectively, har-
moniously collaborate to deliver accurate insights. Figure 4 artistically showcases the
membership functions employed by the interval type-2 FIS. These functions have been
strategically designed to effectively handle the intricacies associated with internal shear
and residual stress. For this analysis, a set of captured datasets, conveniently arranged in
Table 1, serves as the foundation for training and testing the proposed model.
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Moreover, complementing the type-2 FIS model, a feedforward neural network has
been seamlessly integrated. This addition contributes to fine-tuning the model, facilitating
the precise calculation of internal shear and residual stress. The comprehensive structure of
this hybrid T2FNN model is skilfully depicted in the captivating Figure 5.
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The T2FNN involves the development of the considered system through the utilisation
of multiple type-2 FIS IF-THEN rules, as outlined below:

Rule ai : IF u*
i ∈ Qa

u and v*
i ∈ Qa

v

THEN : Xa
i =

[
ua

i
T , va

i
T
]T

= r̂a
i0 + R̂a

u,v

[
u∗

i
T , v∗

i
T
]T

= r̂a
i0 + R̂a

u,vX∗
i

(2)

where
R̂a

u,v =
[
r̂a

u,v,1, . . . , r̂a
u,v,5

]T while r̂a
u,v,n ∈

[
ra

u,v,n, ra
u,v,n

]
, n = 1, . . . , 5 (3)

Moreover, u∗
i and v∗

i represent the reference signals, with ai denoting the number
of rules for systems i within the set {n, q}. Additionally, Qa

u and Qa
v comprise the sets of

type-2 FISs, each equipped with their respective membership functions.
Therefore:

Xa
i = ra

i0 + Ra
u,vX∗

i
Xa

i = ra
i0 + Ra

u,vX∗
i

(4)

Using the fuzzy sets illustrated in Figure 4 as a reference, we define α̂a
u(vi) = [αa

u(vi), αa
u(vi)]

and α̂a
u(ui) = [αa

u(ui), αa
u(ui)] as uncertain standard deviation and mean Gaussian functions,

while:
0 ≤ αa

Xi
(Xi) ≤ αa

Xi
(Xi) ≤ 1 (5)

and

αa
Xi
(Xi) = e

(− 1
2 (

Xi−ca
Xi

wa
1Xi

)

2

)

αa
Xi
(Xi) = e

(− 1
2 (

Xi−ca
Xi

wa
2Xi

)

2

)

(6)

By multiplying the type-2 fuzzy sets, the final outputs of the fuzzy rules in each system
are determined in the following manner:

µa
Xi
(Xi) = αa

u(ui)× αa
u(vi)

µa
Xi
(Xi) = αa

u(ui)× αa
u(vi)

(7)

So

X̂i =
1
2

∑Ai
a=1 µa

Xi
(Xi)Xa

i

∑Ai
a=1 µa

Xi
(Xi)

+
∑Ai

a=1 µa
Xi
(Xi)Xa

i

∑Ai
a=1 µa

Xi
(Xi)

 (8)

The generation of parameters within the type-2 FIS is accomplished by training a
neural network utilizing the datasets employed in this study. The fuzzy neural network,
operating on the principles of the Takagi-Sugeno fuzzy structure, skilfully incorporates
the represented rules outlined in Equation (3). Visualizing the intricate mechanism of the
T2FNN is Figure 5, a captivating depiction illustrating the system’s functionality through
the arrangement of five layers or two distinct main groups, namely the antecedents and
the consequents.

3.3. Multi-Objective Genetic Algorithm

In 1995, Deb et al. [29] proposed an innovative algorithm known as single objective GA,
seamlessly merging genetic algorithms and Pareto optimisation to tackle the complexities
of multi-objective optimisation problems. Building upon this foundation, in 2002, the
MOGA emerged as a noteworthy enhancement, strategically designed to streamline system
complexities and bolster solution calculation speed through individual stratification. One of
the key advantages of MOGA lies in its remarkable ability to extract Pareto front solutions,
even within the realm of non-convex problems. Remarkably, the computational efficiency
of MOGA is underscored by the fact that the Pareto front distribution can be extracted in
a single run. Delving into the inner workings of MOGA, the initial step revolves around
calculating penalty values utilizing the proposed T2FNN models. Subsequently, the genetic
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operator takes centre stage, employing mutation and crossover techniques to generate a
new population. Embodying the essence of MOGA, the Elitist strategy meticulously selects
the best solution from each newly generated population, effectively preserving the cream
of the crop. This iterative process continues until the specified number of iterations is
fulfilled. No definitive termination goal exists in the realm of MOGA, as the absence of
a singular objective function necessitates alternative approaches. Combining crowding
distance and non-domain sorting functions enables the cyclic grading essential to the
algorithm’s operation.

The initial step entails identifying the foremost non-dominated layer derived from the
non-dominated set residing within the group. Subsequently, the said non-dominated set is
promptly eliminated from the group, clearing the path for further exploration. The search
endeavours persist within the remaining group, driving the process forward. Lastly, the
solutions undergo a meticulous sorting procedure, meticulously arranged based on the
intricacies of the dominance relationship.

Within this study, two objective functions are determined through the calculation
of the mean square error (MSE) between the actual values acquired via finite element
simulation and the predictions generated by the proposed T2FNN models:

JO1(T1, T2, t1, t2) =
1
n

n
∑

i=1

(
σS

i − σ̂S
i

)2

JO2(T1, T2, t1, t2) =
1
n

n
∑

i=1

(
σR

i − σ̂R
i

)2 (9)

where σS and σ̂S stand for actual and predicted internal shear stress via finite element
simulation and the proposed T2FNN, respectively. In addition, σR and σ̂R stand for actual
and predicted internal stress residual via finite element simulation and the proposed
T2FNN, respectively. Also, T1, T2, t1, and t2 are melt temperature, mould temperature,
pressure holding time, and pure holding time, respectively.

The computation of inter-solution distances is undertaken by employing the crowding
distance technique, thereby facilitating the density determination of the neighbouring
solutions. This involves summing the distances between the individuals for each objective
function. Additionally, normalisation is implemented as a preventive measure to address
the issue of varying scales between objectives.

4. Results

The proposed technique is initially formulated and implemented within the MATLAB
environment, as Section 3 outlines. These variants are denoted as T2FNN-Residual and
T2FNN-Shear, and they forecast residual and shear stress for the end product of injection
moulding. The predictive models rely on the manipulation of process parameters, namely
T1 (◦C), T2 (◦C), t1 (s), and t2 (s). Given the adjustable nature of these process parameters,
they are all incorporated in the derivation of the optimal solution, ensuring the attainment
of a final product with superior mechanical attributes. A total of 80% of the provided
datasets (144 sets) are utilised for training the networks. In comparison, the remaining 20%
(36 sets) are reserved for testing the model.

Figure 6a,b illustrates the correlations between the outcomes derived from finite ele-
ment analysis and the forecasts generated for residual and shear stress. This evaluation
encompasses the entire datasets, encompassing training and testing subsets, utilizing
T2FNN-Residual and T2FNN-Shear models. As indicated in Figure 6a, the predictive per-
formance of T2FNN-Residual in estimating residual stress exhibits correlation coefficients
of 0.9777 and 0.9868 for the training and testing datasets, respectively. Similarly, Figure 6b
illustrates a distinct pattern, where the regression coefficients for T2FNN-Residual in the do-
main of residual stress prediction are 0.9731 and 0.5671 for the training and testing datasets
correspondingly. Regarding computational efficiency, the training durations for T2FNN-
Residual and T2FNN-Shear, executed on a computer equipped with Intel(R) Core(TM)
i7-10875H CPU @ 2.30 GHz 2.30 GHz, amount to 1.609482 and 3.605136 s, respectively.
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Figure 7a,b displays residual and shear stress assessment within the dashboard’s final
product. This appraisal involves employing both the finite element framework and the
suggested T2FNN-Residual and T2FNN-Shear models during the testing phase of the
network. The finite element results serve as the benchmark against which the outcomes
of T2FNN-Residual and T2FNN-Shear are juxtaposed, facilitating an evaluation of the
proposed models’ precision. Figure 7a delineates the computation of residual stress for 36
testing samples, utilizing both the finite element environment and T2FNN-Residual. As
evidenced by the findings in Figure 7a, the correlation coefficient between the finite element
outcomes and the projected residual stress yielded by the proposed T2FNN-Residual model
amounts to 0.9848. Furthermore, Figure 7b demonstrates that, encompassing 44 testing
samples, the correlation coefficient between the finite element results and the projected
shear stress generated by the suggested T2FNN-Shear model stands at 0.7349.

Figure 8a,b illustrates the discrepancy between the anticipated and reference (finite
element) values for both residual and shear stress predictions, employing the T2FNN
models. Analysing the outcomes depicted in Figure 8a, it becomes evident that the mean
square error between the predicted and finite element-based residual stress, as determined
by the proposed T2FNN-Torque, equates to 6.8829 (MPa). Similarly, in the ensuing analysis,
the mean square error about the anticipated and finite element-based shear stress, facilitated
by the newly developed T2FNN-Shear model, computes to 0.1546 (MPa), as reflected in
Figure 8b. Additionally, the root mean square errors, gauged between the predicted and
finite element-derived residual and shear stress, are 2.6235 and 0.3932 (MPa), respectively,
following the data portrayed in Figure 8a,b. Lastly, assessing the normalised root mean
square errors, it is deducible that T2FNN-Residual boasts superior predictive accuracy
compared to T2FNN-Shear, given its lower value of 0.0482 in contrast to 0.2263 (MPa) as
delineated in Figure 8a,b.

All the represented results in Figures 6–8 are shown in Table 2 for a quick check of the
proposed method’s performance. The concepts of mean square error, root means square
error, normalised root means square error, correlation coefficient, r-square, mean of error,
and standard deviation of error are used to show the efficiency of the proposed method.
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Table 2. The extracted results for investigation of implementing T2FNN-Residual and T2FNN-Shear
for calculation of residual and shear stress based on T1, T2, t1, and t2 (MSE: mean square error; RMSE:
root means square error; NRMSE: normalised root mean square error; CC: correlation coefficient; R2:
R-square).

Index
T2FNN-Residual T2FNN-Shear

Training Testing All Training Testing All

MSE 4.1436 6.8829 4.1436 8.47 × 10−3 1.55 × 10−1 8.47 × 10−3

RMSE 2.0356 2.6235 2.0356 9.20 × 10−2 3.93 × 10−1 9.20 × 10−2

NRMSE 0.0366 0.0482 0.0366 5.54 × 10−2 2.26 × 10−1 5.54 × 10−2

CC 0.9868 0.9848 0.9868 0.9758 0.7349 0.9758

R2 0.9777 0.9680 0.9777 0.9731 0.5671 0.9731

Mean of error −0.1217 0.4515 −0.1217 3.29 × 10−3 2.43 × 10−2 3.29 × 10−3

Error std 2.039 2.621 2.039 9.23 × 10−2 3.98 × 10−1 9.23 × 10−2
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Figure 9a–d shows the rule surface of the extracted T2FNN-Residual and T2FNN-
Shear in calculating the residual and shear stress based on different arrangements of the
input process parameters, respectively. Figure 9a,b represents the system’s behaviour
(T2FNN-Residual) on the calculation residual stress based on the variation of T1/T2 and
t1/t2, respectively. Figure 9a shows that T1 (melt temperature) influences the final product’s
residual stress variation. The second effective input process parameter in the residual stress
variation is T2 (mould temperature). t2 (pressure cooling time) and t1 (pressure holding
time) can be categorised as the third and fourth levels of influence parameters in the
residual stress of the final product. However, the influence of T1 (melt temperature) and
T2 (mould temperature) on the variation in shear stress are reported as the same based on
the represented results in Figure 9c. It also shows the same influence for the t2 (pressure
cooling time) and t1 (pressure holding time) in the variation in shear stress (Figure 9d). As
a result, T1 and T2 are the first effective parameters in the variation in shear stress, which
put the t1 and t2 in the second level of influence.
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stress using t1 and t2; (c) shear stress using T1 and T2; (d) shear stress using t1 and t2.

Subsequently, the application of the T2FNN models for forecasting residual and shear
stress is integrated into the MOGA framework, aimed at deducing the optimal set of process
parameters for the injection moulding process. The Pareto front distribution, characterizing
the optimal process solutions, is displayed in Figure 10. In contrast, the corresponding
optimal solutions are outlined in Table 3. A series of finite element experiments were
conducted to validate the system’s accuracy, guided by the extracted optimal solutions
derived from the proposed T2FNN and MOGA approaches. A comprehensive comparison
was then undertaken, contrasting the experimental outcomes with those generated by
the proposed T2FNN and MOGA, as showcased in the final column of Table 3. The
results distinctly manifest an impressive alignment between the proposed method and
the experimental data, revealing a marginal nonconformance of less than 8.28%. This
substantiates the precision of the proposed approach in prognosticating residual and shear
stress within the injection moulding process for dashboards.
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Figure 10. Pareto front of the extracted optimal solution using MOGA in the injection moulding
process to extract the optimal residual and shear stress.

Table 3. Extracted optimal process parameters of the injection moulding process of the dashboard
using T2FNN models and MOGA.

No. T1 (◦C) T2 (◦C) t1 (seconds) t2 (seconds) Error %

1 246.141 75.058 11.291 76.775 2

2 244.166 75.187 11.327 72.615 8

3 208.649 77.260 13.654 69.917 5

4 210.981 77.144 15.019 69.763 16

5 226.885 75.322 11.397 73.876 9

6 233.623 75.225 11.347 75.182 18

7 246.141 75.058 11.291 76.775 4

8 209.384 77.255 16.903 70.048 5

9 220.384 76.748 12.881 70.162 3

10 208.649 77.418 17.137 70.078 3

11 210.983 77.144 15.024 69.771 17

12 207.830 77.438 29.127 69.619 12

13 224.537 75.682 11.934 70.834 11

14 207.863 77.447 29.033 69.434 3

5. Discussion

This study proposed a method to enhance the injection moulding process by minimiz-
ing various plastic defects such as shear stress, and residual stress in the final product. It
introduces a structured framework for optimizing process parameters like temperature,
pressure, and speed, crucial for achieving high-quality results in injection moulding. The
method offers a novel approach, distinct from conventional methods, with potential ad-
vantages in terms of efficiency and effectiveness. Sensitivity analysis is performed in this
study to evaluate how changes in input parameters affect outcomes by identifying the
areas of concern and guiding adjustments to improve the accuracy of the analysis. Also,
through rigorous experimentation, the study validates the effectiveness of this method
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in reducing plastic defects, thereby bolstering its credibility [30]. Additionally, while the
research primarily addresses specific defects, it hints at the method’s adaptability to other
defect types, indicating its broader applicability. Furthermore, the study suggests avenues
for future research to explore the method’s potential enhancements and its application to
other defect categories, underscoring its significance for ongoing research in the field.

6. Conclusions

The study examined injection moulding to evaluate plastic product properties, focus-
ing on shear and residual stresses. Key variables were selected, and a factorial experiment
identified optimal settings. Computational techniques, like finite element analysis, assessed
input impacts. The novel approach integrated T2FNN and MOGA to model and optimise
injection moulding. Validation used a CAD model. Investigation results highlighted pro-
cess variables impacting properties, e.g., melt/mould temperature, pressure holding time,
and pressure cooling time. T2FNN estimated stresses accurately, improving modelling with
process uncertainties. T2FNN combined with MOGA extracted optimal parameters, reduc-
ing shear and residual stress and enhancing product resistance. Finite element simulation
proved efficient in dataset generation, avoiding costly experiments. The T2FNN-MOGA
combination excelled in optimizing complex systems like injection moulding. The hybrid
model determined Pareto-optimal solutions, enhancing plastic manufacturing efficiency.
Study contributions were twofold: novel T2FNN use for stress estimation and MOGA
incorporation for process optimisation. Implications for plastic manufacturing include
quality improvement, defect reduction, and process efficiency enhancement. Findings hold
the potential to significantly impact the injection moulding field.
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