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Abstract: To address the significant challenges in determining the single-well production of tight
gas and shale gas after hydraulic fracturing, artificial intelligence (AI) methods were implemented.
Machine learning (ML) algorithms such as random forest (RF), extremely randomized trees (ET),
lightweight gradient boosting machines (LightGBM), gradient boosting regression (GBR), and linear
regression (LR) were utilized in conjunction with reservoir geology, engineering parameters, and
production data to develop several foundational models for forecasting the production of uncon-
ventional gas wells. The accuracy of these models was evaluated. Based on this, improvements
in the models’ predictive accuracy and generalizability were achieved through the ensemble of
machine learning models. Furthermore, this paper selected two representative tight and shale gas
reservoirs to demonstrate the application of the ensemble model for well production forecasting, and
a comparative analysis with actual production data was conducted. For tight gas reservoir A, the
blending model achieved an MAE of 0.8419 and an MSE of 1.0930, with an R? score of 0.8812. For
shale gas reservoir B, the blending model achieved an MAE of 1.4841 and an MSE of 3.1629, with
an R? score of 0.9524. The results of the case studies indicate that the ensemble model approach
employed in this study has a higher predictive accuracy and reliability than a single machine learning
algorithm, and is capable of handling high-dimensional, large-scale, and imbalanced data, offering
scientific validation and technical support for the assessment of the well productivity in tight and
shale gas wells.

Keywords: tight gas; shale gas; hydraulic fracturing; gas rate prediction; machine learning;
ensemble learning

1. Introduction

Currently, tight gas and shale gas reservoirs are increasingly recognized as significant
contributors to the overall energy resources, complementing the traditional oil reservoirs.
However, unconventional gas reservoirs such as tight gas and shale gas generally have
characteristics such as low porosity, ultra-low permeability, and strong heterogeneity. They
do not have natural productivity, and it is almost impossible to obtain an industrial gas flow
without using fracturing measures. Moreover, the fracture pattern formed by multi-stage
fracturing or volume fracturing is very complex, and the flow characteristics are not clear,
which increases the difficulty of predicting single-well production [1-10].

In recent years, scholars from both China and other major gas-producing regions, in-
cluding North America, have conducted extensive research on the prediction of production
rates in tight gas and shale gas wells, using methods such as empirical formulas, analytical
models, and numerical simulations [11-16]. Empirical formulas and analytical models
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are mainly based on theoretical models, which make it difficult to fully consider the com-
plex flow characteristics of unconventional gas reservoirs. Furthermore, different models
have different applicable conditions, resulting in significant deviations in the prediction
results. Numerical models usually simplify the actual reservoir characteristics, making it
challenging to accurately characterize the complex reservoir structure and dynamic fracture
networks, leading to significant uncertainties in the prediction results. Therefore, it is
necessary to explore integrated learning models for predicting the single-well production
in unconventional gas reservoirs.

Machine learning is a branch of artificial intelligence that enables computers to learn
patterns and models from data without the need for explicit programming. The funda-
mental principle of machine learning is the use of mathematical and statistical methods
to construct mathematical models. These models are adjusted through optimization al-
gorithms to best fit the data and generalize to new data. Common machine learning
algorithms include multiple linear regression, decision trees, random forests, support vec-
tor machines, neural networks, and so on. Machine learning can delve into data to discover
the underlying patterns and handle complex nonlinear relationships, and is characterized
by high computational accuracy and the ease of application. It is also applicable in the field
of oil and gas development.

Recently, scholars have conducted a series of studies using machine learning meth-
ods for single-well production prediction in unconventional gas reservoirs. In 2015, Ma
established a sample set of influencing factors on production capacity [17]. They used
BP neural network and support vector machine methods to predict the production rate
of tight gas wells. The relative error of the support vector machine method ranged from
7.06% to 19.59%, while the relative error of the BP neural network ranged from 8.49% to
37.79%. In 2016, Tian et al., based on an improved BP neural network, established a shale
gas production prediction model with production time, cumulative gas production, and
reservoir pressure as the input layer, and gas production as the output layer [18]. The
relative error prediction was 8.2%. In 2017, Zhu et al. used an adaptive threshold denoising
algorithm to remove noise and then applied the BP neural network to nonlinearly fit the
reservoir transformation data, thereby obtaining a production prediction model for shale
gas wells [19]. Compared to the traditional BP neural network, this model showed improve-
ments in accuracy and stability. In 2019, Lu used reservoir thickness, porosity, permeability,
saturation, tubing pressure, water—gas ratio, and other constraints. They established pro-
duction prediction models using recurrent neural networks and long short-term memory
neural networks [20]. The average relative error of the prediction results was less than
10%. Ma et al. proposed a machine learning-based method for the uncertain prediction of
shale gas production capacity using a combination of maximum information coefficient
correlation analysis, a hybrid support vector machine technique, and Markov chain Monte
Carlo simulation [21]. An analysis of 24 shale gas well examples showed an accuracy rate
of 70.8% using this method. Fan et al. used the gray correlation method to determine the
main controlling factors and weights of shale gas wells [22]. They then used a BP neural
network method optimized by genetic algorithms and combined it with data mining tech-
niques to fully utilize the geological and engineering parameters. They established a shale
gas rate prediction model for horizontal wells with volume fracturing, with an average
prediction error of 8.76%. In 2020, Li et al. used a NARX neural network based on a time
series to establish a production rate prediction model between oil pressure and production,
with a prediction accuracy of up to 90% in one year of production time [23]. Chen et al.
used a genetic algorithm to optimize the weight and threshold of the BP neural network
and established a gas rate prediction model for shale gas horizontal wells with volume
fracturing [24]. Zhao et al. used horizontal gas wells as training samples and constructed
a production prediction model for horizontal wells using the BP neural network and a
support vector machine [25]. The research results showed that the support vector machine
had a higher prediction accuracy than the BP neural network, with a prediction accuracy
of 90% for the absolute open flow rate. Yan et al., based on actual data from the Fuling
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shale gas wells, established a shale gas production prediction model using deep neural
networks, support vector machines, and extreme gradient boosting methods, and analyzed
the advantages, disadvantages, and importance of various models [26]. He et al. consid-
ered the geological factors and engineering factors comprehensively based on machine
learning methods [27]. They applied the random forest method to predict the shale gas
well production rate, achieving an accuracy of over 90% in the prediction results. Currently,
previous studies mainly rely on a single machine learning model to predict the single-well
production rate in unconventional gas reservoirs, which has certain feasibility but further
improvement is needed in terms of the accuracy and stability of production prediction.

Ensemble learning is a machine learning method that leverages the strengths of
multiple different learners and combines their outputs through certain strategies to achieve
better results than by individual learners. The advantages of ensemble learning include
reducing the risk of overfitting, improving the generalization ability, and handling high-
dimensional, large-scale, and imbalanced data [28]. In this study, for the challenging task
of determining the single-well production rate in tight gas and shale gas, machine learning
algorithms such as random forest (RF), extremely randomized trees (ET), LightGBM (light
gradient boosting machine), gradient boosting regression (GBR), and linear regression (LR)
were used. We selected these algorithms due to their proven effectiveness in handling
high-dimensional data and capturing the complex non-linear relationships inherent in
reservoir and production data. These models are particularly adept at dealing with the
imbalanced and noisy nature of the datasets typically encountered in gas production
prediction tasks [29-32]. By integrating geological, reservoir, engineering parameters, and
production data, several basic models for predicting the production in unconventional gas
single wells was established, and the accuracy of each model was validated. Based on the
predictions of multiple basic models, ensemble machine learning was employed to further
improve the accuracy and generalization ability of the prediction model. This method can
effectively utilize existing data resources to enhance the understanding and evaluation of
tight gas reservoirs, providing a scientific basis for optimizing the development plans and
improving the production efficiency.

2. Process for Predicting the Gas Rate in Unconventional Gas Reservoirs

Predicting the gas production rates in unconventional gas reservoirs involves under-
standing the fundamental principles of reservoir engineering and fluid dynamics. Un-
conventional reservoirs, such as shale gas and tight gas, have unique characteristics that
influence the gas flow and production rates. Machine learning models enhance the tradi-
tional prediction methods by leveraging large datasets and identifying complex patterns
that may not be apparent through conventional techniques. By incorporating features such
as: (1) reservoir properties: porosity, permeability, and saturation; (2) operational parame-
ters: pressure, temperature, and number of fracturing stages; (3) historical production data:
past production rates and decline trends.

Machine learning models can provide more accurate and robust predictions. In this
study, we employed models such as random forest (RF), extremely randomized trees
(ET), light gradient boosting machine (LightGBM), gradient boosting regression (GBR),
and linear regression (LR). These models were chosen for their ability to handle non-
linearity, the interactions among variables, and high-dimensional data. By integrating these
theoretical principles with advanced machine learning techniques, our approach aims to
deliver precise gas production forecasts, which are crucial for optimizing field development
and management strategies.

The main steps for predicting single-well production in unconventional gas reservoirs
based on artificial intelligence analysis are as follows:

(1) Data collection and cleaning. Gather relevant data on the geology, reservoirs, and
engineering, perform quality checks on the data, handle abnormal values and missing
values, and normalize or standardize the data.
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(2) Feature engineering and dimensionality reduction. Based on the characteristics of the
dataset, select appropriate methods to extract the features specific to tight gas and
shale gas rates, transforming high-dimensional raw data into low-dimensional feature
vectors to reduce the redundant information and noise interference.

(3) Model construction and training. Choose multiple machine learning models according
to the prediction objectives and problem types, utilize the historical data of known
production as the training set, optimize and fit the model parameters, and evaluate
the generalization ability of the models using metrics such as Mean Absolute Error
(MAE) and Mean Squared Error (MSE).

(4) Production rate prediction and result analysis. Utilize the trained model to predict
the production rate of the testing set and compare it with the actually observed
values. Adjust or improve the above models based on the accuracy and stability of the
prediction results.

(5) Ensemble of machine learning models. To further enhance the accuracy of the pro-
duction rate predictions, ensemble learning can be used to integrate the prediction
results of multiple base models, improving the generalization ability and accuracy of
the machine learning models.

3. Production Rate Prediction in Tight Gas Field A
3.1. Overview

Gas Field A had a depth of 10,499-11,483 ft and an average effective thickness of 31 ft
in the gas reservoir. The porosity ranged from 5.0% to 10.0%, and the average permeability
was 0.82 mD. The pressure coefficient ranged from 0.87 to 0.94, and the temperature of the
gas reservoir was between 100 and 110 °C. Starting from 2010, the field has been developed
through the implementation of horizontal well development using a 3937 x 1969 ft irregular
rhombus-shaped well pattern. Fracturing treatments are mainly conducted using open-hole
packers for zonal isolation and supplemented with multiple fractures or volume fracturing
within each section. The total injecting fluid volume per well ranged from 29.1 to 256.6 mcf, with
an average of 120.8 mcf. The total sand volume per well ranged from 3.0 to 28.0 mcf, with an
average of 13.7 mcf. The initial production rates of over 200 wells in the study area ranged from
0.8 to 7.4 mmcf/d. Figure 1 shows the typical production curve of a single well in Gas Field A.
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Figure 1. Typical production curve of deviated wells in Gas Field A.
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3.2. Data Processing and Preparation

Data processing and preparation are complex and meticulous processes that require the
selection of appropriate tools and techniques based on different data types and scenarios to
achieve the optimal results. In the feature selection process, we incorporated both analytical
insights and significant physical parameters critical to gas production, such as reservoir,
geological parameters, and operational parameters. This holistic approach ensures that our
model captures essential factors influencing the production rates, thereby enhancing the
model’s predictive accuracy and validity.

Geological reservoir parameters, engineering parameters, and production data were
collected from over 200 wells in Gas Field A, resulting in the acquisition of the raw dataset.
Some of the raw data (3.6%) were missing and were filled in using the interpolation method,
while abnormal values were treated accordingly. The dataset consisted of 21 data features,
and using all features for training in the model would significantly increase its complexity
and computational time. This study utilized pairwise relationship graphs to visualize the
relationships between two variables, assessing both the single-well production rate and the
21 features, as well as evaluating whether there were significant correlations among the
21 feature parameters. Figure 2 analyzes the pairwise relationship graph between the gas
production rate and effective thickness.
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After the analysis, the factors with a poor correlation to the production rate were
removed to ensure both a sufficient data volume and improved computational efficiency.
The processed dataset included 13 factors that are significantly related to the production
rate, including the reservoir type, effective thickness, porosity, average gas saturation,
length of the horizontal section, length of the fractured section, total fluid volume, total
proppant volume, and so on. The main statistical indicators for each parameter in the
dataset are detailed in Table 1.

Table 1. Main statistics for each parameter in the dataset.

Para. Name

Reservoir Type o Ave. Sg Controlled Reserves/Well Horizontal Length Rate of Sand Body
Indicator Netpay(®) Forosity(%) %) (mmcH ) %)
Min. 16.4 6.0 28.1 1448 1981.6 16.3
Max. 73.8 112 73.1 10,877 7217.8 100.0
Mean 44.0 8.5 55.6 4944 3568.6 85.3
Std. Dev. 121 0.9 9.4 1766 614.8 15.8
Para. Name Effective Rate of Sand Body Total Liquid Volume Total Sand Volume Flowback Volume Rate of Flowback Number of
Indicator %) (mcf) (mcf) (mcf) ¥ Fracturing Sections
Min. 29.1 3.0 3.6 2.6 5.0
Max. 256.6 28.0 453 75.1 14.0
Mean 120.8 13.7 18.1 17.8 7.1

Std. Dev.

39.1 42 55 9.3 14

The above 13 features had different dimensions and significant differences in numerical
values among the different indicators. To eliminate the influence of data dimensions,
improve the data comparability, and prevent the model from being overly sensitive to
features with larger values or disregarding features with smaller values, it was necessary to
perform data normalization. This process restricts the preprocessed data within the range
of [0, 1]. Normalization was separately applied to the training set and the test set, using the
parameters obtained from the training set (such as maximum, minimum, mean, standard
deviation, etc.) to normalize the test set. This ensured the consistency between the training
set and the test set.

3.3. Model Selection

The collected geological, reservoir, and engineering datasets were randomly divided
into the training and testing sets to avoid bias or noise in the dataset that may affect
the model and to enhance the model’s generalizability and accuracy. The proportion of
the training and testing sets depended on the dataset size, complexity, and specific task,
without a fixed standard. Considering that the dataset consisted of over 200 samples, it was
important to ensure a sufficient amount of data for the model training in the training set
while having adequate data in the testing set for the evaluation of the model’s performance.
In this study, the dataset was divided into an 8:2 ratio for the training and testing sets, with
80% for the training set and 20% for the testing set.

For predicting the production of the tight sand gas rate, common algorithms for re-
gression problems were selected: random forest (RF), extremely randomized trees (ET),
LightGBM (light gradient boosting machine), gradient boosting regression (GBR), and
linear regression (LR). The models” accuracy and generalization capabilities were evaluated
through multiple calculations and cross-validation, resulting in the average absolute error
(MAE) and mean squared error (MSE) for each model. Further model accuracy enhance-
ment was achieved by fine-tuning the hyperparameters. The randomly generated testing
set (42 wells) was used for the prediction, and the calculation results are detailed in Table 2.
The accuracy of the five models for predicting the tight gas production was 0.8553, 0.8642,
0.8129, 0.8017, and 0.8251, respectively. Additionally, Q-Q plots were generated for each
model to observe the deviation between the calculated and predicted values, as shown in
Figure 3.
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Table 2. Comparison of prediction results for single-well production in tight gas using five differ-

ent models.

Model Name MAE MSE R2
RF 0.9525 1.3319 0.8553
ET 0.9022 1.2497 0.8642
LightGBM 1.0335 1.7214 0.8129
GBR 1.0638 1.8242 0.8017
LR 0.9582 1.6091 0.8251
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Figure 3. Q-Q plot of the prediction results for tight gas production rate. (a) RF model, (b) ET model,
(c) LightGBM model, (d) LR model, (e) GBR model, (f) Blending model.

To further improve the accuracy of the model predictions, ensemble learning was used
to combine the predictions from multiple base models to enhance the model’s generalization
ability and accuracy. Ensemble learning mainly includes two common methods: blending
and stacking. Blending is a simple ensemble learning method that takes the predictions
from multiple base models as features and inputs them into a meta-model to obtain the
final predictions. Stacking is a more complex ensemble learning method that also takes the
predictions from multiple base models as the features, but inputs them into one or more
meta-models to obtain the final predictions. Comparatively, while stacking can use cross-
validation to reduce overfitting and employ multiple layers of meta-models to increase the
model’s complexity and expressive power, its implementation is complex and requires the
tuning of multiple parameters, resulting in lower computational efficiency. On the other
hand, blending has the advantage of simplicity, does not require cross-validation, and has
a higher computational efficiency. However, it should be noted that potential overfitting
should be avoided as much as possible. See Figure 4 for the computational flow.
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Figure 4. Blending process flowchart.

Using ensemble learning, the prediction results of three models, namely Random
Forest, Extremely Randomized Trees, and Linear Regression, which demonstrated good
performance in forecasting gas production, were used as the new features. These prediction
results, combined with the original features, formed the new feature space of the blended
training set. Then, an ensemble model was utilized to obtain the final prediction for
tight sand gas production rate. The calculated results show that the blending model, by
leveraging the advantages of multiple models, reduced the average absolute error (MAE)
and mean squared error (MSE) compared to the five individual models mentioned above.
The blending model achieved an MAE of 0.8419 and an MSE of 1.0930, with an R? score
of 0.8812, indicating a high predictive accuracy and reliability. The detailed results can be
found in Table 3. This demonstrates the applicability of ensemble learning, specifically the
blending method, for tight gas well production prediction.

Table 3. Prediction results of the blending model for gas rate in tight gas reservoirs.

Model Name MAE MSE R2
Blending 0.8419 1.0930 0.8812

4. Production Rate Prediction in Shale Gas Field B
4.1. Overview

Gas Field B had a depth ranging from 8202 to 13,123 ft. The average thickness of the
shale reservoir was 152.2 ft, while the average thickness of the layers was 15.1 ft. The total
organic carbon (TOC) content ranged from 1.5% to 3.5%, with an average of 3.2%. The
porosity ranged from 3% to 8%, with an average of 6%. The gas saturation ranged from
50% to 70%, with an average of 63%. The content of brittle minerals ranged from 65%
to 87%, with an average of 74%. Horizontal wells with volume fracturing were used as
the development approach to achieve complex fracture networks, increase the effective
stimulation volume and fracture conductivity, and reduce the distance between the shale
gas and fractures. A staged technique was used, combining bridge plugs and clustered
cable perforation. The length of the fracturing sections ranged from 148 m to 361 ft, with
each section having 4 to 12 clusters, and cluster spacing of 16 to 33 ft. The average sand
concentration was 13,228 pounds/ft, and the average fluid intensity was 3.0 mcf/ft. The
pumping capacity ranged from 0.4 mcf/min to 0.6 mcf/min. The initial production rates of
the 193 wells in the study area ranged from 1.2 to 1.9 mmcf/d. Figure 5 illustrates a typical
single-well production curve in the study area.
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Figure 5. Typical Production curve of deviated wells in Gas Field B.

4.2. Production Forecast

Datasets were collected from 207 wells in shale gas blocks in Gas Field B, including the
geological reservoir parameters, engineering parameters, and production data, to obtain
the original dataset. The original data had some missing values (1.0%) which were filled
in using interpolation, and the abnormal values were processed. The dataset consisted of
37 data features. Through pairwise relationship analysis, the factors with weak correlations
to the production rate were eliminated. After processing, 21 factors were identified that
were correlated to the production, including sweet spot zoning, the shut-in time, the
length of the horizontal section, the reservoir depth, the drilling encounter rate, the layer
thickness, the single-well controlled reserves, the well spacing, the length of the fracturing
reconstruction, the length of the fracturing stage, the number of fracturing stages, the fluid
volume per stage, the sand volume per stage, the percentage of fine sand, the reservoir
classification, and the pressure. Figure 6 analyzes the pairwise relationship between the
single-well production rate of shale gas and fracture length.

The above 21 features had different dimensions and significant differences in the nu-
merical values among the indicators. To preprocess the data, normalization was performed
on the training and testing sets, limiting the preprocessed data to the range of [0, 1]. Consid-
ering that the collected data samples consisted of 193 wells, to ensure sufficient data for the
model training in the training set and an adequate amount of data to evaluate the model’s
performance in the testing set, a ratio of 8:2 was used to split the dataset into the training
and testing sets, with 80% of the data allocated to the training set and 20% to the testing set.
In this study, random forest (RF), extremely randomized trees (ET), light gradient boosting
machine (LightGBM), gradient boosting regressor (GBR), and linear regression (LR) were
used for predicting the production of tight sand gas. The models” average absolute error
(MAE) and mean squared error (MSE) were obtained through multiple computations to as-
sess the accuracy and generalization of the models using cross-validation. Further accuracy
improvement was achieved by tuning the parameters of each model. Generated test data
(39 wells) were fed into the models for the prediction. The accuracy rates for predicting
tight gas production by applying the five models were 0.8898, 0.9468, 0.9045, 0.9109, and
0.8486, respectively. The calculation results can be found in Table 4. Similarly, Q-Q plots



Processes 2024, 12, 1194 10 of 13

were created for each model to observe the deviation between the calculated values and
the predicted values, as shown in Figure 7.
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Figure 6. Pair plot between gas rate and fracture length in shale gas reservoir.

Table 4. Comparison of prediction results for single-well production in shale gas using five differ-

ent models.
Model Name MAE MSE R2
RF 1.9597 7.3169 0.8898
ET 1.6428 3.5326 0.9468
LightGBM 1.9183 6.3411 0.9045
GBR 1.6678 5.9207 0.9109
LR 2.6313 10.0568 0.8486

To further improve the accuracy of the model predictions, a blending ensemble learn-
ing method was adopted. The predictions of three models, namely extremely randomized
trees (ET), light gradient boosting machine (LightGBM), and gradient boosting regressor
(GBR), which performed well in the gas production estimation, were used as the new
features. Together with the original features, these formed the new feature space of the
blended training set. An ensemble model was then used to obtain the final shale gas pro-
duction prediction rate. The calculation results showed that the blending model, leveraging
the advantages of multiple models, achieved a reduction in the average absolute error
(MAE) and mean squared error (MSE) compared to the results of the previous five models.
The blending model achieved an MAE of 1.4841 and an MSE of 3.1629, with an R2 score of
0.9524, indicating a high predictive accuracy and reliability. The detailed calculation results
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can be found in Table 5. This demonstrates that the blending-based ensemble learning
model is more applicable for predicting the shale gas well production.
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Figure 7. Q-Q plot of the prediction results for shale gas production rate. (a) RF model, (b) ET model,
(c) LightGBM model, (d) LR model, (e) GBR model, (f) blending model.

Table 5. Prediction results of the blending model for gas rate in shale gas reservoirs.

Model Name MAE MSE R2

Blending model 1.4841 3.1629 0.9524

5. Conclusions and Future Work

@

@)

®)

This article proposes a reasonable production prediction model and method for single-
well tight gas and shale gas rate based on artificial intelligence analysis. The method
combines the predictions of multiple base models, such as random forest (RF), ex-
tremely randomized trees (ET), light gradient boosting machine (LightGBM), and
gradient boosting regressor (GBR), and further improves the accuracy and generaliza-
tion ability of the model predictions through ensemble learning.

The blending-based ensemble learning model has higher accuracy and reliability
for predicting the single-well gas rate of unconventional reservoirs. The blending
ensemble model, utilizing the advantages of multiple basic models, predicts the
production of the tight gas rate, with an accuracy rate improved to 0.8812. The
blending ensemble model also improves the accuracy rate for predicting the shale gas
production rate to 0.9524.

Considering the characteristics of the multiple influencing factors and a limited num-
ber of effective samples in the gas production prediction rate, further research is
planned to be conducted on the production prediction driven by data and knowledge
graph integration. The temporal and spatial relationships of oil well production are
represented using knowledge graphs, with graph embedding techniques employed to
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represent the vector feature graphs. The vector features of the knowledge graph and
the features extracted via deep learning are organically fused using embedding layers
to achieve an integrated prediction of the gas well production rate through the fusion
of data and knowledge.
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