Investigation of the Dominant Effects of Non-Spherical Particles on Particle–Wall Collisions
Abstract
:1. Introduction
2. Experimental Facility
3. Results and Discussion
3.1. Effects of Key Parameters on Particle Collision
3.2. Similarities of the Non-Spherical Particle Collisions
3.3. Modeling
- Generating random e and γ from the corresponding distributions;
- Calculating the rebound velocity (v2n, v2t), based on the virtual wall with an inclination of γ against the apparent wall. The equations are [31]
4. Conclusions
- The dominating factors of particle–wall collisions are the particle non-sphericity and the wall roughness. Most of the cases with non-spherical particles and a rough steel wall show similar collision behaviors.
- The effects of the particle diameter on the collision coefficients of non-spherical particles can be ignored, unlike for spherical particles.
- It is possible to predict the particles’ rebound motions for a wide range of typical non-spherical particles with a four-parameter model. Using the fitted values in Table 2, collisions of typical non-spherical particles with sizes ranging from 50 μm to 550 μm on steel walls can be predicted with reasonable accuracy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sarkar, D. Thermal Power Plant: Design and Operation; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Shah, K.V.; Vuthaluru, R.; Vuthaluru, H.B. CFD based investigations into optimization of coal pulveriser performance: Effect of classifier vane settings. Fuel Process. Technol. 2009, 90, 1135–1141. [Google Scholar] [CrossRef]
- Ataş, S.; Tekir, U.; Paksoy, M.A.; çelik, A.; çam, M.; Sevgel, T. Numerical and experimental analysis of pulverized coal mill classifier performance in the Soma B Power Plant. Fuel Process. Technol. 2014, 126, 441–452. [Google Scholar] [CrossRef]
- Wei, Q.; Sun, G.; Yang, J. A model for prediction of maximum-efficiency inlet velocity in a gas-solid cyclone separator. Chem. Eng. Sci. 2019, 204, 287–297. [Google Scholar] [CrossRef]
- Tsuji, Y.; Oshima, T.; Morikawa, Y. Numerical Simulation of Pneumatic Conveying in a Horizontal Pipe. KONA Powder Part. J. 1985, 3, 38–51. [Google Scholar] [CrossRef]
- Wall, S.; John, W.; Wang, H.; Goren, S.L. Measurements of Kinetic Energy Loss for Particles Impacting Surfaces. Aerosol Sci. Technol. 1990, 12, 926–946. [Google Scholar] [CrossRef]
- Dunn, P.F.; Brach, R.M.; Caylor, M.J. Experiments on the Low-Velocity Impact of Microspheres with Planar Surfaces. Aerosol Sci. Technol. 1995, 23, 80–95. [Google Scholar] [CrossRef]
- Thornton, C.; Ning, Z. A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres. Powder Technol. 1998, 99, 154–162. [Google Scholar] [CrossRef]
- Sommerfeld, M.; Huber, N. Experimental analysis and modelling of particle-wall collisions. Int. J. Multiph. Flow 1999, 25, 1457–1489. [Google Scholar] [CrossRef]
- Konan, N.A.; Kannengieser, O.; Simonin, O. Stochastic modeling of the multiple rebound effects for particle–rough wall collisions. Int. J. Multiph. Flow 2009, 35, 933–945. [Google Scholar] [CrossRef]
- Sondergaard, R.; Chaney, K.; Brennen, C.E. Measurements of Solid Spheres Bouncing Off Flat Plates. J. Appl. Mech. 1990, 57, 694–699. [Google Scholar] [CrossRef]
- Brach, R.M.; Dunn, P.F.; Li, X. Experiments and Engineering Models of Microparticle Impact and Deposition. J. Adhes. 2000, 74, 227–282. [Google Scholar] [CrossRef]
- García Pérez, M.; Vakkilainen, E.; Hyppänen, T. Unsteady CFD analysis of kraft recovery boiler fly-ash trajectories, sticking efficiencies and deposition rates with a mechanistic particle rebound-stick model. Fuel 2016, 181, 408–420. [Google Scholar] [CrossRef]
- Stanton, D.W.; Rutland, C.J. Modeling Fuel Film Formation and Wall Interaction in Diesel Engines; SAE International: Warrendale, PA, USA, 1996. [Google Scholar]
- Brilliantov. Kinetic Theory of Granular Gases; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Gorham, D.A.; Kharaz, A.H. The measurement of particle rebound characteristics. Powder Technol. 2000, 112, 193–202. [Google Scholar] [CrossRef]
- Marinack, M.C.; Musgrave, R.E.; Higgs, C.F. Experimental Investigations on the Coefficient of Restitution of Single Particles. Tribol. Trans. 2013, 56, 572–580. [Google Scholar] [CrossRef]
- Aryaei, A.; Hashemnia, K.; Jafarpur, K. Experimental and numerical study of ball size effect on restitution coefficient in low velocity impacts. Int. J. Impact Eng. 2010, 37, 1037–1044. [Google Scholar] [CrossRef]
- Falcon, E.; Laroche, C.; Fauve, S.; Coste, C. Behavior of one inelastic ball bouncing repeatedly off the ground. Eur. Phys. J. B—Condens. Matter Complex. Syst. 1998, 3, 45–57. [Google Scholar] [CrossRef]
- Tsai, C.; Pui, D.Y.H.; Liu, B.Y.H. Capture and Rebound of Small Particles Upon Impact with Solid Surfaces. Aerosol Sci. Technol. 1990, 12, 497–507. [Google Scholar] [CrossRef]
- Kleinhans, U.; Wieland, C.; Frandsen, F.J.; Spliethoff, H. Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior. Prog. Energ. Combust. 2018, 68, 65–168. [Google Scholar] [CrossRef]
- Chen, S.; Liu, W.; Li, S. A fast adhesive discrete element method for random packings of fine particles. Chem. Eng. Sci. 2019, 193, 336–345. [Google Scholar] [CrossRef]
- Foerster, S.F.; Louge, M.Y.; Chang, H.; Allia, K. Measurements of the collision properties of small spheres. Phys. Fluids 1994, 6, 1108–1115. [Google Scholar] [CrossRef]
- Kleis, I.; Hussainova, I. Investigation of particle—Wall impact process. Wear 1999, 233, 168–173. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Feng, L.; Yang, H.; Wu, Y.; Yue, G. The behaviors of particle-wall collision for non-spherical particles: Experimental investigation. Powder Technol. 2020, 363, 187–194. [Google Scholar] [CrossRef]
- Tabakoff, W.; Malak, M.F. Laser Measurements of Fly Ash Rebound Parameters for Use in Trajectory Calculations. J. Turbomach. 1987, 109, 535–540. [Google Scholar] [CrossRef]
- Grant, G.; Tabakoff, W. Erosion Prediction in Turbomachinery Resulting from Environmental Solid Particles. J. Aircraft. 1975, 12, 471–478. [Google Scholar] [CrossRef]
- Montaine, M.; Heckel, M.; Kruelle, C.; Schwager, T.; Pöschel, T. Coefficient of restitution as a fluctuating quantity. Phys. Rev. E 2011, 84, 41306. [Google Scholar] [CrossRef] [PubMed]
- van Beek, M.C.; Rindt, C.C.M.; Wijers, J.G.; van Steenhoven, A.A. Rebound characteristics for 50-μm particles impacting a powdery deposit. Powder Technol. 2006, 165, 53–64. [Google Scholar] [CrossRef]
- Hastie, D.B. Experimental measurement of the coefficient of restitution of irregular shaped particles impacting on horizontal surfaces. Chem. Eng. Sci. 2013, 101, 828–836. [Google Scholar] [CrossRef]
- Wang, J.; Yang, H.; Feng, L.; Zhang, M.; Wu, Y.; Yue, G. The behaviors of particle-wall collision for non-spherical particles: Modeling analysis. Powder Technol. 2020, 366, 137–143. [Google Scholar] [CrossRef]
- Gibson, L.M.; Gopalan, B.; Pisupati, S.V.; Shadle, L.J. Image analysis measurements of particle coefficient of restitution for coal gasification applications. Powder Technol. 2013, 247, 30–43. [Google Scholar] [CrossRef]
- Gondret, P.; Lance, M.; Petit, L. Bouncing motion of spherical particles in fluids. Phys. Fluids 2002, 14, 643–652. [Google Scholar] [CrossRef]
- Antonyuk, S.; Heinrich, S.; Tomas, J.; Deen, N.G.; van Buijtenen, M.S.; Kuipers, J.A.M. Energy absorption during compression and impact of dry elastic-plastic spherical granules. Granul. Matter. 2010, 12, 15–47. [Google Scholar] [CrossRef]
- Schade, K.P.; Erdmann, H.J.; Hädrich, T.; Schneider, H.; Frank, T.; Bernert, K. Experimental and numerical investigation of particle erosion caused by pulverised fuel in channels and pipework of coal-fired power plant. Powder Technol. 2002, 125, 242–250. [Google Scholar] [CrossRef]
- Troiano, M.; Santagata, T.; Montagnaro, F.; Salatino, P.; Solimene, R. Impact experiments of char and ash particles relevant to entrained-flow coal gasifiers. Fuel 2017, 202, 665–674. [Google Scholar] [CrossRef]
- Troiano, M.; Montagnaro, F.; Salatino, P.; Solimene, R. Experimental characterization of particle-wall interaction relevant to entrained-flow gasification of biomass. Fuel 2017, 209, 674–684. [Google Scholar] [CrossRef]
- Troiano, M.; Montagnaro, F.; Solimene, R.; Salatino, P. Modelling entrained-flow slagging gasification of solid fuels with near-wall particle segregation. Chem. Eng. J. 2019, 377, 119962. [Google Scholar] [CrossRef]
- Troiano, M.; Solimene, R.; Montagnaro, F.; Salatino, P. Char/ash deposition and near-wall segregation in slagging entrained-flow gasification of solid fuels: From experiments to closure equations. Fuel 2020, 264, 116864. [Google Scholar] [CrossRef]
- Xie, J.; Dong, M.; Li, S.; Mei, Y.; Shang, Y. An experimental study of fly ash particle oblique impact with stainless surfaces. J. Aerosol Sci. 2018, 123, 27–38. [Google Scholar] [CrossRef]
- Darko, R.; Olivier, S. Modelling of three-dimensional particle rebound from an anisotropic rough wall. Powder Technol. 2021, 393, 165–183. [Google Scholar]
- Wilson, J.; Qiao, R.; Kappes, M.; Loebig, J.; Clarkson, R. The Importance of Shape in Particle Rebound Behaviors. J. Turbomach. 2023, 145, 041005. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Reading, MA, USA; Menlo Park, CA, USA; London, UK; Amsterdam, The Netherlands, 1977. [Google Scholar]
- ISO 5074:2015; Hard Coal–Determination of Hardgrove Grindability Index. International Organization for Standardization: Geneva, Switzerland, 2015.
- Williams, O.; Taylor, S.; Lester, E.; Kingman, S.; Giddings, D.; Eastwick, C. Applicability of Mechanical Tests for Biomass Pellet Characterisation for Bioenergy Applications. Materials 2018, 11, 1329. [Google Scholar] [CrossRef]
- Dong, M.; Xie, J.; Bai, L.; Li, S. An Experimental Investigation on the Influence of Temperature on the Normal Impact of Fine Particles with a Plane Surface. Energies 2014, 7, 2079–2094. [Google Scholar] [CrossRef]
- Li, S.; Wu, Y.; Whitty, K.J. Ash Deposition Behavior during Char–Slag Transition under Simulated Gasification Conditions. Energ. Fuel 2010, 24, 1868–1876. [Google Scholar] [CrossRef]
No. | Particle | d (μm) | v1 (m/s) | Sphericity | Target Wall | Identified Collisions |
---|---|---|---|---|---|---|
1~2 | Coal A | 110 | 3/9 | 0.69 | Steel | 9867 |
3 | Coal A | 110 | 6 | 0.69 | Polished Steel | |
4~6 | Coal A | 60/110/220 | 6 | 0.69 | Steel | |
7 | Coal B | 150 | 6 | 0.64 | Steel | 2154 |
8~9 | Biomass | 310/550 | 6 | 0.23 | Steel | 3556 |
10~12 | Glass beads | 85/130/165 | 6 | ~0.95 | Steel | 26,676 |
13~15 | Glass beads | 85/130/165 | 6 | ~0.95 | Polished Steel | |
16~17 | Glass powder | 165/205 | 6 | ~0.75 | Steel | 8605 |
18~19 | Glass powder | 165/205 | 6 | ~0.75 | Polished Steel | |
20 | Shepherd’s purse seed | 500 | 6 | 0.78 | Steel | 1441 |
Particle Type | em | Δem | fm | Δγ | Relative Error |
---|---|---|---|---|---|
Coal A | 0.28 | 0.13 | 0.44 | 9.66 | 6.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cen, Z.; Wu, Y.; Wang, J.; Liu, J.; Zhou, M.; Chen, S.; Zhao, D. Investigation of the Dominant Effects of Non-Spherical Particles on Particle–Wall Collisions. Processes 2024, 12, 1234. https://doi.org/10.3390/pr12061234
Cen Z, Wu Y, Wang J, Liu J, Zhou M, Chen S, Zhao D. Investigation of the Dominant Effects of Non-Spherical Particles on Particle–Wall Collisions. Processes. 2024; 12(6):1234. https://doi.org/10.3390/pr12061234
Chicago/Turabian StyleCen, Zhoutao, Yuxin Wu, Jingyu Wang, Jie Liu, Minmin Zhou, Shukuan Chen, and Dongqiang Zhao. 2024. "Investigation of the Dominant Effects of Non-Spherical Particles on Particle–Wall Collisions" Processes 12, no. 6: 1234. https://doi.org/10.3390/pr12061234
APA StyleCen, Z., Wu, Y., Wang, J., Liu, J., Zhou, M., Chen, S., & Zhao, D. (2024). Investigation of the Dominant Effects of Non-Spherical Particles on Particle–Wall Collisions. Processes, 12(6), 1234. https://doi.org/10.3390/pr12061234