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Abstract: A deep understanding of the particle–wall collision (PWC) behaviors of non-spherical
particles is important for managing gas–solid flows in industrial applications. It is important to
identify the dominant parameters and to develop the common PWC prediction models for typical
non-spherical particles. In this paper, different types of non-spherical particles were used to conduct
the fundamental experiments. The effects of key parameters such as particle size, non-sphericity,
wall roughness, and impact angle were analyzed. The results show that the trends of the collision
coefficients with the impact angle for all non-spherical particles are similar. The dominant factors of
particle–wall collisions are particle sphericity and wall roughness. A model with four parameters
was fitted from the experimental data. The model can predict the collisions of non-spherical particles
on rough steel walls with sizes ranging from 50 to 550 microns.

Keywords: particle–wall collision; non-spherical particles; restitution coefficient; friction coefficient

1. Introduction

The particle–wall collision phenomena have an important impact on the behavior of
gas–solid two-phase flows, which are frequently found in energy, mechanical, and other
industrial applications. For instance, solid fuel particles are generated in pulverizers to
provide suitable particles for the coal powder furnace. More than 70% of the fine particles
are smaller than about 74 µm, as coarse particles lead to slagging and incomplete combus-
tion [1,2]. In typical types of particle classifiers such as cyclones, which are commonly used
in chemical engineering, particle–wall collisions occur frequently and affect the separation
efficiency and consequently the fineness of the particle sizes and instrument efficiency [3,4].
Therefore, it is important to understand the particle–wall collision behaviors of these types
of particles, for better design of pulverizers, classifiers, and cyclones. Computational fluid
dynamics (CFD) is an effective tool for the analysis of gas–solid two-phase flows. In order
to produce accurate CFD simulations of such flows with wall interactions, particle–wall
collision models are needed to predict the particle motions correctly. A model derived from
impulsive equations and Coulomb’s friction law is commonly used [5]. It describes the
motion with the restitution coefficient e, which is related to the energy changes by plastic
deformation, and the friction coefficient f, which represents the relative amount of friction
force. These coefficients are not material properties and can be affected by many parameters
such as the particle diameter and shape, the impact angle, the impact velocity, and the wall
roughness. To apply the model in simulations, reasonable values of the coefficients must
be provided.

Many experimental studies have been carried out on particle–wall collisions to analyze
the impact behavior and to obtain the collision coefficients. For normal collisions with the
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impact angle α1 = 90◦, the friction coefficient f has no effect, while the restitution coefficient
e is often expressed as a function of the impact velocity v1 [6,7]. With v1 increasing from the
critical velocity, e increases from 0 to the maximum value as the adhesive effects decline
relatively. Then, e starts to decrease with a very large v1 as plastic deformation occurs [8].
For oblique collisions, both e and f generally have negative correlations with the impact
angle α1, which is the angle between the impact velocity direction and the wall [9–11]. If α1
is sufficiently small, the particles may be able to gain a normal velocity component, causing
e to increase over 1 [12]. Model equations of the collision coefficients based on α1 have been
proposed [13,14]. The relationships between e, f, and other conditions such as the particle
diameter can also be found in previous studies [6,15–22].

For spherical and relatively large particles, constant collision coefficient values can
offer a sufficient approximation to produce accurate predictions [5,23,24]. On the other
hand, small non-spherical particles often exhibit irregular rebound behaviors [9]. The
non-spherical shapes of the particles are known to alter the probabilities of different impact
conditions on the local wall structure, leading to a smaller restitution coefficient e, and a
larger friction coefficient f when the impact angle is small [25]. Additionally, many existing
experimental studies have shown scattered results of e and f [26–30]. For non-spherical
particles, the restitution coefficient’s distribution is concentrated at small values. While the
presence of a rough wall generally spreads the distribution of e, non-spherical particles’ e is
less affected by the wall roughness [25]. Therefore, these types of particles require more
complex expressions of the collision coefficients, involving parameters that represent the
shape factor, for accurate predictions of the rebound motions [31,32].

The particle velocities are often measured by optical methods, such as high-speed
photography [18,33,34]. Particles that are easy to capture optically, such as glass beads, are
commonly used in the experiments. On the other hand, typical non-spherical fuel particles
such as coal and biomass have received less focus in existing studies. An experimental study
by K.-P. Schade et al. investigated the impact behavior for coal particles and steel walls,
focusing on the erosion effects [35]. Constant coefficient values and polynomial equations
of the modified impact angles were provided, and the relations to the impact angle and
velocity were shown. Experimental data of coke, polyethylene, and polystyrene particles
reported by L. M. Gibson et al. [32]. revealed relations between the restitution coefficients
and the rebound angles. Regression models involving the particle sphericity were proposed
to describe the restitution coefficient components based on analysis of variance (ANOVA).
More recently, M. Troiano et al. conducted experiments using coal, char, and ash particles
with fixed impact angles, where the effects of impact velocities and carbon conversion
degrees in cold and hot conditions were analyzed [36,37]. Rebound analyses have been
successfully applied in the modeling of entrained-flow slagging gasifiers [38,39]. J. Xie
et al. presented experimental results of using fly ash particles with a stainless-steel wall,
and the effects of the impact velocity and angle on the rebound motion were reported [40].
R. Darko et al. presented the effects of an anisotropic virtual rough wall on the rebound
motion [41]. W. Jacob et al. reported the importance of the particle shape for the rebound
behavior [42]. However, the existing data for typical non-spherical particles are still limited.
The collision behavior differences between those particles and regularly shaped particles
have not been thoroughly analyzed.

Our previous work [25] analyzed and improved the virtual wall model for particle–
wall collision, enabling it to better fit experimental results of spherical and non-spherical
glass beads and glass powders colliding with steel walls. However, the real particles
that have been widely used in real industrial applications vary in material and shape. In
order to clarify the dominant effects on particle–wall collisions and to provide a model
widely applicable to various types of non-spherical particles, the behaviors of typical
non-spherical particles such as glass powder, coal, and biomass particles’ collisions with a
polished/unpolished steel wall were studied experimentally through optical measurements.
The effects of the key parameters on the collision coefficients, such as the particle material
and non-sphericity, wall roughness, impaction velocity, particle size, and impact angle,
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were analyzed. In particular, the effect of sphericity was investigated through a thorough
experimental comparison among different particle shapes, including spherical glass beads,
Shepherd’s purse seed with a similar ellipsoid shape and narrow sphericity, and coal/glass
powder/biomass particles with wide range of sphericities. The common behaviors of these
non-spherical particles were clarified through data analysis since the particle parameters
such as particle size, particle shape, and impact velocity vary significantly and are hard to
measure for each particle in industrial applications. An impact model based on the statisti-
cal parameters of a group of particles is thus meaningful for real applications; therefore, for
this experiment, we chose particles with a large span of statistical characteristics, which is
the same as in the industrial applications, and the average parameter value, such as that
for particle size or particle sphericity, was used as the parameter input. Data analysis was
based on a large amount of experimental statistical data, and it was carried out to obtain
statistical characteristics with industrial application value and to analyze their dominant
effects. An empirical model was proposed based on the experimental data, which can be
used for CFD simulations of two-phase flows involving typical non-spherical particles with
the size range of 50 µm to 550 µm.

2. Experimental Facility

Particle–wall collision experiments were conducted using different types of particles,
expanding on the previous works with only glass beads [25]. The setup of the experimental
facility is shown in Figure 1. The gas cylinder releases pressurized nitrogen into the pipe,
which passes through the sonic nozzle flow meter to the particle feeder. The particles
are pushed into the flow continuously by the piston driven by a motor, and the speed
of the motor can be adjusted to control the rate. During the experiments, a very small
constant motor speed was used to ensure a dilute flow. The particle feeding rate was not
measured quantitively as the particle–wall interactions were not dependent on it in the
dilute flow. After accelerating in a thin pipe with a diameter of 2 mm, the gas–solid flow is
conveyed into the collision section where a rotatable block is installed. One of the rotatable
block’s vertical faces is used as the target wall for particle collision. The impact angle was
partially controlled by turning the block’s axle horizontally in the bearing. The particle–wall
collisions occurred in the horizontal plane, illuminated by a laser sheet generator, and the
high-speed camera captured particle trajectories from the top of the section. The photos
were then stored by the computer to obtain the particle motion data.
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Figure 1. Schematic drawing of the experiment facility.

The resolution width of the high-speed camera (IDT NR3-S2, San Jose, FL, USA) was
256 pixels, and the frame rate was 4125 frames per second. For particles with diameter
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d = 110 µm and velocity v = 6 m/s, the product of the resolution width and the frame rate
was more than 19v/d. As a result, with the pixel’s physical size smaller than d, the image’s
physical width could be large enough to contain the rebound trajectories. The calibration
factor was 62 um/pixel. The uncertainties that could lead to errors represented by pixels
were related to the frame rate and the particle velocity. For example, given the frame rate
of 4125 Hz and the particle velocity of 6 m/s, the velocity error caused by the pixels in this
study was no more than 1.42%. The resolution height was adjusted for each case so that
the entire particle trajectories were covered. The camera exposure was 117 µs, about half
of the frame interval. The laser generator (GL 532-100HP) produced a continuous laser
sheet of 20 mm×1 mm. Its wavelength was 532 nm and the power was 11 W. If the particle
trajectory was out of the probe volume, it became invisible in the images and would be
discarded during post-processing. Therefore, all the identified collisions occurred in the
two-dimension plane, and the influence of three-dimensional rebound effects was relatively
small. Given the frame rate of 4125 Hz and the particle velocity of 6 m/s, the velocity error
caused by projecting three-dimensional motion onto a two-dimensional plane does not
exceed 2.66%.

The photos captured of the particles (see Figure 2 for examples) were post-processed
by a self-developed algorithm through a MATLAB program, as illustrated in Figure 3.
The algorithm of the program was the same as that used in the previous work [25]. The
wall boundary (Figure 3a) was located by applying a Hough transform. The particles’
locations (Figure 3b) were found by subtracting the next image in the time sequence,
applying a threshold, and then finding the connected components. There were usually
multiple particles in one image, and we sought to correctly identify the same particle in
successive images. For this purpose, it was assumed that the particle motion without
collisions was almost uniformly linear, because the frame rate was high enough and the
force effects would be ignored during the short period. The combinations of the particle
locations in consecutive images were all tested; if a certain combination conformed with
the assumption (forming a straight line with almost equal spacing), the locations would
be matched and treated as the same particle. The resulting straight-line trajectories are
shown in Figure 3c,d. Finally, particle–wall collisions were identified by matching the
trajectories to and from the wall. An example of the post-processing result is shown in
Figure 3e. The impact angle and impact velocity for each particle collision could then be
identified through the post processing. The particles’ velocity magnitudes and directions
were derived from the post-processing results. For each collision instance, the data of the
second to the fifth particles after collision and prior to collision were included. This was to
avoid the strong reflective lights near the wall, and to keep the measured time small so that
the assumption of uniformly linear motion held. With the drag force governed by Stokes’
law, Fd = 3πµd · v, the particle velocity relative to the flow vr was proportional to −dvr/dt,
and vr was subject to exponential decay with a very large time constant. For example, for
glass particles with d = 160 µm, the time constant τ was 192 ms. Within the measurement
time (3× frame time), the relative error of vr was only 1 − exp(−t/τ) = 0.38% [25]. The
total error of the three types mentioned above was 1.42% + 2.66% + 0.38% = 4.46%.

All of the experimental conditions are shown in Table 1. The target walls were
unpolished and polished steel. The roughness levels Ra of the walls were 2.3 µm and
0.4 µm, respectively. Considering the widespread application of non-spherical particles,
representative particles with a wide range of sphericity were selected, including two types
of coal particles, one type of biomass particle, and glass powders. The sphericity is the
ratio of the diameter of the equivalent circle of the two-dimensional projection area to
the diameter of the smallest circle covering the projection. Since there was a significant
difference in sphericity between non-spherical and spherical particles, Shepherd’s purse
seed with a more uniform sphericity was selected to fill the gap. The coal particle types had
different Hardgrove Grindability Index (HGI) values; the majority of the cases involved
Coal A with HGI = 50, while the softer Coal B with HGI = 91 was used in one case. In
addition, the greater-hardness glass particles and lesser-hardness biomass particles were
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involved to investigate the effect of hardness on particle collision. The particles were
obtained by grinding the coal or biomass and then sieving them to different sizes. The
diameters d listed in Table 1 were the median values of the measured size distributions
in laser diffraction analysis. The carrier gas and the wall were at room temperature; as
the effects of the temperature have been covered by previous studies, this work primarily
focused on the particle non-sphericity instead.
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Table 1. Experimental conditions.

No. Particle d (µm) v1 (m/s) Sphericity Target
Wall

Identified
Collisions

1~2 Coal A 110 3/9 0.69 Steel
98673 Coal A 110 6 0.69 Polished

Steel
4~6 Coal A 60/110/220 6 0.69 Steel

7 Coal B 150 6 0.64 Steel 2154
8~9 Biomass 310/550 6 0.23 Steel 3556

10~12 Glass
beads 85/130/165 6 ~0.95 Steel

26,676

13~15 Glass
beads 85/130/165 6 ~0.95 Polished

Steel

16~17 Glass
powder 165/205 6 ~0.75 Steel

8605

18~19 Glass
powder 165/205 6 ~0.75 Polished

Steel

20 Shepherd’s
purse seed 500 6 0.78 Steel 1441
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At the outlet of the acceleration pipe, the particles’ actual velocities and angles varied
from the gas velocity and the injection angle, and the exact values could not be controlled
individually. Therefore, the results were regrouped by the measured velocity and angle to
analyze the collisions statistically [25]. In Table 1, the median impact velocities v1 of the
conditions are listed. For each case, the experiments were repeated with different injection
angles, and the measured impact angles were regrouped into 20◦, 30◦, 40◦, 50◦, 60◦, and
70◦. These conditions were designed to analyze the wall collision characteristics of the
non-spherical particles, as well as the effects of wall roughness, impact velocity, particle
size, and particle hardness. Figure 4 shows different particles. The detailed conditions are
listed in Table 1; the data set included 52,299 valid collisions for all experimental cases.
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3. Results and Discussion
3.1. Effects of Key Parameters on Particle Collision

The results for the particle velocities were analyzed by applying the model with the
restitution coefficient e and the friction coefficient f. These coefficients were calculated
as [5,25]

e = v2n/v1n (1)

f =
v1t − v2t

(1 + e)v1n
(2)

where v1n and v1t are the normal and tangential impact velocities, and v2n and v2t are the
normal and tangential rebound velocities. Similar to the non-spherical glass particles, the
rebound motions of the non-spherical particles with different materials and shapes were
scattered with large variance. The data were filtered by an outlier detection algorithm
based on the interquartile range IQR. The values outside [QL − 1.5 IQR, QU + 1.5 IQR] were
excluded, where QL and QU are the lower and upper quartiles of the results data [43]. In the
experiment, the impact angles were regrouped and it was difficult to accurately control the
impact velocity, so the filtered data were analyzed statistically, to produce results revealing
the statistical collision behaviors, with use in real industrial applications.

Figure 5 shows the mean values of e and f for the coal particles colliding with the steel
wall, with different impact angles α1. The impact velocities of the cases are in the 6 m/s
group unless otherwise noted. The dependencies of e and f on α1 of the coal particles follow
the same patterns as for the glass particles; e decreases with decreasing slopes when α1
becomes larger, and f decreases with increasing α1 approximately linearly. For the coal A
particles with HGI = 50, both e and f are almost the same as those of the non-spherical glass
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particles with the steel wall. Unlike the glass particles, the coal A particles with different
diameters have similar values of collision coefficients. Although glass and coal have distinct
material properties, their rebound motions on rough walls can be very similar due to their
irregular particle shapes. For the softer coal B particles with HGI = 91, e is larger than coal
A for medium to large impact angles α1 ≥ 40◦, while f has the same value as coal A. There
are complex relationships between the HGI and the particles’ mechanical properties such as
the compressive ductility and the ultimate stress [44,45], and it is unknown which property
contributes most to the different behaviors during collision. However, such differences are
smaller than the differences caused by the particle sphericity.
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The effects of the impact velocity on the collision coefficients are shown in Figure 6.
Coal A particles and the steel wall were used in these cases. With the impact velocity
increasing, small decreases in e and increases in f were observed. The results were consistent
with the existing theories about velocity’s effects at slow speeds [6]. And the effects of
collision velocity were limited, too.
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Figure 7 shows the results of the coal A particles with the steel wall and the polished
steel wall. For the polished wall with lower roughness, the dependence of e on the impact
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angle α1 was smaller, and e became smaller than that for the rough wall with a small α1.
This was caused by the particles’ direction changes for glancing impacts; for coal A particles
(d = 110 µm) within the α1 = 20◦ group, the mean rebound angle with the rough steel wall
was 5◦ larger than that with the polished steel wall. These effects are often attributed to the
rough wall’s local inclinations [9,10]. The coal particles’ e can be as low as 0.45 with α1 →
20◦ when colliding with the polished wall, which is lower than that of the non-spherical
glass particles. On the other hand, the f of coal particles has little difference from that of
the non-spherical glass particles, and both cases have lower f values than when colliding
with the rough wall, when α1 is small.
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with the results in Troiano et al., 2017 [36]).

For applications of fuel particles such as thermal power generation, the effects of the
temperature are important for the particle–wall collision behaviors. To analyze such effects,
the collision coefficients of the coal particles were compared with the results in Troiano
et al., 2017 [36] (Figure 7). At room temperature, the cited case with the brass wall resulted
in the same collision coefficients as the steel wall in this paper, due to the similar wall
material types. The refractory wall had much greater roughness so its friction coefficient f
was larger. As the temperature rose to 1380 ◦C, the refractory wall’s f became even larger
as the particles’ tangential rebound velocities decreased [36].

There are few existing studies about thermal effects on particle–wall collision [36,37,46].
Dong et al. 2014 [46] showed that when there are temperature gradients between the inlet
and the wall, the effects of the thermophoretic force are important for the wall collisions
of small (d = 20 µm) SiO2 particles. In this paper, the coal particle’s size was much larger,
reducing the influences of external forces. Troiano et al. 2017 [36] showed that collision
behavior changes under hot conditions with char/slag transition, which can be explained by
changes in mechanical properties. For example, ash particles’ rebound velocities decrease
at high temperatures, as the particle stickiness increases significantly [47]. But the results in
Figure 7 show that temperature has limited effects on particle collision if the mechanical
properties of the particle do not have an apparent change. Especially for non-spherical
particles, even with material changes (e.g., from coal to char), the particle wall behaviors
for a similar wall roughness show great similarities. The results in Figure 7 also show that
wall roughness has an apparent effect on the friction coefficient.

We take the biomass particle–steel wall collision data with different particle sizes as
an example, as shown in Figure 8. Similar to the case with coal A particles, the collision
coefficients of these biomass particles are close to those of the non-spherical glass particles
with the rough steel wall. The results prove that changing the particle diameter causes only
small variations in e for large impact angles, and it has nearly no effect on f for non-spherical
particles with low sphericity.
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3.2. Similarities of the Non-Spherical Particle Collisions

For a thorough comparison among the different particle types, Figures 9 and 10 show
the collision coefficients of all the cases. In Figure 9a, the restitution coefficients of the
spherical glass particles have significantly different values and trends from those of the
non-spherical particles. With large impact angles α1, the e of glass beads can be up to
0.6~0.8, while all the non-spherical particles have much lower e results, ranging from 0.2
to 0.4. Specifically, the restitution coefficients for non-spherical particles of coal, glass
powder, and biomass impacting with unpolished steel are shown as the shaded region in
Figure 9a; it is interesting that the region is concentrated, although the materials are very
different, as well as the particle size and particle sphericity. Meanwhile, these regions for
the restitution coefficients of coal and glass powder impacting with polished steel are more
scattered than that for steel cases. This difference shows that sphericity and wall roughness
have more important effects on particle wall collision behaviors compared to the other
collision parameters. It can also be observed that the restitution coefficient of Shepherd’s
purse seed is larger than that of all other non-spherical particles, but is lower than those
of most of the spherical particles. Based on these comparisons, it is clear that sphericity
plays a dominant role in setting particle impaction behavior when it is less than 0.7, and
that such an effect makes the particle behavior similar. Such a trend is shown clearly in
Figure 9b with α1 = 60◦, where the spherical glass particles’ e is positively correlated with
the particle diameter d. On the other hand, the coal and biomass particles’ e values are close
to a horizontal line at around 0.3 regardless of d. The results of the non-spherical particles
with the unpolished steel wall are highlighted with shaded areas in both figures. The areas
are also very small and concentrated.

The friction coefficients f as functions of α1 and d are plotted in Figure 10a,b. As f → 0
for normal collisions (α1 = 90◦), the differences among the conditions become clear with
small impact angles. With α1 = 20◦, the glass beads’ f is generally lower than those of
the coal and biomass particles. Similar observations can be made based on Figure 10b
concerning the correlations of f with d. The shaded areas containing the fuel particles’
results with the steel wall have limited ranges. Therefore, it can be concluded that the
particle non-sphericity and the wall roughness are the major influencing factors of collisions.
In particular, the collisions between non-spherical particles and the rough steel wall behave
similarly, and it is possible to develop a simple particle-collision model for a wide range of
non-spherical particles with impaction angles ranging from 0 degrees to 90 degrees, sizes
ranging from 50 µm to 550 µm, material HGI hardness values ranging from 50 to over 100,
and collision velocities ranging from 3 m/s to 10 m/s or higher.
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Figure 9. Comparison of restitution coefficients e (v1 = 6 m/s), as functions of (a) impact angle α1 and
(b) particle diameter d with α1 = 60◦.
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In order to directly show the effect of sphericity on both e and f, the restitution
coefficients and the friction coefficients of different particle types as functions of sphericity
under the fixed impact angle of 40◦ and impact velocity of 6 m/s are shown in Figure 11. It
is clear that e decreases first when sphericity decreases from 1.0 to 0.75, and then e reaches
a steady narrow range from 0.3 to 0.45 as sphericity decreases to very small values such as
0.23. On the contrary, f increases with the decrease in sphericity.
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Figure 11. Restitution coefficients and friction coefficients as functions of sphericity given an impact
angle of 40◦ and impact velocity of 6 m/s.

3.3. Modeling

The results show that all non-spherical particles exhibit similar stochastic behaviors
during particle–wall collisions, and their rebound velocities and collision coefficients have
wide distributions. Figure 12 shows the scatter plot of the velocity ratio ev = v2/v1 for
the coal A particles (d = 110 µm) with the steel wall. The value ev is chosen instead of e =
v2n/v1n for model validation here, because ev is still applicable with α1 → 0 and v1n → 0
unlike e. With both a small α1 (grazing impacts) and large α1 (near-normal impacts), the
distribution of ev has large variations. To build a model for such collisions, it is necessary
to introduce parameters representing the variations for both cases. Based on Wang’s
work [31], the model with four parameters is used here (modeled restitution coefficient em,
standard deviation of the modeled restitution coefficient ∆em, modeled friction coefficient
f m, standard deviation of the random wall angle ∆γ). The subscript “m” of em and f m is
used to differentiate them from the apparent coefficients e and f based on the impaction
angle without a consideration of wall roughness. The modeled restitution coefficient, em is
assumed to follow a normal distribution N(em, ∆em

2), f m is set to a constant f m, and the
collision plane is assumed to have an inclination angle γ~N(0, ∆γ2) against the wall [31].
Given the four parameters em, ∆em, f m, and ∆γ, the stochastic collision results are predicted
as follows:

1. Generating random e and γ from the corresponding distributions;
2. Calculating the rebound velocity (v2n, v2t), based on the virtual wall with an inclination

of γ against the apparent wall. The equations are [31]

v2n = −ev1n (3)

v2t =

{
(5v1t + dω1)/7, non-sliding
v1t − f (1 + e)ε0v1n, sliding

(4)

where ω1 is the impact angular velocity, and ε0 is the sign function of the velocity
direction of the contact surface. It should be noted that the non-sliding equation in (4)
results in a different f from the provided f m, and the presence of γ strongly affects the
rebound behavior for glancing impacts. Therefore, although the model parameters
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em and f m are independent of α1, the predicted e and f will depend on α1, which is
consistent with the experimental data.
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The parameters em, ∆em, f m, and ∆γ are fitted from the experimental data, using the
median and lower and upper quartiles of ev and the rebound angle α2, for each group of
impact angle α1. For the coal A particles with the steel wall, the results are shown in Table 2.
The model’s goodness of fit was evaluated by using the relative velocity distribution error
R: [31]

δ =

(
ev,modal

ev,data
− 1

)2
+ (α2,modal − α2,data)

2 (5)

R =

√
∑

α1=20◦ ,30◦ ,...,90◦
δα1,median +

δα1,25% + δα1,75%

2
(6)

Table 2. Model parameters for fuel particles with steel wall based on Coal A data.

Particle Type em ∆em f m ∆γ
Relative

Error

Coal A 0.28 0.13 0.44 9.66 6.0%

This is composed of ev’s relative error and α2
′s absolute error, as they both contributed

to the rebound velocity’s relative change. The distribution’s median, lower quartile (25%),
and upper quartile (75%) are all considered. The relative error R is 6.0% for the case in
Table 2, making it possible to apply the model in the simulations.

Considering the similarity of the collision behaviors of all the non-spherical particles
with the unpolished wall, it is expected that a single set of parameters in Table 2 can fit
multiple conditions’ results. Figure 13 compares the predicted ev by the model with these
parameters, and the experimental data of three different cases. When colliding with the
rough steel wall, both the 110 µm coal A particles and the 310 µm biomass particles show
good matches between the model and the data. Only slight deviations are observed for the
150 µm coal B particles. Nevertheless, ev values of the coal A particles with the polished
steel are larger and have narrower distributions for grazing impacts, deviating from the
predictions of the same model parameters.
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The results in Figure 13 indicate that this model can be applied to typical non-spherical
particles impacting rough steel walls, which are frequently found in industrial uses. Even
without experimental data for the specific particle–wall combination, the set of parameters
in Table 2 can provide reasonable accuracy, as the collision behaviors mostly depend on
the particle non-sphericity and the wall roughness. By sampling the model, it is possible
to predict the non-spherical particles’ rebound motions and improve CFD simulations of
related gas–solid flows.

4. Conclusions

In this study, particle–wall collision experiments were carried out with typical non-
spherical particles, including glass powders, coal, and biomass particles, colliding with
polished and rough walls. The results of the collision coefficients were determined, and the
effects of various parameters were analyzed. It has been concluded that

1. The dominating factors of particle–wall collisions are the particle non-sphericity and
the wall roughness. Most of the cases with non-spherical particles and a rough steel
wall show similar collision behaviors.

2. The effects of the particle diameter on the collision coefficients of non-spherical
particles can be ignored, unlike for spherical particles.
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3. It is possible to predict the particles’ rebound motions for a wide range of typical
non-spherical particles with a four-parameter model. Using the fitted values in Table 2,
collisions of typical non-spherical particles with sizes ranging from 50 µm to 550 µm
on steel walls can be predicted with reasonable accuracy.
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