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Abstract: The emerging pollutant octocrylene is not efficiently removed from effluents by conven-
tional treatment and is recurrently found in rivers. This study evaluated the adsorption of octocrylene
using commercial carbon and biochar from spent coffee grounds activated with ZnCl2. The two ad-
sorbents had an efficiency of approximately 100% in pollutant removal throughout the experimental
design. The kinetics and equilibrium isotherms showed a good correlation with the experimental
data. The kinetics showed adsorption of the contaminant in 40 min for both adsorbents. The model
equilibrium isotherms with the best fit and adsorption capacity was Langmuir for biochar, with a
capacity of 37.822 ± 0.005 µg·mg−1 compared to 33.602 ± 0.202 µg·mg−1 for commercial carbon.
Furthermore, a toxicity analysis of a 600 µg·L−1 octocrylene solution was carried out before and after
adsorption with the two charcoals separately, using Allium cepa roots. Before adsorption, the solution
was phytotoxic and cytogenotoxic. After adsorption, the solution obtained for each charcoal no longer
caused toxicity to the roots. The charcoals tested had high removal efficiency and adsorption capacity,
a condition reiterated by the toxicity results. However, biochar better represented the Langmuir
model in the adsorption process when removing octocrylene from the aqueous medium.

Keywords: sunscreen; adsorption kinetics and isotherms; removal; coffee grounds byproduct; absence
of toxicity

1. Introduction

Octocrylene is the most used sunscreen worldwide in cosmetics and pharmaceutical
products due to its high efficiency in protecting against ultraviolet rays and because it is a
stabilizer of other solar filters, such as benzophenone-3, methoxydibenzoylmethane, and
avobenzone [1,2]. This filter is a cinnamate ester, with a molecular weight of 361.49 g·mol−1,
octanol–water partition coefficient of 6.88, low solubility in water, high resistance to pho-
todegradation, and high lipophilicity [3,4].

Octocrylene is classified as an emerging pollutant because it is not included in en-
vironmental regulations [4,5]. Conventional treatments are not efficient in completely
removing it from wastewater [4,6] and it is commonly found in surface waters on the
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microgram (µg) scale [7,8]. In sewage treatment plants in different countries, raw and
treated effluents presented octocrylene in concentrations ranging from micrograms to
nanograms [4,5]. This compound has a high bioaccumulation potential and is persistent in
freshwater resources [4].

Environmental impact assessment studies on aquatic species showed that octocry-
lene at environmentally relevant concentrations inhibited growth and caused mortality
in microcrustaceans [9]. Furthermore, it triggered cellular toxicity and oxidative stress in
mollusks [10], physiological changes in corals [11], and toxicity and endocrine disorders
in fish [12,13]. Organisms (plants and earthworms) exposed to this filter, mainly by incor-
porating biosolids in agricultural areas and by leaching from contaminated soils, suffered
from high systemic and cellular toxicity [4,5]. In addition to environmental issues, the
contamination of surface waters with this compound directly impacts human populations
since this sunscreen is found in drinking water on the nanogram (ng) scale [4,5]. There-
fore, alternative, low-cost methods to complement conventional treatment for efficiently
removing octocrylene from wastewater must be evaluated.

There are few studies in the literature evaluating non-conventional techniques for
removing octocrylene from the aqueous medium. The non-usual methods, including
membrane bioreactors and fungal bioremediation, proved not entirely promising due
to the high lipophilic nature of this compound and the high cost of implementing the
techniques [14].

Among the alternative methods to conventional treatment is adsorption on activated
carbon, considered a low-cost process compared to other techniques, such as ionic liquid
and ultraviolet rays, as it does not require pre-treatment and can reuse waste considered
recalcitrant in the environment, such as spent coffee grounds [15]. Activations cause
modifications on the charcoal surface and quantify different surface functional groups
such as carboxyl, carbonyl, phenols, quinones, and lactones, facilitating the removal of
pollutants in aqueous solutions [16]. After a careful search in the literature, no adsorption
studies were found for octocrylene sunscreen.

Activated carbons are used to treat industrial waste and water supplies. Their ap-
plication occurs due to their high capacity to interact with organic pollutants in aqueous
and gaseous media. Activated carbons are classified as granules, powders, and pellets
according to their size and defined [17], micro, meso, and macropores, correlated to their
physical form of activation, chemical, and biological [16]. The activated carbon surface can
accommodate elements such as oxygen, hydrogen, and nitrogen in the form of functional
groups arising from the physical, chemical, or biological activation process. For the most
part, the solid interface is predominantly composed of oxygenated functional groups, such
as carboxylic acids, hydroxyl groups (when associated with aromatic chains, they confer a
phenolic character), carbonyls, lactones, and quinones [18,19].

Consumption of coffee (Coffea arabica L.) globally exceeds nine billion kilos per year. On
average, one kilogram of soluble coffee produces two kilograms of wet coffee grounds [20].
Much of this material is sent to landfills, becoming an environmental problem due to its
persistence in the soil and water [20,21]. Studies have shown that biochar from spent coffee
grounds is highly efficient in removing metals, textile and food dyes, and herbicides [15,22].

Biochar is a functional material developed from natural or industrial by-products, such
as sludge and forestry waste. Its applicability focuses on removing aquatic pollutants [23].
Its production process is similar to charcoal activation. However, biochar needs to change
its physical properties so that its adsorption capacity is similar to or greater than activated
carbon [24]. The advantage of using biochar is that using by-products can make a viable
economy, reduce the greenhouse effect and global warming, and increase harvest yield and
productivity [24].

Biochar from spent coffee grounds is of great interest because (Coffea arabica) is the second
most traded product in the world, and Brazil is the largest producer of this food [25]. The
residue produces around 2.1 billion per harvest of Coffea arabica [15]. This material has around
fifty percent carbon on its surface; in the pyrolysis processes, more volatile compounds such as
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oxygen and hydrogen break their bonds with the carbonic mass, detaching from the molecular
structure [26,27]. This calcination process forms a porous structure of the biochar, and its
adsorption capacity will depend on the physical-chemical properties of the material obtained
and can be enhanced by the type of activation, chemical, physical, or biological, pyrolysis time,
and temperature [26,27]. Coffee grounds found in water resources can be toxic to aquatic
animals due to the high concentration of caffeine [28,29].

Therefore, considering the significant adverse effects of octocrylene on different species,
the lack of studies that evaluate alternative and low-cost techniques for effectively removing
this compound from wastewater, and the nonexistence of adsorption studies for this solar
filter, the present study aimed to assess the efficiency of commercial carbon and biochar
from spent coffee grounds in removing octocrylene from the aqueous medium. This
manuscript brings important results due to: evaluating, for the first time, adsorption
techniques using charcoal (commercial and biochar) to remove octacrylene solar filter
from the aqueous medium; and using, for the first time, biochar from used coffee grounds
(a recalcitrant residue in soil and water, produced on a large scale around the world) to
remove octacrylene from the aqueous medium.

2. Material and Methods
2.1. Obtaining Octocrylene

Octocrylene (2-ethylhexyl-2-cyano-3,3-diphenyl-2-propenoate, CAS 6197-30-4) was
obtained from Sigma-Aldrich, (San Louis, MI, USA) in analytical grade, i.e., 100% purity, as
were the other reagents used in this study.

Methodology of Adsorption

2.2. Efficiency Removal

Adsorption tests were carried out on commercial carbon purchased from Exôdus
(Brazil) and charcoal (biochar) activated with ZnCl2. Commercial coal has only carbon and
hydrogen as its structure, has a BET surface area of 543.4 m2·g−1 and particle sizes between
1.4 and 2 mm [30]. Biochar was produced from coffee grounds, a predominating carbon
and lignocellulosic material. In the Rocha study [15], the surface area was 564.4 m2·g−1,
pore volume was 0.32 cm3·g−1, and micropore volume was 0.25 cm3·g−1. It was carried
out using ZnCl2 in a 2:1 ratio (spent coffee grounds: chemical reagent) at 85 ◦C for 7 h, after
which the temperature was increased to 110 ◦C for 24 h. After cooling the material and
stabilizing the moisture, the sample was calcined in a muffle furnace Coel (Manaus, Brazil)
at 600 ◦C for two hours in an inert nitrogen atmosphere, with a flow rate of approximately
1 mL·min−1 of gas. Finally, activated charcoal was obtained by washing it with 0.1 M HCl
for 20 min and subsequently with deionized water at 85 ◦C for 20 min at 25 ◦C on 100 mesh
sieves to standardize the charcoal size. The spent coffee grounds were provided by the
COAMO company (Campo Mourão, Brazil).

The study started with the optimization of the octocrylene concentration and amount
of adsorbent, as listed in Table 1. For all runs (Table 1), after the adsorbent material
produced was standardized on a 10 mesh sieve, physical variables were controlled, such as
controlled temperature and agitation speed, equipment was calibrated without octocrylene,
and such procedures were carried out so as not to affect the parameters of the adsorption
process [31,32]. The pollutant removal efficiency tests were carried out in triplicate in order
to minimize all random errors involved in the experiment.

A 22 factorial design duplicate at the central points was carried out to investigate
two variables at two levels. The factors were defined as lower (−1), upper (1), central
point (0), and extreme points (−1.41, 1.41) to adjust the Montgomery curvature [33]. The
variables analyzed were adsorbent mass quantity (x1) and octocrylene concentration (x2).
The adsorbent ranged from 5 to 15 g, and the pollutant ranged from 200 to 600 µg·L−1.
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Table 1. Experimental design of the pollutant octocrylene.

Run (R)
Adsorbent Mass (mg)

x1

Octocrylene Concentration
(µg·L−1) x2

ER (%)

Commercial Carbon Biochar

R1 5 (−1) 200 (−1) 90.2 ± 0.1 95.1 ± 0.3
R2 5 (−1) 600 (1) 98.2 ± 0.1 99.2 ± 0.1
R3 15 (1) 200 (−1) 92.4 ± 0.3 93.0 ± 0.4
R4 15 (1) 600 (1) 95.3 ± 0.2 95.9 ± 0.2
R5 2.9 (−1.41) 400 (0) 90.8 ± 1.8 89.5 ± 0.5
R6 17.1 (1.41) 400 (0) 91.5 ± 1.5 91.0 ± 0.6
R7 10(0) 117.2 (−1.41) 93.2 ± 0.7 94.6 ± 0.1
R8 10(0) 682.8 (1.41) 98.5 ± 1.8 99.1 ± 0.1
R9 10(0) 400 (0) 98.5 ± 0.1 98.4 ± 0.1

R10 10(0) 400 (0) 96.4 ± 0.2 97.9 ± 0.1

The experimental design was used to optimize the response variable Removal Ef-
ficiency (ER). The polynomial equations were obtained by determining the dependence
and independence of the factors. The significance level was a 5% difference between the
average values of the tested parameters, according to Valarini [34]. All tests were carried
out in triplicate under the same temperature, rotation, and time conditions.

The experiments occurred at pH = 7, and 50 mL of solution was prepared with
octocrylene concentrations as listed in Table 1. The octocrylene solutions were all prepared
in deionized water with 1% Tween 80. The masses in Table 1 were measured on an analytical
balance (Mettler Toledo, Brazil). Then, the volumes and masses of adsorbents in the samples
in Table 1 were placed in 125 mL Erlenmeyer flasks and subsequently taken to a shaker
(Tecnal, Brazil) at 50 rpm at 25 ◦C for 24 h. After shaking, the samples were filtered and
measured at a wavelength of 305 nm for octocrylene, according to Santo et al. [4]. Final
concentration calculations were determined from the calibration curves of Santo et al. [4]
for the conversion of absorbance into octocrylene concentration in the solution. ER(%) was
determined using Equation (1).

ER (%) =

(
1 − CFinal

Cinitial

)
× 100 (1)

2.3. Adsorption Kinetics

Kinetic tests were performed using the best ER(%) condition. The bottles were placed
under agitation in the shaker under the same conditions set in the previous item. At
predetermined times, between 15 min and 1440 min, aliquots were taken, filtered, and read
on a UV-VIS spectrophotometer Global Analyzer (Jaboticabal, Brazil). The experimental
adsorption capacity at equilibrium (Qe) (µg·mg−1) was calculated from Equation (2); where
C0 (µg·L−1) is the initial octocrylene concentration, Ce (µg·L−1) is the adsorbate concen-
tration at equilibrium, V (L) is the solution volume, in liters, and m (mg) is the adsorbent
mass, in milligrams.

Qe =
(C0 − Ce)× V

m
(2)

The octocrylene adsorption kinetic experimental data were fitted to pseudo-first-order
(Equation (3)), and pseudo-second-order (Equation (4)) adsorption kinetic models of liquid-
solid systems [35,36].

dQ
dt

= k1 × (Qe − Qt) (3)

dQ
dt

= k1 × (Qe − Qt)
2 (4)
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where Qt (µg·mg−1) is the total amount of emerging pollutant adsorbed in a given time,
k1 (min−1) is the kinetic constant of the first order model, and k2 (µg·mg−1·min−1) is the
kinetic constant of the second-order model.

2.4. Adsorption Isotherms

The adsorption isotherms were developed using the same parameters as the previous
item. The experimental points were obtained by diluting octocrylene at concentrations
of 200; 400; 1000; 1300; 1600; and 2000 µg·L−1 in solutions of deionized water with 1%
Tween 80. The experimental points were determined by Equation (2), and the liquid-solid
isotherm model used in this study were the Langmuir model, Equation (5).

Qe =
Qmax . K × Ce

1 + K × Ce
(5)

where Qmax (µg·mg−1) represents the adsorption capacity of the adsorbent at a given
equilibrium concentration, and K (L·µg−1) refers to the affinity between the adsorbate and
the adsorbent. The Langmuir isotherm describes the adsorbed phenomena on energeti-
cally homogeneous surfaces [37] and the Freundlich isotherm describes the isotherms on
heterogeneous surfaces (Equation (6)).

Qe = KF × C1/n (6)

where KF (µg·mg−1·L−1) is defined as the adsorption intensity, and n is related to the
energetic surface of the adsorption. The Freundlich model refers to the adsorption of
adsorbate on heterogeneous surfaces.

2.5. Assessment of the Phytotoxic, Cytotoxic, and Genotoxic Potential of Octocrylene in Aqueous
Medium before and after Adsorption with Commercial Carbon and Activated Biochar, on Allium
cepa L. (onion) Roots

Toxicity tests on A. cepa roots were carried out to evaluate the efficiency of commer-
cial carbon and biochar from spent coffee grounds in removing octocrylene from the
aqueous medium.

For the tests, a concentration of 600 µg·L−1 of octocrylene was evaluated. This concen-
tration was prepared in a solution of deionized water with 1% Tween 80. This concentration
was chosen because, in wastewater from different locations around the world, octocrylene
was found in concentrations ranging from 50 to 600 µg·L−1, according to Santo et al. [4]
and Nascimento et al. [5].

A. cepa bulbs free from pesticides and synthetic fertilizers were obtained from an
organic garden. After removing the dry cataphylls, the bulbs were washed in deionized
water. Then, onions were placed in contact with the sunscreen solution at a concentration
of 600 µg·L−1, with the solution after adsorption on commercial carbon, with the solution
after adsorption on biochar, and with distilled water (used as control), and placed in a
BOD incubator Cinelab (Campinas, Brazil) for 120 h, without the presence of light, for
rooting. The control and analyzed solutions were called treatments. For the analysis of
each treatment, five repetitions of onion bulbs were used.

Phytotoxicity, cytotoxicity, and genotoxicity tests on A. cepa roots were carried out
according to Fiskejö [38].

To assess the phytotoxicity, the length of ten roots from each bulb repetition was
measured using a manual caliper. The average root length (CMR) was determined for each
treatment (Equation (7)).

CMR(cm) =
Sum o f root length o f root bundles

5
× 100 (7)

For cytotoxicity and genotoxicity assessments, root meristems were used. For this,
on average, three roots from each bulb were collected and placed in Carnoy fixative for
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24 h. Then, roots were washed in distilled water, hydrolyzed in 1 N HCl for 8 min, and
washed again. Afterward, the meristematic regions of the roots were detached and crushed
using a scalpel on glass slides, stained with 2% acetic orcein, and covered with a coverslip.
The slides were analyzed under an optical microscope Nikon (Tokyo, Japan) using a 40×
objective lens.

Cytotoxicity was determined by calculating the mitotic index (MI%), according to
Equation (8), in which 2 thousand cells from each bulb were analyzed, totaling 10 thousand
analyzed per treatment.

MI =
Total number o f dividing cells
Total number o f cells analyzed

× 100 (8)

Genotoxicity was determined by the percentage of cellular changes (CAI). From each
bulb, 200 cells were analyzed, totaling 2 thousand analyzed for each treatment, according
to Equation (9). The alterations considered were micronucleus, chromosome bridges, and
chromosomal disorders.

CAI =
Number o f cellular alterations
Total number o f cells analysed

× 100 (9)

Toxicity results for the different treatments were evaluated by Kruskal–Wallis analysis
of variance, followed by Dunn’s test (p ≤ 0.05).

3. Results and Discuss
3.1. Adsorption

The experimental design required 10 experiments with octocrylene. The design adopted
was the second-order model for curvature adjustment, as it is generally necessary to adjust
the planning response, being the most appropriate in most cases [33]. In water treatment
processes, the parameters that can affect adsorption properties must be identified.

The 22 factorial design (Table 1) used in this study aimed to obtain the best ER condition
(%). The response surface methodology (RSM) was used to transform the variables into
factors and optimize the laboratory experiments as the response variable ER(%) [33,34].

The results in Table 1 show the importance of optimizing experiments and reaffirm the
statistical importance of conducting laboratory experiments. This process of transforming
variables into factors is important when working with RSM [34]. The p-value coefficients
are listed in Table 2 and have a significant effect of 0.05 in the predictive model.

Table 2. Significance test, standard error, and the respective confidence interval of the octocrylene
ER(%). Combined regression variables were analyzed for adsorbent mass (mg)—x1 and Contaminated
Pollutant (µg·L−1)—x2, respectively.

Variable

Commercial Carbon Biochar

ER(%) p-Value Standard-
Error

Confidence
Interval ER(%) p-Value Standard-

Error
Confidence

Interval

A 97.48 0.000 0.735 95.4–99.5 98.16 0.000 1.469 94.823–100.0
x1 0.11 0.890 0.367 −0.965–1.073 −0.81 0.608 0.160 −2.442–1.628
x2 4.55 0.003 0.367 1.253–3.295 −3.35 0.084 0.734 −0.363–3.716
x1x2 2.62 0.065 0.520 −2.574–0.134 −0.60 0.787 1.039 −3.184–2.588
x1

2 −6.02 0.003 0.483 −4.351–(−1.665) −6.75 0.025 0.965 −6.054–(−0.691)
x2

2 −1.34 0.234 0.487 −2.024–0.681 −0.20 0.992 0.972 −2.802–2.599

Table 1 lists that the removal percentage achieved in the experiment with octocrylene
was more efficient with commercial carbon and biochar for run R2, in which for the octocry-
lene/commercial carbon system, removal was 98.2 ± 0.1% and for octocrylene/biochar
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system, was 99.2 ± 0.1%. In all configurations of this run, both adsorbents obtained a high
ER(%), with no significant percentage differences.

Table 2 shows the p-value with a significance effect of 0.05 in the predictive model.
The estimated p-value for octocrylene shows that for commercial carbon, the quadratic
concentration of the pollutant (x2), the linear amount of adsorbent (x1), and its midpoint
(97.48 ± 0.2%) are significant for the design. Thus, both factors affected the ER(%) of the
pollutant. For biochar, only the midpoint and the quadratic concentration of the pollutant
(x2) interfered with the increase in pollutant removal. Therefore, for commercial carbon,
both octocrylene concentration and charcoal mass can affect the removal efficiency. As
for biochar interacting with octocrylene, only the pollutant concentration can affect the
removal efficiency of the sunscreen. The experimental responses encoded by the factors x1
and x2 can also be represented by general mathematical solutions that locate the stationary
point, such as Equations (10) and (11) for the octocrylene pollutant.

ER(%)Commercial Carbon == 97.48 + 4.55x2 − 6.02x2
1 (10)

ER(%)Biochar = 98.16 − 6.75x2
1 (11)

Equations (10) and (11) show the adsorption technique with two types of charcoal
tested, offering a unique analysis of each equation associated with its respective graph.
Equation (10) shows that the midpoint of ER(%)commercial carbon was 97.48%. In this equation,
increasing the pollutant concentration and decreasing the amount of adsorbent increases the
ER(%)commercial carbon. In Equation (11), only the amount of biochar changes the ER(%)Biochar,
following the same trend as commercial coal, in which the smaller amount of charcoal
increases the ER(%)Biochar. The equation models follow the same trend. This implies that
each pollutant/adsorbent amount system is correlated to the type of chemical compounds
and type of charcoal to be used. The R2 runs were more efficient because models with
high concentrations have greater adsorption in a shorter time, i.e., they quickly stabilize
adsorption [39].

The location of the stationary point is of great importance to finding the best conditions
for levels x1 and x2 and their interactions that optimize the RSM. Contour plots play an
important role in response surface studies [33]. Figure 1 illustrates that the closer to the
dark red region, the higher the ER(%) for the octocrylene pollutant. Correlating Figure 1
with Equations (10) and (11), the best adsorption conditions are run R2 for both types
of charcoal, as there are low concentrations of adsorbent mass and high concentrations
of pollutant concentration. In this way, the adsorption kinetics of these runs and the
adsorption isotherm with this mass quantity of adsorbent were considered.

ER(%) obtained high values, close to 100%, as the size of the octocrylene molecule is smaller
than the sizes of the micropores of biochar and activated carbon [15]. Other physicochemical
factors also contribute to the increase in ER(%), such as functional groups; a higher diversity of
functional groups on the charcoal surface increases ER(%), and polarity, ionic nature, and pH of
the process; chemical nature similar to the solution also cause an increase in ER(%) [40,41]. The
process of biochar formation occurs by pyrolysis at 600 ◦C, which leads to greater formation of
microporous structures in the material, improving its ER(%).

The molar mass of octocrylene of 361.48 g·mol−1 and the surface area of biochar of
564,366 m2·g−1 [15] show that a high removal percentage occurred due to the larger surface
area of the functional material compared to the pollutant concentration used in the study.
The interaction of ions on the surfaces of the molecule and material also facilitates the
chemisorption of reducing and oxidizing agents [42]. The surface of activated carbon
without a chemical activator can accommodate elements such as oxygen, hydrogen, and
nitrogen in the form of functional groups arising from the activation process. For the most
part, the solid interface is predominantly composed of oxygenated functional groups, such
as: carboxylic acids; hydroxyl groups (when associated with aromatic chains, they confer a
phenolic character); carbonyls; lactones; quinones [18,19].
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The use of chemical activators contributes to the formation of pores and an increase in
channel functional groups in the activated carbon matrix [43]. Precursor materials, such as
ZnCl2, are used as a dehydrating effect on lignocellulosic materials, such as spent coffee
grounds in natura, previously carbonized. ZnCl2 increases the mass proportion and causes
the easier release of volatile substances, so that the adsorption of nitrogen increases in the
biochar, which consequently increases its surface area [44]. The use of ZnCl2 breaks down
the cellulose molecules and leads to an increase in different cavities, which causes a greater
surface area on the activated carbon. Upon activation with ZnCl2, the yield of activated
carbon increases due to polymerization by creating some aromatic compounds with large
rings, facilitating the adsorption of contaminants [45].

The mechanism of interaction between octocrylene and the adsorbents biochar and
commercial charcoal remains unclear. Grilla [46], Rocha [15], Mrozik [47], and Gian-
nakopoulos [36] proposed an adsorption mechanism between the pollutant and the ad-
sorbent that considered that the reactions occurred between radicals and non-radicals.
Thus, based on assumptions, in aqueous solutions, biochar has a radical (Cl−) and com-
mercial charcoal only (OH−), as it does not present any chemical agent on its surface.
Next, intermediate products related to oxygen groups are generated on the surfaces of the
adsorbents. The octocrylene adsorption process initially occurs on the surface of biochar
and commercial charcoal due to interactions between the octocrylene aromatic ring and the
functional material [48]. This occurs due to the OH− group on the surface of the adsorbent
due to the charge generated from the octocrylene in the functional material. Biochar anions
can also be adsorbed on sites that contain oxygen. The OH− groups on the surface of
functional materials can participate in oxidation-reduction reactions, mainly in transferring
π electrons from the adsorbed octocrylene molecule, as the aromatic phase can increase the
transfer capacity of electrons displaced in the adsorption process [46].
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3.2. Adsorption Kinetics

Based on the experimental design, the R2 run for commercial active carbon and biochar
was used for the adsorption kinetics of octocrylene due to the higher ER (%). Figure 2 shows
the trend of experimental data, determined experimentally by Equation (2). The adsorption
process occurs at a concentration of 600 µg·L−1 of octocrylene for 5 mg of adsorbent. The
pseudo-first-order (Equation (3)) and pseudo-second-order (Equation (4)) kinetic models
stabilize quickly, around 40 min.

Figure 2. Adsorption kinetics and respective fits for initial concentrations of octacrylene 600 µg·L−1

with (a) Commercial Carbon, (b) Biochar ZnCl2.

The rapid adsorption of octocrylene on both activated charcoals shows that the ad-
sorption is molecular and occurs preferentially on the external surface of the adsorbent and
that due to chemical activation, the active sites available in the biochar reached equilibrium
quickly, to achieve the adsorption–desorption system [15,49].

Figure 2 also presents the total amount (Qt) in µg·L−1 and the adsorption kinetic
parameters obtained by fitting the models. From the kinetic parameters obtained under the
conditions analyzed, the adjustments for both the pseudo-first-order and pseudo-second-
order models represented the experimental data based on high correlation coefficient values
(R2). The tested models presented the same amount of pollutant adsorbed at equilibrium,
Qe (µg·mg−1), on both tested charcoals. The adsorption rate constant, k1 (min−1), for
commercial carbon was higher than for biochar for pseudo-prime models. The constant
intraparticle diffusion rate, k2 (µg·mg−1·min−1), was higher for biochar than charcoal for
pseudo-second-order models [50].

The two models described the experimental data with pseudo-first- and pseudo-
second-order models. However, the phenomenological model to be chosen to represent the
kinetic adsorption system depends on the final objective. The pseudo-first-order model is
considered an excellent model for long-term adsorption processes. For this model, the most
suitable polluting system is commercial carbon. The pseudo-second-order model, which
also satisfactorily represented the experimental data, Adj. R2 of 0.999, indicates that there
are many complexed sites and many awaiting complexation in the activated carbon [51];
therefore, the general balance of active sites has a large number of active sites that can
adsorb pollutants. Thus, the adsorption rate will depend on the amount of pollutant in
the system and not on its concentration. For a low amount of pollutants, the most suitable
system is biochar; otherwise, the most suitable is commercial carbon [50].
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3.3. Adsorption Isotherms

The adsorption equilibrium isotherms of octocrylene using commercial carbon and
biochar were analyzed here due to their importance in the interpretation of adsorption sys-
tems, whose objective is to understand the interaction of the adsorbent surface with the pol-
lutant in a liquid medium. Therefore, the correlation between experimental data and adsorp-
tion isotherms is important for understanding adsorption systems [50]. Figure 3 presents
the experimental data and the Langmuir and Freundlich models, Equations (5) and (6),
respectively; for both charcoals, the tested models showed good correlation in the concen-
tration range from 1 × 10−3 µg·L−1 to 1 × 10−2 µg·L−1 [52]. For higher concentrations,
there was a tendency to stabilize the Ce and Qe relationship in both charcoals.
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Figure 3 also shows the kinetic parameters of the Langmuir and Freundlich models for
the tested charcoals. The two isotherms showed good correlation; commercial carbon had a
better affinity between the adsorbate and the adsorbent (K) in the Langmuir isotherm, and
biochar showed better Qmax adsorption capacity and better correlation coefficient. For the
Freundlich isotherm, biochar obtained better adsorption intensity (KF), and commercial
carbon presented a better energy surface. The isothermal model that best represented
commercial carbon was Freundlich, in which the value of n greater than zero indicated
that the adsorption process was spontaneous [15,50]. However, for biochar activated with
ZnCl2, the Langmuir model best represented the adsorption systems. The Langmuir model
shows higher values of Qmax and K than commercial carbon, which means that the biochar
surface area, pore volume, particle size distribution, and multilayer development [15]
are higher than those of commercial carbon. Another factor of great importance was
the chemical activation with ZnCl2; the use of this reagent increased the possibility of
octocrylene binding with various functional groups on the biochar surface, such as phenolic
compounds, according to Karapinar [53]. The Langmuir model presupposes adsorption
processes at atmospheric pressure, homogeneous systems, monolayer and multilayer
adsorption, and constant adsorption temperature, and that the process stabilizes from the
saturation of active sites on the surface of functional material [54].

Considering such findings, both charcoals showed a good correlation with the pollu-
tant; however, both commercial carbon and biochar obtained satisfactory results in ER(%),
kinetics, and adsorption isotherm. Biochar becomes interesting due to the environmental
and economic importance of reusing spent coffee grounds, as the insertion of biochar in



Processes 2024, 12, 1249 11 of 15

adsorption processes can minimize the environmental impact caused by this residue on
freshwater water resources.

Therefore, the ideal model and system for large-scale application is the Langmuir
model and the functional model, because this model adequately represents homogeneous
monolayer surfaces and has environmental and economic appeal [54]. This charcoal has an
advantageous use because spent coffee grounds are not reused in the economic environment
to date, and as previously mentioned, if improperly discarded, they can be toxic to aquatic
and terrestrial organisms due to constituents such as caffeine, fatty acids, and metals [55].

3.4. Toxic Potential

Worldwide, for more than five decades, A. cepa roots have been used to evaluate the
ecotoxicity (phytotoxicity, cytotoxicity, and genotoxicity) of natural and wastewater, and
environmental pollutants, even when their concentrations in the medium are on the scale
of nanograms, proving highly sensitive to xenobiotics [5,56,57]. The results obtained with
this biological system show a high correlation with the results obtained in other bioassays,
such as in different plants, animals, and cell cultures [5,56–58].

In Table 3, the octocrylene solution at a concentration of 600 µg·L−1, before adsorption
caused a significant reduction in root elongation compared to the control results. Fur-
thermore, it caused disturbances in cell division in the meristems, with a mitotic index
of less than 60%. In addition to mitosis disorders, as shown in Table 4, octocrylene also
induced the development of cellular alterations in significant numbers in meristematic cells.
Therefore, under the established analysis conditions, octocrylene was phytotoxic, cytotoxic,
and genotoxic to onion roots.

Table 3. Average growth and mitotic index of Allium cepa L. roots exposed to octocrylene solution at
600 µg·L−1, before and after adsorption on commercial carbon or charcoal from spent coffee grounds,
for 120 h.

TR ARL/SD MI/SD (%)

Co 100 ± 1.0 100 ± 0.9

OCS before adsorption 51.9 ± 1.1 52.7 ± 0.9
OCS after adsorption on commercial carbon 89.1 ± 1.1 85.5 ± 1.3

OCS after adsorption on biochar 94.7 ± 0.9 * 97.3 ± 1.0 *
OCS: octocrylene solution, TR: Treatment, ARL: average root length, MI: Mitotic Index, CAI: cellular alteration
index, SD: Standard Deviation, Co: Control. For ARL and MI, data are expressed as a percentage of control values.
* Significantly different from the Co, according to Kruskal–Wallis H followed by Dunn’s posthoc test (p ≤ 0.05).

Table 4. Number, types, and cellular alteration index in A. cepa bulb root meristem cells exposed to
octocrylene solution at 600 µg·L−1, before and after adsorption on commercial carbon or charcoal
from spent coffee grounds, for 120 h.

TR

Number and Type of Cellular Changes

Micronucleus Chromosome
Bridges

Chromosomal
Derangements CAI ± SD (%)

Co 3 0 0 0.15

OCS before
adsorption 87 42 72 10.1

OCS after
adsorption on

commercial carbon
1 6 0 0.35

OCS after
adsorption on

biochar
2 1 0 0.15

OCS: octocrylene solution, TR: Treatment, Conc.: Concentration, Co: Control (distilled water), CAI: Cellular
Alteration Index; SD: Standard Deviation.
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The results in Tables 3 and 4 with the octocrylene solution before adsorption cor-
roborate the results of Santos [4] and Nascimento [5], who evaluated this sunscreen at
concentrations of 10, 100, and 1000 ug·L, in cultivated (Allium cepa L., Lactuca sativa L.,
Cucumis sativus L., Lycopersicum esculentum Mill., and Daucus carota L.) and uncultivated
(Avena fatua L. and Taraxacum officinale) species and reported high toxicity and oxidative
stress caused by these compounds to plants.

Roots exposed to octocrylene solutions obtained after adsorption on commercial
carbon and after adsorption on biochar had no reduction in root length, nor did they reduce
the cell division rate or cause significant cellular changes when compared to the control,
proving non-phytotoxic, non-cytotoxic, and non-genotoxic (Tables 3 and 4).

4. Conclusions

This study investigated the efficiency of removing the pollutant octocrylene using com-
mercial carbon and biochar activated with ZnCl2. From the results obtained, ZnCl2-based
charcoal obtained better results than commercial carbon due to all the factors involved,
such as the reuse of a persistent product in the environment and high removal efficiency
for high concentrations of octocrylene in an aqueous solution.

First- and second-order kinetics were simulated in this study, showing that adsorption
reaches adsorption/desorption equilibrium at around 40 min, with a similar Qe (µg·mg−1)
for the first- and second-order models. The tested adsorption isotherms, Langmuir and
Freundlich, had excellent correlations with the tested experimental data. The model that
best suited the experimental data were Langmuir.

Finally, the ecotoxicity results obtained by the A. cepa bioassay prove the effectiveness
of the adsorbents tested to remove octocrylene from the aqueous medium and show that
after adsorption on commercial carbon and biochar, the solution obtained is no longer toxic.
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