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Abstract: Power-to-gas technology provides an emerging pathway for promoting green and low-
carbon transformation of energy systems. Through the processes of electrolyzing water and the
methanation reaction, it converts surplus renewable energy into hydrogen and natural gas, offering an
effective approach for large-scale integration of renewable energy sources. However, the optimization
of existing integrated energy systems has yet to finely model the operational characteristics of
power-to-gas technology, severely limiting the energy conversion efficiency of systems. To address
this issue, this paper proposes an integrated energy system operation strategy considering the
slow dynamic response characteristics of power-to-gas. Firstly, based on the technical features of
power-to-gas, an operational model for electrolyzing water to produce hydrogen is constructed,
considering the transition relationships among cold start-up, hot start-up, and production states of a
methanation reaction, thereby building a power-to-gas operation model considering slow dynamic
response characteristics. This model finely reflects the impact of power-to-gas operational states
on methanation, facilitating accurate representation of the operational states of methanation. Then,
considering the energy conversion constraints and power balance of various coupled devices within
integrated energy systems, an optimization model for the operation of the integrated energy system
is constructed with the total daily operation cost of the system as the optimization objective. Finally,
simulation comparisons are conducted to demonstrate the necessity of considering the slow dynamic
response characteristics of power-to-gas technology for integrated energy system operation. The case
study results indicate that the proposed power-to-gas operation model can accurately simulate the
methanation process, facilitating the rational conversion of surplus renewable energy into natural
gas energy and avoiding misjudgments in system operation costs and energy utilization efficiency.

Keywords: power to gas; slow dynamic response characteristic; integrated energy systems; optimized
operation; renewable energy

1. Introduction

Under the global challenges of sustainable socio-economic development and frequent
extreme weather, reducing carbon emissions in energy systems has become an urgent issue,
attracting widespread attention from countries around the world [1,2]. Although renewable
energy sources such as wind, solar, and bioenergy have made significant progress in recent
years, their intermittency remains a major challenge [3]. For example, the actual output of
wind and solar power is difficult to accurately predict, and its randomness and volatility
lead to the inevitable abandonment of wind and solar power. Compared to reducing
redundant new energy, it is better to use new energy and convert carbon emissions from
traditional power plants into methane, thereby improving energy efficiency and enhancing
the low-carbon nature of system operation [4].

Processes 2024, 12, 1277. https://doi.org/10.3390/pr12061277 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12061277
https://doi.org/10.3390/pr12061277
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr12061277
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12061277?type=check_update&version=1


Processes 2024, 12, 1277 2 of 13

Electricity-to-gas conversion is becoming one of the most promising storage and conver-
sion solutions for renewable energy, representing an effective way to achieve a high proportion
of renewable energy consumption in some way. Electric-to-gas technology includes two
processes: hydrogen production through electrolysis of water and methane reaction. The
hydrogen produced by the electrolysis cell is provided by the remaining new energy and
transmitted to the methanation equipment [5]. Methanation devices synthesize methane
by processing hydrogen, carbon dioxide, and oxygen [6], and the resulting methane can be
introduced into existing infrastructure’s natural gas pipelines [7]. Electric-to-gas technology
plays an important role in reducing greenhouse gas emissions [8,9], promoting sustainable
economic and social development [10,11], and reducing system cost investment [12,13].

A large number of studies have emphasized the importance of developing and imple-
menting electricity-to-gas technology, which can effectively convert carbon dioxide into
methane, thereby reducing greenhouse gas emissions and carbon footprint, and providing a
core path for the transition of energy systems to renewable energy [14,15]. In addition, more
and more countries and companies are conducting roadmap and pilot projects to demon-
strate the feasibility of electric-to-gas conversion technology [16,17]. Reference [18] studied
the dynamic simulation and thermal economic analysis of power gas systems and found
that methane production increased by 42% compared to existing factories. Reference [19]
studied an energy system model that considers the dynamic operation of electric-to-gas
coupling in the gas-based sector of a de-energy center and introduced a new concept of
methanation called three-phase methanation. Reference [20] studied the dynamic operation
and cost-effectiveness of gas-fired power plants, showing a potential cost reduction of up
to 17% in the production of synthetic natural gas. Reference [21] focuses on the importance
of the kinetics of methanation reactors for the annual efficiency of electro-gas conversion
systems. Reference [22] evaluated the dynamic model of the methanation reactor, which
achieved the quality target of synthetic natural gas approximately 130 seconds after startup.

In integrated energy systems, electricity-to-gas technology often provides an effective
method for the consumption of renewable energy and load peak shaving and valley
filling [22]. Reference [23] proposed a two-layer optimization scheduling method and
explored the role of electricity-to-gas technology in improving photovoltaic consumption in
integrated energy systems. Reference [24] established a park-level comprehensive energy
system model that integrates electricity-to-gas and carbon capture and analyzed the trade-
off between renewable energy abandonment rate and carbon emissions when planning
electricity-to-gas capacity. Reference [25] considers the conversion of electricity to gas
as a renewable energy storage system and explores different optimization schemes to
improve the efficiency of integrated energy systems. In order to maximize operational
efficiency, reference [26] studied the impact of integrated energy systems under four energy
storage methods on waste rate and environmental pollution control costs. The research
results indicate that the economic benefits of the comprehensive energy system using
electric-to-gas technology are significantly improved.

The above research can make significant contributions to promoting the green and
low-carbon transformation of integrated energy systems through the use of electricity-to-
gas technology [27]. However, the above studies only used constant conversion efficiency
to characterize the energy loss of the entire electric-to-gas conversion process, without con-
sidering the coupling operation constraints of different links in different processes. Under
the actual operating conditions of the electric-to-gas conversion device, the electrolysis of
water and the methanation process are carried out separately, and hydrogen storage tanks
are configured. Some important technical issues must also be considered. For example,
the slow dynamic response characteristics and multi-mode operating states of methane
reactors. However, to our knowledge, there is currently no literature that has established an
accurate electric-to-gas model to adapt to the optimized operation of the electric hydrogen
gas thermal integrated energy system.

Based on the above analysis, in this article, we focus on the slow dynamic response
characteristics and multi-mode operation status of electric-to-gas conversion and conduct
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research on the optimization operation of comprehensive energy systems. We build an
operational model for a comprehensive energy system with the optimization objective
of minimizing the total operating cost of the system during the day ahead operation
period. We consider the slow dynamic response characteristics and multi-mode operation
states of electric-to-gas conversion and construct an electric-to-gas operation model that
considers dynamic characteristics. On this basis, we further construct an optimization
operation model for the integrated energy system and determine the operation strategy of
the integrated energy system.

2. Electric-to-Gas Operation Model Considering Dynamic Characteristics

The operational requirements of the electrolysis water and methanation subsystems
depend on the limitations of equipment operation. Generally speaking, the operating
modes of these two systems can be divided into three states: cold start, hot start, and
production state. The correlation between different working states is shown in Figure 1.
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In the cold start state, there is no natural gas production and no gas circulation. Methanation
cannot yet treat carbon dioxide. Under cold start, electrolytic water can switch to operating
mode within seconds to minutes, while methanation requires several hours of heating.

In the hot start state, no gas is produced, but all devices and media are at operating
temperature and pressure, and a mixture of hydrogen and carbon dioxide can exist in the
methane unit. The heat generated by maintaining the equipment during the hot start can
be provided through external heat sources or electricity.

During production, hydrogen gas generated by electrolysis and carbon dioxide emitted
from carbon sources are synthesized into natural gas through the methanation process.
This process requires sufficient waste heat to compensate for losses, and if necessary, it can
also dissipate heat. In addition, all media and compressors are also activated.

The changes between the states of electrolyzed water depend on the current distri-
bution of the electrical load. The minimum load and possible rate of load change for
methanation do not result in significant quality loss during the conversion process, which
is usually different from electrolyzed water. Methanation may not follow the law of elec-
trolytic hydrogen production. Therefore, if the electrical load fluctuates greatly, the two
subsystems must be decoupled and operated separately from methane. In addition, the
maximum hydrogen treatment rate of the methane reactor may be lower than the maximum
production rate of electrolytic water. Hydrogen storage systems can help maintain load
intervals and load change rates to maintain gas quality. The independent operation of each
subsystem can lead to continuous production of methane. The size of the intermediate
hydrogen storage tank needs to be optimized according to the specific situation for the
selected electric-to-gas conversion technology and operation strategy.

Formulas (1)–(3) represent the operational constraints of the AEM electrolytic cell.
Among them, constraint (1) specifies the working range of the electrolytic cell, and con-
straint (2) limits the maximum power fluctuation of the electrolytic cell. Constraint (3)
describes the power loss of the electrolytic cell during the compression process.

εelz
t Wmin

elz ≤ Pelz
t ≤ εelz

t Wmax
elz (1)

−P f luc
elz ≤ Pelz

t − Pelz
t−1 ≤ P f luc

elz (2)

Felz
t = γelzPelz

t (3)



Processes 2024, 12, 1277 4 of 13

In the formula, εelz
t is the start–stop state of the electrolytic cell; εelz

t = 1 indicates startup,
otherwise it is 0; Wmin

elz and Wmax
elz are the power consumption limits of the electrolytic cell;

Pelz
t is the power consumption of the electrolytic cell; P f luc

elz represents the power fluctuation
of the electrolytic cell; γelz and Pcp

t are the conversion coefficients and power consumption
during hydrogen production, respectively.

Formulas (4)–(9) represent the operational constraints of electric-to-gas conversion. Con-
straint (4) indicates that the methanation reaction can only be in one state at any time. Con-
straint (5) specifies the minimum duration of each state k, that is, the methanation reaction
can only enter each state l at most once within any time period [u, u + Nk,min

mr − 1], and cannot
leave that state within this time period [u, u + Nk,min

mr − 1]. Constraint (6) represents the state
transition relationship between adjacent time periods. Constraint (7) ensures that methane
cannot enter and leave the same state simultaneously. Constraint (8) establishes the relation-
ship between the cold start/hot start/production states and the entry/exit methanation state.
Constraint (9) indicates that methane can only be output in state 3. Constraint (10) indicates
the energy conversion relationship of methane.

3

∑
l=1

µmr
lt = 1, ∀t, l ∈ {1, 2, 3} (4)

 ∑u+Nk,min
mr −1

t=u Iin
kt ≤ 1

∑u+Nk,min
mr −1

t=u
(

Iin
kt + Iout

kt
)
≤ 1

∀1 ≤ u ≤ |T|+ 1 − Nk,min
mr , l ∈ {1, 2, 3}

(5)

Iout
1t + Iout

3t = Iin
2t , Iin

1t + Iin
3t = Iout

2t , ∀t (6)

Iin
kt + Iout

kt ≤ 1, ∀t, l ∈ {1, 2, 3} (7)

Iin
kt − Iout

kt = µmr
kt − µmr

kt−1, ∀t, l ∈ {1, 2, 3} (8)

µmr
3t Πmin

mr ≤ Fmr
t ≤ µmr

3t Πmax
mr , ∀t (9)

Fmr
t = 0.25ηmrFmr.H2

t (10)

In the formula, µmr
kt represents the various states of methanation during time t; T

represents the total operating time period; µmr
kt = 1 indicates that it is in state l, otherwise, it

is 0; Nk,min
mr is the minimum duration of methane formation in state l; Iin/out kt is equal to

1 if methanation enters/leaves state l during time t; Πmax/min mr is the maximum/minimum
airflow output for methane conversion; Fmr

t and Fmr.H2
t is the output and consumption of

hydrogen gas from the methane gas flow; ηmr is the efficiency of methane conversion.
Formulas (11)–(15) represent the operational constraints of the hydrogen storage tank.

Formula (11) represents the relationship between the amount of hydrogen stored and the stor-
age/release rate. The storage and release rate of hydrogen is constrained by Formulas (12)–(13).
Constraint (14) limits the amount of hydrogen stored in the storage tank. The hydrogen stored in
the final stage needs to be restored to the predetermined initial level, as shown in (15).

QHy
wt = QHy

wt−1 + Fin
wt − Fout

wt (11)

0 ≤ Fin
wt ≤ Fin

w.max (12)

0 ≤ Fout
wt ≤ Fout

w.max (13)

βminQHy
w ≤ QHy

wt ≤ QHy
w (14)

QHy
w.0 = QHy

w.T (15)
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In the formula, QHy
wt is the mass of hydrogen stored in the hydrogen storage tank;

Fin
wt and Fout

wt represent the hydrogen charging and discharging capacity of the hydrogen
storage tank; QHy

w is the upper limit of hydrogen storage capacity; βmin is the minimum
capacity coefficient of the hydrogen storage tank; Fin

w.max and Fout
w.max are the upper and lower

limits for hydrogen storage tank charging and discharging; QHy
w.0 and QHy

w.T are the hydrogen
storage capacities at the beginning and end of the hydrogen storage tank.

3. Optimization Operation Model of the Integrated Energy System

The basic structure of the integrated energy system described in this article is shown in
Figure 2. The integrated energy system interacts heterogeneous energy with the higher-level
power grid, gas network, and heating network through connecting lines, and heterogeneous
energy is converted to meet various load demands through coupling devices within the
system. The coupling equipment mainly includes gas turbines, gas boilers, and electric-
to-gas conversion. Energy storage equipment include electrochemical energy storage,
hydrogen storage tanks, and heat storage tanks. In addition, considering a high proportion
of new energy integration on the source side further enhances the low-carbon operation of
the system.
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3.1. Objective Function

With the goal of minimizing the daily operating costs of the integrated energy system,
and taking into account the new energy grid connection cost Crene, wind and solar curtail-
ment penalty cost Ccurt, superior energy grid supply cost Cenergy, and carbon emission cost
Ccarbon, the objective function is constructed. The details are as follows:

min
(
Crene + Ccurt + Cenergy + Ccarbon

)
(16)

Crene = ∑
t∈T

crenePrene.t (17)

Ccurt = ∑
t∈T

ccurtPcurt.t (18)

Cenergy = ∑
t∈T

(
cpowerPgrid.t+
cgasFgrid.t + cheat Hgrid.t

)
(19)
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Ccarbon = ∑
t∈T

cCO2

(
epowerPgrid.t+
egasFgrid.t + eheatHgrid.t

)
(20)

In the formula, crene and ccurt, respectively, represent the new energy grid price and
the penalty price for abandoning wind and solar power; cpower, cgas, and cheat, respectively,
represent the purchase price of electricity from the superior power grid, the purchase price
of gas from the superior gas network, and the purchase price of heat from the superior
heating network; cco2 is the carbon trading price; Prene.t and Pcurt.t, respectively, represent
the consumption of new energy and the amount of abandoned electricity; Pgrid.t, Fgrid.t, and
Hgrid.t, respectively, represent the purchase of electricity, gas, and heat from the higher-level
energy network; epower, egas, and eheat represent the unit carbon emissions of electricity, gas,
and heat consumed by the higher-level energy grid.

3.2. Constraint Condition

In the optimization operation model of the integrated energy system, the dynamic
operation constraint Formulas (1)–(15) for converting electricity to gas are considered.
In addition, power balance constraints, penalties for abandoning wind and solar power,
constraints on purchasing energy from higher-level energy networks, and constraints on
coupling equipment operation are also considered.

(1) Power balance constraint

Equation (21) represents electric power balance, Equation (22) represents thermal
power balance constraint, and Equations (23)–(24) represent natural gas and hydrogen
energy balance constraints, respectively.

Prene.t + Pdis.t + Pchp.t + Pg f g.t + Pgrid.t = Pelz
t + Pgrid.t + Pch.t + Pload

t (21)

Hchp.t + Hgrid.t = Hload
t (22)

Fmr
t + Fgird.t = Fload

t + Fchp.t + Fg f g.t (23)

Felz
t + Fout

t = Fin
t + Fmr.H2

t + Fload.H2
t (24)

In the formula, Pchp.t and Pgfg.t, respectively, represent the power generated by the gas
boiler and gas turbine; Fchp.t and Fgfg.t represent the gas consumption of gas boilers and
gas turbines, respectively; Pdis.t and Pch.t are the energy storage charging and discharging
powers, respectively; Pload

t is the electrical load power; Hchp.t and Hload
t , respectively, repre-

sent the heat power and heat load demand generated by the gas boiler; Floa.d.H2
t and Fload

t
represent the hydrogen load demand and heat load demand, respectively.

(2) Operational constraints of gas boilers

Equation (25) represents the power of the gas boiler, Equation (26) represents the
minimum output limit of the gas boiler, and Equation (27) represents the climbing constraint
of the gas boiler.

Hchp.t = ηchpFchp.t (25)

Fchp.min ≤ Fchp.t ≤ Fchp.max (26)

∆Hchp.min ≤ Hchp.t+1 − Hchp.t ≤ ∆Hchp.max (27)

In the formula, ηchp is the heat generation efficiency of the unit; Fchp.max and Fchp.min
are the upper and lower limits of natural gas consumption; ∆Hchp.min and Hchp.max are the
ramp-up limits for heat generation of the unit.

(3) Operational constraints of heat storage tanks

Equation (28) represents the thermal energy balance process of the heat storage tank,
Equation (29) represents the capacity constraint of the heat storage tank, the charging and
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discharging heat constraint of the heat storage tank, and Equations (30)–(32) indicate that the
hydrogen storage tank has certain capacity constraints and uphill/downhill climbing constraints.

Hstor
t+1 = Hstor

t + Hstor
ch.t − Hstor

dis.t (28)

Hstor
min ≤ Hstor

t ≤ Hstor
max (29)

0 ≤ Hstor
ch.t ≤ Hstor

ch.max (30)

0 ≤ Hstor
dis.t ≤ Hstor

dis.max (31)

∆Hstor
min ≤ Hstor

t − Hstor
t−1 ≤ ∆Hstor

max (32)

In the formula, Hstor
t is the mass of hydrogen stored in the hydrogen storage tank;

Hstor
ch. and Hstor

dis.t are the hydrogen charging and discharging capacities of the hydrogen
storage tank; Hstar min and Hstor max are the upper and lower limits of hydrogen storage
capacity; ∆Hstor max and ∆Hstor min are the ramp-up limits of hydrogen storage; Hstor

ch.max and
Hstor

dis.max are the upper and lower limits of hydrogen storage tank charging and discharging.

(4) Operational constraints of electrochemical energy storage

Equation (33) represents the power balance of electrochemical energy storage,
Equations (34) and (35) represent the state of charge constraint of electrochemical en-
ergy storage, and Equations (36) and (37) represent the charge–discharge power constraint
of electrochemical energy storage.

Pstor
t+1 = Pstor

t + Pch.t − Pdis.t (33)

Pstor
min ≤ Pstor

t ≤ Pstor
max (34)

Pstor
t=1 = Pstor

t=T (35)

Pch.min ≤ Pch.t ≤ ZchPch.max (36)

Pdis.min ≤ Pdis.t ≤ (1 − Zbat)Pdis.max (37)

In the formula, Pstor
t , P ch.t and Pdis.t, respectively, represent the electrical energy stored

in electrochemical energy storage and the charging and discharging power; Pstar max and
Pstar min are the upper and lower limits of the energy storage capacity; Pch,min, Pch,max,
Pdis.min and Pdis.max are the upper and lower limits of the electrochemical energy storage
charge and discharge power; Zbat is the charge and discharge state of electrochemical
energy storage.

(5) Gas turbine operation constraints

Equation (38) represents the power of the gas turbine, Equation (39) represents the
minimum output limit of the gas turbine, and Equation (40) represents the climbing
constraint of the gas turbine.

Pg f g.t = ηg f gFg f g.t (38)

Fg f g.min ≤ Fg f g.t ≤ Fg f g.max (39)

∆Pg f g.min ≤ Pg f g.t+1 − Pg f g.t ≤ ∆Pg f g.max (40)

In the formula, ηgfg is the power generation efficiency of the unit; Pgfg.max and Pgfg.min
are the upper and lower limits of natural gas power; ∆Pgfg.min and ∆Pgfg.max are the ramp-up
limits of the power generation of the unit.

(6) New energy reduction constraints

0 ≤ Pcurt.t ≤ Prene.t (41)

(7) Constraints on online energy purchasing by superiors

0 ≤ Pgrid.t ≤ Pgrid.max (42)
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0 ≤ Fgrid.t ≤ Fgrid.max (43)

0 ≤ Hgrid.t ≤ Hgrid.max (44)

In the formula, Pgrid.max, Fgird.max, and Hgrid.max represent the energy limits of electricity,
gas, and heat supplied by the higher-level energy grid, respectively.

4. Simulation Analysis
4.1. Basic Data

This article uses the comprehensive energy system shown in Figure 2 as an exam-
ple analysis of the integrated energy system. The installed capacity of this system is
2.5 MW for wind and solar new energy, 1.5 MW for gas boilers, 2.0 MW for gas turbines, and
3.0 MW for electric-to-gas conversion. The peak load demands for electricity, gas, hydrogen,
and heat in the system are 1.2 MW, 1.5 km3, 6 kg, and 1 MW, respectively. The equipment
capacities of electrochemical energy storage, hydrogen storage tank, and heat storage
tank are 0.8 MW, 1 kg, and 0.5 MW, respectively. epower, egas, and eheat are 0.5 tons/MW,
0.65 tons/km3, and 0.6 tons/MW, respectively. The current operating period T is 24 h; The
time interval is 1 h. The minimum duration of cold start, hot start, and production states
for the methane synthesis reaction is 4 h, 3 h, and 1 h, respectively. The airflow limitation
for methane synthesis is 0.3 km3 and 1.5 km3. The operating parameters of each coupling
equipment in the integrated energy system are given in Table 1. The source load output
curves of the system are shown in Figures 3 and 4.

Table 1. Operating parameters for integrated energy system equipment [22–24].

Symbol Numerical Value

ηgfg 0.7
ηchp 0.6
ηmr 0.65
γelz 0.77
βmin 0.2
Pgrid.max 1 MW
Fgird.max 1.3 km3

Hgrid.max 1.5 MW

∆Pgfg.min 0.5 Pgfg.min

∆Pgfg.max 0.8 Pgfg.max

Pch,min, Pdis.min 0.4 MW

Pch,max, Pdis.max 0.4 MW

∆Hstor min 0.2 ∆Hstor max

Hstor
ch.max, Hstor

dis.max 0.5 ∆Hstor max

Fchp.min 0.2Fchp.max

FIN
W.MAX, FOUT

W.MAX 0.5 QHy w

QHY
W.0, QHY

W.T 0.5 QHy w
crene,, ccurt 0.3 yuan/kW, 0.35 yuan/kW
cpower, cgas 0.4 yuan/kW, 0.68 yuan/km3

cheat 0.6 yuan/MW
cco2 100 yuan/ton
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4.2. Analysis of Operating Results

To verify the effectiveness of the model and method proposed in this article, the system
operation results under the following three scenarios were compared and analyzed.

Scenario 1: Comprehensive energy system operation strategy without considering the
slow dynamic response characteristics of electric-to-gas conversion.

Scenario 2: Comprehensive energy system operation strategy without considering the
conversion of electricity to gas energy.

Scenario 3: Comprehensive energy system operation strategy that takes into account
the slow dynamic response characteristics of electricity-to-gas conversion.

Table 2 shows the operational economic results of the different scenarios mentioned
above. From Table 2, it can be seen that Scenario 1 has the highest cost of new energy grid
connection, with the lowest penalty fees for wind and solar power abandonment, energy
supply fees for higher-level energy grids, and carbon emission fees, resulting in the lowest
daily operating cost for Scenario 1. However, for Scenario 2, which ignores the technology
of converting electricity to gas, there are high costs for abandoning wind and solar power,
providing energy to the superior energy grid, and carbon emissions, resulting in the highest
operating cost of the system in Scenario 2. This indicates that neglecting the technology of
converting electricity to gas will lead to a large-scale abandonment of wind and solar power in
the system. Purchasing a large amount of energy from the superior energy grid will increase
carbon emissions and significantly increase the operating costs of the system. The necessity
and effectiveness of considering electricity-to-gas technology in integrated energy systems
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were verified through comparative analysis of scenarios 1 and 2; that is, using electricity to gas
can help the system absorb redundant new energy, generate hydrogen and methane, supply
hydrogen and gas loads, reduce the energy consumption of the system from the superior
energy grid, and also reduce the carbon emissions of the system, promoting the green and
low-carbon economic transformation of the comprehensive energy system.

Table 2. Comparisons of operation costs of different cases (ten thousand yuan).

Scenario 1 2 3

New energy grid connection costs 0.35 0.88 0.42
Punishment fees for abandoning scenery 1.25 1.78 1.32

Energy supply cost of superior energy network 0.78 2.56 1.21
Carbon emission costs 0.05 0.09 0.07

Current operating costs 2.43 5.31 3.02

Compared to Scenario 1, the new energy grid connection cost in Scenario 3 has
decreased, while the penalty cost for abandoning wind and solar power, the energy supply
cost of the superior energy grid, and the carbon emission cost have all increased, resulting
in an increase in the operating economic cost of Scenario 3. This indicates that the slow
dynamic response characteristics of electric-to-gas conversion will have a significant impact
on the heterogeneous energy conversion of the system. Ignoring the slow dynamic response
characteristics will misjudge the new energy consumption, energy procurement, and carbon
emissions of the system, thereby affecting the economic efficiency of system operation.

Figure 5 compares the conversion of electricity to gas energy between Scenario 1 and
Scenario 3. From Figure 5, it can be seen that in Scenario 1, the electric-to-gas technology
can start and stop the synthesis of methane at all times. This is because Scenario 1 ignores
the slow dynamic response characteristics, and the cold and hot start states of the methane
reaction are not taken into account, failing to consider the duration of state transition from
shutdown to production. This will overestimate the start and stop rate of the methane
reaction, and thus overestimate the energy conversion amount of the methane reaction.
Compared to Scenario 1, Scenario 3 takes into account the slow dynamic response character-
istics, takes into account the specific duration required for methane reaction, and simulates
the transformation relationship between different states. Therefore, Scenario 3 can more
accurately simulate the operational status of the methane reaction, reasonably evaluate the
production of hydrogen and natural gas in the system, avoid misjudgment of new energy
consumption and carbon emissions, and thus overestimate the economic operation status
of the system.
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4.3. The Impact of Different Electric-to-Gas Conversion Capacities on Operating Results

Significant differences in the consumption of redundant new energy in systems with
different electric-to-gas conversion capacities will have an impact on the operational strat-
egy of the system. Therefore, this section sets four different electric-to-gas conversion
capacities, namely 1.5 MW, 3.0 MW, 4.5 MW, and 6.0 MW, to develop a comprehensive
energy system operation strategy that considers the slow dynamic response characteristics
of electric-to-gas conversion. The results are shown in Table 3 and Figure 6. The detailed
analysis is as follows:
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Table 3. Operation costs of different power-to-gas conversion capacities.

Capacity 1.5 MW 3.0 MW 4.5 MW 6.0 MW

Current operating costs 3.43 3.02 2.52 2.52
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From Table 3, it can be seen that as the capacity of electric-to-gas conversion increases,
the total operating cost of the system shows a trend of first decreasing and then remain-
ing unchanged. This indicates that increasing the capacity of electric-to-gas conversion
can reduce the operating cost of the system to a certain extent. However, if the capacity
of electric-to-gas conversion is too high, it will cause redundancy and cannot effectively
improve the operating condition of the system. The specific reason can be seen in Figure 6,
as the capacity of electric-to-gas conversion increases, the amount of redundant new energy
consumed during electric-to-gas conversion significantly increases, and the carbon emis-
sions of the system significantly decrease. However, when the electric-to-gas conversion
capacity increases to 4.5 MW, the new energy consumption and carbon emissions of the
system will no longer increase, indicating that the electric-to-gas conversion capacity has
entered a saturation period. From the above results, it can be seen that selecting the satu-
ration period capacity of electric-to-gas conversion will effectively improve the operating
cost of the system and avoid resource waste.

5. Conclusions

This article considers the slow dynamic response characteristics of electric-to-gas con-
version and constructs a multi-mode operating state model for electric-to-gas conversion.
On this basis, considering various operational constraints of the integrated energy system,
the operational strategy of the system is formulated with the goal of minimizing the total
operating cost in the past. The simulation results of the case study verified the effectiveness
of the proposed model and method and analyzed the important role of considering the
slow dynamic response characteristics of electric-to-gas conversion in reducing system op-
erating costs, effectively absorbing new energy and improving energy utilization efficiency.
The operation of the comprehensive energy source system under different electric-to-gas
operation models was compared, and considering the slow dynamic response character-
istics of electric-to-gas conversion is beneficial for promoting the green and low-carbon
transformation of the energy system.
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