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Abstract: The growing demand in industrial and biotechnological settings for more efficient enzymes
with enhanced biochemical features, particularly thermostability and thermotolerance, necessitates
a timely response. Renowned for their versatility, thermostable enzymes offer significant promise
across a range of applications, including agricultural, medicinal, and biotechnological domains. This
comprehensive review summarizes the structural attributes, catalytic mechanisms, and connection be-
tween structural configuration and functional activity of two major classes of thermostable enzymes:
α-amylases and laccases. These enzymes serve as valuable models for understanding the structural
foundation behind the thermostability of proteins. By highlighting the commercial importance of
thermostable enzymes and the interest these generate among researchers in further optimization
and innovation, this article can greatly contribute to ongoing research on thermostable enzymes
and aiding industries in optimizing production processes via immobilization, use of stabilizing
additives, chemical modification, protein engineering (directed evolution and mutagenesis), and
genetic engineering (through cloning and expression of thermostable genes). It also gives insights
to the exploration of suitable strategies and factors for enhancing thermostability like increasing
substrate affinity; introducing electrostatic, intramolecular, and intermolecular hydrophobic inter-
actions; mitigating steric hindrance; increasing flexibility of an active site; and N- and C-terminal
engineering, thus resulting in heightened multipronged stability and notable enhancements in the
enzymes’ industrial applicability.
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1. Introduction

The enduring significance of thermostable enzymes stems from their diverse applica-
tions across various industries, including food, pharmaceuticals, and biotechnology [1,2].
In the realm of industrial biocatalysis, enzymes face stringent demands, necessitating robust
and thermostable biocatalysts to meet high industrial standards. Enzymes characterized
as thermostable possess intrinsic stability, enabling them to endure elevated temperatures
well beyond 50 ◦C, reaching as high as 80 ◦C, 90 ◦C, or even more in bacteria, fungi, and
plants [3,4], contrary to human enzymes having an optimal temperature of ~37 ◦C. The
thermostable enzymes maintain their structural integrity and distinctive features under
such extreme conditions. This inherent stability provides significant biotechnological ad-
vantages compared to mesophilic enzymes (functioning at their best between 25 and 50 ◦C)
or psychrophilic enzymes (ideally active between 5 and 25 ◦C). Besides being widespread
in plants, animals, fungi [5–7], and unicellular eukaryotes like eubacteria and archaea,
‘Dictyo-type’ α-amylase is also reported to be ubiquitous and may be an ancestor of the
Unikonts, a clade that includes amoebozoa, fungi (Opisthokonts), and animals. The ac-
tivity of α-amylase has been observed to be associated with neurological conditions like
Alzheimer’s. Studies also show that α-amylase synthesis is linked with mTOR (Mechanical
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Target of Rapamycin) signaling pathways [8]. mTOR serves as a key regulator of cellular
growth by controlling both anabolic and catabolic processes [9,10]. The widespread occur-
rence of laccases in fungi, bacteria, animals, plants, and insects highlight varying biological
importance of laccases like lignification in plants and delignification in fungi and bacteria.

Thermostable enzymes are more easily purified through heat treatment (as one of the
initial steps) [11], exhibit increased resilience and resistance to chemical denaturants, permit
elevated levels of substrate concentrations, aid in reducing viscosity, provide less chances
of microbial contamination, and frequently cause greater rates of reaction [3]. This height-
ened stability allows them to thrive in harsh environments, including applications like the
enzymatic bioremediation of xenobiotics and innovative green processes [12]. The demand
for industrially relevant thermostable enzymes has created a critical requirement to identify
easily accessible, economical, and feasible sources. This review is motivated by the rapid
strides in discovering novel thermostable enzymes from unconventional sources. Among
these enzymes, α-amylases and laccases stand out as crucial players in industries such as
pulp and paper, starch processing, textiles, detergents, fuels, alcohols, and pharmaceuticals,
constituting the major consumers of these thermostable enzymes [13]. The use of laccases
and their potential expansion in industrial sectors are evident in several process patents un-
der various trade names like DeniliteTM, Zylite, Novozyme® 51,003, Suberase®, MatZyme®

LIGNOTM, etc. [14–17]. Thus, laccases show great promise as a replacement for traditional
chemical processes in various industries including pulp and paper, textiles, bioremediation,
pharmaceuticals, and nanobiotechnology [18–23]. α-Amylase patents distributed across
different categories, in biofuels, beverages, pharmaceuticals, detergents, food, animal feed,
and textiles, were found to be deposited in intellectual property databases [24].

Another dimension of the profound interest in thermostable enzymes lies in the ex-
ploration of the thermodynamic stability of proteins [25–27]. Investigating how catalytic
efficiency, stability, and flexibility interact with each other adds a layer of understanding
to these enzymes’ properties. The heightened interest in thermostable enzymes has cat-
alyzed a focus on developing enzymes with enhanced thermostability or thermotolerance
through genetic engineering or site-directed mutagenesis, revolutionizing the attainment
of desired enzyme properties [28,29]. The preference for enzymatic processes, particu-
larly thermostable ones, over conventional methods in various industries is attributed to
their rapid and specific action, along with advantages in energy, time, raw material, and
chemical savings [30]. Crucially, their environmentally friendly nature further underscores
their appeal, especially being used as detergent additives [31–33], textile de-sizers [34],
starch and food processing [35–37] treatment of agricultural residues [36], detoxification of
phenolic inhibitors in lignocellulosic biomass [38,39], and decolorization and detoxification
of synthetic dyes [40–46]. Moreover, conducting processes at elevated temperatures using
thermostable enzymes not only diminishes the threat of microbial contamination, a notable
advantage, but also serves to lower substrate viscosity, enhance transfer rates, and augment
solubility in the course of reaction procedures [4].

Thermostable enzymes, beyond their inherent thermostability, exhibit favorable char-
acteristics such as a wide pH tolerance and resistance to organic solvents, positioning them
as superior to other enzyme groups [2,11,19]. This underscores the need for continued
efforts in screening and isolating novel sources, developing innovative purification ap-
proaches to enhance yield and purity, and ultimately harnessing thermostable enzymes
for diverse industrial applications [4,46]. The present review article is an effort to address
thermostable α-amylases and laccases, indicating their varied sources of origin, structural
characteristics and catalytic mechanism, and structure–function relationships as well as
factors and strategies attributing to thermostability. Additionally, this review focuses on the
prevailing challenges that exist in the field of thermostable enzymes, offering suggestions
for further study and developments for the future of thermostable enzymes.
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2. Thermostable α-Amylases
2.1. An Overview

Thermostable α-amylases, constituting the largest share of industrial enzyme sales
(approximately 25%), play a pivotal role in a variety of sectors such as food, detergent,
textile, fermentation, brewing, biorefinery, paper, and therapeutic industries [13,47], also
being illustrated in Figure 1 and listed in Table 1. Particularly crucial in starch liquefaction
processes, these enzymes serve as valuable models for studying thermal adaptation in
proteins [30]. Widely distributed in nature, α-amylases originate from various sources,
including microbes, animals, and plants, with a notable presence in germinating seeds
where they contribute significantly to carbohydrate metabolism [48,49].
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Table 1. Commercially available α-amylases and their industrial applications.

Sources of α-Amylases Commercial Name of
α-Amylase Manufacturer Industrial Applications

Aspergillus oryzae Fructamyl® FHT
Erbslöh

Geisenheim AG Beverage industry

Bacillus licheniformis Liquozyme® SC DC Novozymes Liquefaction for ethanol production

Bacillus amyloliquefaciens BAN® Novozymes Oat starch liquefaction

Bacillus licheniformis Termamyl® Novozymes Adjunct liquefaction

Aspergillus oryzae Fungamyl Novozymes Baking

Bacillus subtilis Validase BAA IMCD Germany Food and feed

Bacillus subtilis ZylozymeTM AA Kemin Industries Biofuel

Bacillus licheniformis Bioconvert ALKA Noor Enzymes Biofuel

Genetically modified microorganism Stainzyme® Plus Evity® 48 T Novozymes Detergent

Genetically modified microorganism Aquazym® Novozymes Textile

Listed are commercial α-amylases, each derived from specific microbial sources, offering various industrial
purposes.

Established in 1998, the CAZy Carbohydrate-Active Enzymes (CAZymes) offer users
online access (http://www.cazy.org, accessed on 17 June 2024) that is updated on a regular
basis to a sequence-oriented family categorization [50]. This database connects sequences
to the three-dimensional structures and specificities of enzymes involved in oligo- and
polysaccharide construction, modification, and destruction [51]. The enzymes that are
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currently covered in the CAZy database that facilitate the biosynthesis, degradation, or
alteration of glycoconjugates and carbohydrates are

(a) Glycosyl Hydrolases (GHs): glycosidic bond hydrolysis and/or rearrangement.
(b) Glycosyl Transferases (GTs): glycosidic bond formation.
(c) Polysaccharide Lyases (PLs): glycosidic bond non-hydrolytic cleavage.
(d) Carbohydrate Esterases (CEs): carbohydrate esters’ hydrolysis.
(e) Auxiliary Activities (AAs): redox enzymes that function in tandem with CAZymes.

The CAZy classification system has grown significantly in recent years, including the
introduction of new families and the establishment of subfamilies within existing ones [52].
Currently, out of the 189 class glycoside hydrolase (GH) families in total, 4 are considered
α-amylase families [53], described here as follows:

(i) GH13—proven to be the most abundant and largest α-amylase family composed of a
(β/α)8 barrel structure;

(ii) GH57—the second and smaller member of the α-amylase family composed of a (β/α)7
barrel structure;

(iii) GH119—a little family associated with GH57;
(iv) GH126—composed of a (α/α)6 barrel structure.

The α-retaining mechanism of α-amylase is utilized by the families GH13, GH57, and
GH119. It involves two catalytic residues in the active site: an aspartate and a glutamic
acid/base catalyst. The aspartate retains the nucleophile and the anomeric carbon in the
same position, because it is mediated by the double-displacement mechanism. In contrast,
GH126 employs the inverting reaction mechanism in which an anomeric carbon position
is shifted from β to α through a single-displacement mechanism [54]. There are currently
47 subfamilies within the α-amylase family GH13, and more subfamilies are continuously
arising. Since nature sometimes fails to give enzymes the appropriate and ideal character-
istics, the engineering of proteins has been suggested as a suitable technique to improve
the enzymes’ physical and chemical characteristics [55]. The structure-driven consensus
method is acknowledged as a reliable and efficient way to refine the characteristics of
enzymes by using solved crystal structures [56]. Employing this approach to enhance the
thermostability of α-amylase without additional Ca2+ would increase effectiveness of the
process and lower the cost of starch liquefaction processes [57,58]. On the other hand, this
needs sufficient structural information to direct the alterations in addition to a starting
enzyme. In the related efforts, through their experimental observations, Li and co-workers
showed that malto-hexaose-forming forming α-amylase from Bacillus stearothermophilus
(AmyMH) is a suitable beginning point for designing a more thermostable α-amylase
without the need for additional Ca2+ [56]. In the past, efforts to improve the thermostability
of different bacterial α-amylases have focused on a loop located in domain B. Suzuki and
co-workers suggested to remove the analogous loop formed by R176-G177 (according to
Bacillus amyloliquefaciens α-amylase (BAA) numbering), stating that it could substantially
improve BAA thermostability [59]. A number of additional bacterial α-amylases from
various species have reproduced this picture, with a comparable increase in thermostabil-
ity [60,61]. Furthermore, the enhanced thermostability of Bacillus licheniformis α-amylase
(BLA) was achieved by removing amide-containing side chains through the mutation of
N190F (according to BLA numbering) [62].

Despite the escalating demand for thermostable enzymes in multiple industries, the
production and properties of α-amylases have been restricted by their susceptibility to ex-
tremes of pH, temperature, external conditions, and catalytic efficiency [63,64]. In this context,
thermostable enzymes play a critical role in withstanding the high temperatures inherent in
industrial processes [47]. Microbial sources—fungi and bacteria, in particular, especially those
in the Bacillus genus, such as B. licheniformis [31,65,66], B. amyloliquefaciens [67], B. subtilis [68],
B. cereus [69], B. tequilensis [70], and B. stearothermophilus [56,71]—are frequently chosen for
industrial applications because of their affordability, consistency, and ease of optimizing and
modifying the process. Other bacterial and fungal sources reported for varied industrial appli-
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cations are Actinomadura keratinilytica [72], Aeribacillus pallidus [73], Anoxybacillus vranjensis [2],
Chromohalobacter sp. [74], Geobacillus thermoleovorans [75], Paecilomyces variotii [6], etc.

The ongoing quest for novel thermostable α-amylases has extended to plant sources,
seeking alternatives that meet the standards set by microbial sources. Reports of ther-
mostable α-amylases have emerged from plant sources cultivated in local areas, including
sword bean (70 ◦C, [76]), broad bean (65 ◦C, [49]), potato tuber (60 ◦C, [77]), red pitaya
peel (70 ◦C, [78]), radish (60 ◦C, [79]), wheat (68 ◦C, [56]), soyabean seeds (70 ◦C, [30]), and
mung bean (65 ◦C, [80]). Some sources of thermostable α-amylases and their respective
industrial applications are listed in Table 2.

Table 2. Sources of thermostable α-amylases.

Source of α-Amylases Optimum Temperature Industrial Applications References

Actinomadura keratinilytica sp. Cpt29 70 ◦C Laundry detergent additive [72]

Aeribacillus pallidus BTPS-2 70 ◦C Starch liquefaction [73]

Anoxybacillus vranjensis ST4 60–80 ◦C Starch hydrolysis [2]

Bacillus amyloliquefaciens BH072 60 ◦C Food processing [67]

Bacillus cereus SP-CH11 65 ◦C Food processing [69]

Bacillus licheniformis AT70 60 ◦C Starch degradation [65]

Bacillus licheniformis NH1 strain 70 ◦C Laundry detergent additive [81]

Bacillus licheniformis So-B3 70 ◦C Hydrolyzing raw starch [66]

Bacillus sp. isolate A3-15 100 ◦C Textile industry [34]

Bacillus tequilensis TB5 60 ◦C Textile de-sizer [70]

Chromohalobacter sp. TVSP 101 65 ◦C Starch hydrolysis [74]

Geobacillus thermoleovorans 80 ◦C Improvement in washing efficiency of detergents [75]

Germinated wheat seeds
(Triticum aestivum) 68 ◦C Starch processing [35]

Haloterrigena turkmenica 55 ◦C Agricultural residue treatment [36]

Paecilomyces variotii 60 ◦C Starch degradation [6]

Rhizomucor miehei 75 ◦C Food processing [37]

Soybean (Glycine max) seeds 75 ◦C Starch liquefaction [30]

Tepidimonas fonticaldi strain HB23 80 ◦C Laundry detergent additive [33]

Thermomyces dupontii 60 ◦C Maltose syrup production [7]

Listed are sources of α-amylases from different microbes with their optimum temperature, which can be useful in
the industrial purposes.

2.2. Structural Features and Mechanism of Action of α-Amylases

The structure of α-amylase is composed of a single polypeptide chain folded into three
independent domains (Figure 2, [27]) described as follows:

(a) Domain A is the catalytic domain that is identified by an N-terminal (β/α)8 barrel,
which is also referred to as a TIM barrel. This structure consists of eight parallel
β-strands forming a barrel shape surrounded by eight α-helices.

(b) Domain B, which makes up a large part of the substrate binding cleft, has an irregular
β-rich structure, responsible for notable variations in size, structure, and substrate
specificity among different α-amylases.

(c) Domain C, which makes up the C-terminal portion of the sequence [82–84].

After the C-domain, some maltogenic amylases exhibit an additional D-domain, the
purpose of which remains unknown yet [85].
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(TASKA, PDB 5A2A [27]) showing a single polypeptide chain folding with the relative positions of
the three structural domains: (a) domain A, the catalytic domain; (b) domain B that constitutes a
significant portion of the substrate binding cleft, responsible for notable variations in size, structure,
and substrate specificity among different α-amylases; and (c) domain C, forming the C-terminal
segment of the sequence. Domains A, B, and C are shown in green, orange, and blue, respectively,
and the calcium ions in magenta.

The α-amylases (α-1,4-glucan-4-glucanohydrolase, EC 3.2.1.1) are classified as en-
dozymes in the Glycosyl Hydrolase (GH13) family based on their catalytic mechanism.
They form bonds between internal α-glycosidic linkages in polysaccharides including
glycogen, starch, and others, causing these bonds to hydrolyze and produce α-anomeric
mono- or oligosaccharides [86], as depicted in Figure 3 [87]. α-Amylases in plants are vital
for the breakdown of starch contained in sprouting seeds, releasing sugars required for
healthy growth of the plant [88]. Maltogenic amylases demonstrate exceptional diversity in
catalysis, as they can hydrolyze both α-D-(1,4)- and α-D-(1,6)-glycosidic linkages and take
part in transglycosylation processes. This involves the transfer of the glycosyl units to the
C3, C4, or C6 hydroxyl groups of various acceptor mono- or disaccharides, in contrast to
many other amylases that are limited to hydrolyzing α-D-(1,4)-glycosidic bonds [89].

Nearly every known α-amylase, with very few exceptions, has structural stability,
which is linked to the existence of a calcium ion at the interface between domains A
and B. This stability is disrupted when the calcium ion is removed, which causes a no-
ticeable decline in catalytic activity. A prominent illustration of this phenomenon is the
α-amylase from Bacillus licheniformis (BLA), a hyperthermostable enzyme extensively uti-
lized in biotechnology for starch and complex carbohydrate breakdown at temperatures
reaching 110 ◦C, and also serving as a crucial component in detergents and baking addi-
tives [90]. Elucidating the structure of BLA, when it contains metals, with comparisons
to the calcium-depleted form (apo-enzyme), has provided insights into how metal ions
regulate enzyme activity. Research has shown that the stability of BLA is dramatically
decreased when calcium chelators are added [91,92], resulting in a heightened susceptibility
to proteolysis [93]. This serves as compelling evidence of the indispensable stabilizing role
played by the calcium ion. As a result, it is suggested that α-amylases represent a new class
of metallo-enzymes that are identified by an alkaline-earth metal prosthetic group—rather
than a transition element. The main function of the group is structural, similar to disulfide
bridges [94]. Because they are positioned too far away from the active site to be directly
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involved in catalysis, calcium ions are thought to contribute structurally [95–97]. The
increased thermostability of the enzyme, attributed to calcium ions, is explained by their
salting-out effect on hydrophobic residues within the protein, inducing a more compact
structural conformation [98]. A chloride ion at the active site of some α-amylases increases
catalytic performance by bringing about modifications in conformation surrounding the
active site and potentially by raising the pKa (acid dissociation constant) of a residue in the
active site that donates hydrogen.
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Figure 3. An illustration depicting the chemical structure of starch (comprising amylose and amy-
lopectin) and the enzymatic conversion into sugar units [87]. The catalytic mechanism of α-amylases
involves the internal α-glycosidic bond cleavage in polysaccharides like starch, glycogen, and others,
leading to the hydrolysis of these bonds and the production of α-anomeric mono- or oligosaccharides.

2.3. Factors Contributing to Stability in Thermostable α-Amylases

Multiple factors contribute to thermostability, like increased hydrogen bonding, hy-
drophobic interactions, ionic and electrostatic interactions, disulfide bonds, metal bind-
ing, salt bridges, ion pairs, aromatic clusters, sidechain–sidechain interactions, shorter
surface loops, GC-rich codons, charged amino acid ratios, preferences for amino acids,
post-translational changes, and accumulation of solutes [99]. Thermophilic proteins are
characterized by more rigid and compact packing density, lower thermal motion, de-
creased flexibility, shorter surface loops, stabilization by heat-stable chaperones, reduced
water-accessible hydrophobic surface, decreased entropy difference between folded and un-
folded states, increased proline frequency, and decreased thermolabile residue occurrence
compared to mesophilic counterparts [30,99].

In terms of industrial applications, enzyme stability is crucial, with a focus on ther-
modynamic and long-term stability. Numerous techniques to improve stability such as
immobilization, modifying chemicals, stabilizing additives, and expressing thermostable α-
amylase genes through cloning, protein, and genetic engineering have been explored. Site-
directed mutagenesis and the revolutionary approach of directed evolution have emerged
as promising strategies for thermostabilization [100,101]. Economic considerations in starch
processing industries drive the need for α-amylases active at higher temperatures, and with
continued study, the emphasis has changed from engineering for stability to engineering
for substrate specificity and pH activity, leading to the creation of novel and enhanced
features in α-amylases.

Calcium ions are essential for determining the stability, functionality, and structure
of thermophilic α-amylases, providing resistance or tolerance to thermal inactivation by
maintaining correct protein conformation [102–105]. The elimination of calcium ions ir-
reversibly inactivates barley α-amylase, while calcium ion addition restores activity in
certain bacterial α-amylases [106]. With a few Ca2+-independent exceptions, the majority
of α-amylases are Ca2+-dependent [31,107–109] and also, some α-amylases are inhibited by
Ca2+ [110,111]. Because of the distance between their catalytic centers and calcium-binding
locations, α-amylases primarily have a structural role [97,98]. Numerous investigations
have been conducted regarding the impact of calcium ions on the stability and activity of
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α-amylases derived from thermophiles, which may help in determining the mechanism of
Ca2+-binding proteins in the presence of an extreme thermal environment as was inves-
tigated by Liao and co-workers, in which they studied the effect of calcium ions on the
thermal characteristics and structure of thermophilic Anoxybacillus sp. GXS-BL α-amylase
(AGXA) [112].

3. Thermostable Laccases
3.1. An Overview

Laccases are recognized as environmentally friendly proteins and green biocatalysts,
setting them apart from other oxidases [46]. Unlike certain oxidases, laccases do not depend
on toxic H2O2 or any mediator for the reduction reaction, and by reducing molecular
oxygen, they only produce water as the final product. These glycoproteins may oxidize
a broad variety of inorganic substrates, and exist in monomeric, dimeric, and tetrameric
forms, displaying the ability to oxidize a variety of organic, inorganic, and aromatic
compounds. Laccase is a versatile enzyme that is mostly used to breakdown chemical
pollutants due to its low selectivity for substrates and ability to monoelectronically oxidize
substrates in a variety of complexes [71]. Although laccase effectively degrades emerging
contaminants [113–116], its application on a large scale necessitates features like reusability,
thermostability, and operational stability. Achieving these characteristics often involves
techniques such as immobilization and the production or isolation of robust laccase variants
with desired attributes.

Laccase, also known as benzenediol/oxygen oxidoreductase (EC 1.10.3.2), is an es-
sential enzyme involved in diverse biological processes. This copper-containing enzyme
serves as a catalyst to oxidize a variety of inorganic and organic compounds, allowing
oxygen molecules to be reduced and water to be produced as a byproduct. Its versatility
in mediating oxidative reactions has sparked considerable interest in scientific research
and industrial applications across various fields, including biotechnology, environmental
science, and agriculture (Figure 4). In this context, there is a pressing need to delve deeper
into the properties, functions, and applications of laccase, exploring its significance in
different domains.
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In nature, laccase is widely distributed and can be found in fungi, bacteria, plants,
animals, and insects. This widespread occurrence underscores the fundamental importance
of laccase in nature and its relevance in various biological and ecological contexts [117].
The diverse functions of laccases are contingent upon their source organism; they support
a variety of biological processes, like synthesis of endospore coat proteins, production
of melanin, degradation of lignin, pigmentation, formation of fruiting bodies, fungal
morphogenesis, fungal pathogenesis, fungal morphogenesis, lignification, detoxification,
wound healing, sporulation, and iron oxidation in plants [118–123]. Thermostable laccases
are advantageous for the eco-friendly remediation of hazardous synthetic dyes [124],
particularly in the treatment of high-temperature dyeing wastewater. Table 3 lists some
commercially available laccases with their industrial applications.

Table 3. Commercially available laccases and their industrial applications.

Source of Laccases Commercial Name of Laccase Manufacturer Industrial
Applications

Myceliophthora thermophila laccase
expressed in Aspergillus oryzae

Denilite™ I
Denilite™ II

Novozymes [17]
Novozymes

Zylite Zytex Biotech Private Limited [17] Textile
Ecostone LC10 AB Enzymes GmbH

IndiStar Genencor International Inc.
Novoprime Base 268 Novozymes [125]

Primagreen Ecofade LT100 Genencor International Inc. [126]
Novozym® 51,003 Novozymes [15]

White-rot fungi (Phanerochaete
chrysosporium, Trametes versicolor)

Lignozym® Process Laccase Y120
Novozym® 51,003

IBB Netzwerk GmbH [127]
Amano Enzyme [128]

Novozymes [15]

Paper
Food processing

Filamentous fungi and yeasts Suberase® Novozymes [14] Brewing

Genetically engineered bacterial
laccase MetZyme® LIGNO™ MetZen [16] Bio-refinery

Examples of laccase sources reported from bacteria include Azospirillum lipoferum [129],
Anabaena azollae [130], Bacillus subtilis [131], Streptomyces cyaneus [132], S. lavendulae [133],
and Marinomonas mediterranea [134]. Ascomycetes, basidiomycetes, and deuteromycetes are
the fungal taxa that contain laccases. These include species like Trametes hirsute, T. ochracea,
T. villosa, T. gallica, Cerrena maxima, Lentinus tigrinus, Phlebia radiata, Coriolopsis polyzona,
Pleurotus eryngii, Thelephora terrestris, Myceliophthora thermophila, Russula delica, Aspergillus,
Marasmius, Agaricus, Tricholoma, Penicillium, Volvariella, Curvularia, Chaetomium thermophile,
Lactarius piperatus, Mycelia sterlia, and Cantharellus cibarius [83].

Bacterial laccases are more active and stable at high pH levels, rising temperatures,
and high concentrations of copper and chloride ions than fungal laccases [135–137]. There
also have been reports of laccases in a variety of plants, such as Pinus taeda, Rhus vernicifera,
Liriodendron tulipifera, Zinnia elegans, Populus trichocarpa, Acer pseudoplatanus, Nicotiana
tabacum, Zinnia elegans, Leucaena leucocephala, Carica papaya, Lolium perenne, Zea mays, etc.
Plant laccases generally exhibit a higher molecular mass compared to fungal laccases,
attributed to the increased glycosylation in plant laccases (22–45%) compared to fungal
counterparts (10–25%) [138]. Glycosylation significantly influences various aspects of
laccase functionality, including copper retention, thermal stability, and enzymatic activity.
Some sources of thermostable laccases with industrial applications are listed in Table 4.
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Table 4. Sources of thermostable laccases.

Source of Laccases Optimum
Temperature Industrial Applications References

Agaricus bisporus CU13 55 ◦C Decolorization of synthetic dyes [42]

Alcaligenes faecalis XF1 80 ◦C Decolorization of synthetic dyes [43]

Azospirillum lipoferum 70 ◦C Ecological role in the process of root
colonization [117]

Bacillus altitudinis SL7 55 ◦C Bioremediation of lignin contaminated
wastewater from pulp and paper industries [23]

Bacillus sp. MSK-01 75 ◦C Proposed as an anti-proliferative agent to
cancer cells [139]

Bacillus sp. PC-3 60 ◦C Functionalization of chitosan film for
antimicrobial activity [21,22]

Bacillus subtilis 60 ◦C Biodegradation of the fungicide [113]

Bacillus subtilis strain R5 55 ◦C Degradation of synthetic dyes [68]

Caldalkalibacillus thermarum
TA2.A1 70 ◦C Lignin degradation [140]

Coprinopsis cinerea 70 ◦C Wastewater treatment [114]

Enterobacter sp. AI1 60 ◦C Degradation and detoxification of synthetic
dyes [32]

Galerina sp. HC1 60 ◦C Demethylation of lignin [141]

Ganoderma lucidum KMK2 60 ◦C Decolorization of reactive dyes [44]

Ganoderma multipileum 70 ◦C Biodegradation of chromium [115]

Geobacillus stearothermophilus MB600 90 ◦C Biodegradation of pollutants [71]

Geobacillus yumthangensis 60 ◦C Degradation of organic pollutants [22]

Klebsiella pneumoniae 70 ◦C Decolorization of synthetic dyes [40]

Lactobacillus plantarum J16 CECT 8944 60 ◦C Eliminating toxic compounds present in
fermented food and beverages [116]

Litopenaeus vannamei >90 ◦C Marine bioremediation [1]

Lysinibacillus fusiformis 80 ◦C Removal of sulfonamides and tetracycline
residues [20]

Setosphearia turcica 60 ◦C Decolorization of malachite green [41]

Staphylococcus haemolyticus 60 ◦C Textile finishing [19]

Streptomyces ipomoeae CECT 3341 60 ± 6 ◦C Decolorization and detoxification of textile
dyes [39]

Thermobaculum terrenum 80 ◦C Protein engineering studies [26]

Thermus sp. 2.9 70 ◦C Delignification of Eucalyptus biomass [142]

Trametes maxima IIPLC-32 50–70 ◦C Detoxification of phenolic inhibitors in
lignocellulosic biomass [38]

Trametes orientalis 80 ◦C Decolorization and bioremediation of
synthetic dyes [45]

Trametes trogii 70 ◦C Modification of kraft lignin [18]

Leucaena leucocephala 80 ◦C Decolorization of synthetic dyes [143]

Carica papaya 70 ◦C Dye decolorization [11]

Listed are sources of laccases from diverse microbes with specific optimal temperatures, which are proven to be
useful in industrial applications.
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Laccase has gained attention for its versatile applications in biotechnological fields,
including biobleaching, ethanol production, modification of biopolymers, decolorization of
dyes, food processing, biopulping, development of biosensors, degradation of xenobiotics,
and synthesis of drugs and organic compounds, among others [144]. However, a common
challenge with many isolated laccases is their relatively low enzyme activity yield and
susceptibility to harsh environmental conditions such as pH, temperature, and metal ions.
These limitations can impede their extensive use in significant industrial and commercial
applications. Addressing these challenges, thermal tolerance emerges as a crucial attribute.
Thermostable laccases not only facilitate enzyme reactions at elevated temperatures with
increased prevalence but also help in reducing the chance of contamination from microbes.
They are particularly valuable in applications such as pulp biobleaching and colored
industrial wastewater treatment. Most thermophilic fungi and bacteria have been observed
to produce thermostable laccases. Numerous approaches are currently under investigation
to enhance laccase activity and mitigate thermal enzyme inactivation. While common
strategies involve chemical alterations and the immobilization of enzymes on solid surfaces,
the methods frequently pose challenges in terms of synthetic complexity and sustainability,
leading to high costs.

3.2. Structural Characteristics and Catalytic Mechanism of Laccases

The majority of laccases found in fungi, bacteria, and plants have three sequentially
placed domains similar to cupredoxin (domain 1, 2, and 3) [144], as depicted in Figure 5 [25].
Domain 2 is responsible for connecting and arranging domains 1 and 3, and at the interface
where domains 1 and 3 meet, a trinuclear cluster (TNC) is created. Laccases are copper-
containing glycoproteins, and can be found in either dimeric or tetrameric forms, having
four copper atoms in each monomer. Type-1 (blue copper center), type-2 (normal copper),
and type-3 (coupled binuclear copper centers) are the three different groups of copper sites
found in laccases [145,146], each exhibiting distinctive signals of electronic paramagnetic
resonance (EPR).
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domains 1 and 3. Domain 1, 2, and 3 are depicted in red, blue, and green.

When two histidines, one cysteine, and one methionine combine together as ligands,
type-1 copper centers impart a deep blue color with a strong electronic absorption band near
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600 nm (ε = 5000 M−1 cm−1). However, certain laccases, like the ‘white laccase’ in Pleurotus
ostreatus or ‘yellow laccases’, exhibit variations in absorption due to altered oxidation states
or the presence of additional elements [147,148]. Coordinated by two histidines and one
water molecule, type-2 copper is usually found close to type-3 copper and does not exhibit
a visible light spectrum. Three histidines and a hydroxyl bridge coordinate together with
type-3 copper, which exhibits electron absorption at 330 nm. Laccases are categorized
into low redox potential (bacteria and plants) and high redox potential (basidiomycetes,
particularly white-rot fungi) groups based on the structure and characteristics of these
copper centers, influencing their suitability for diverse applications.

The dispersed copper atoms over three different sites are essential to catalytic activity
of laccase (Figure 6). Three key steps characterize catalysis by laccase [149].

1. Type-1 Reduction of Copper by Reducing Substrate: Laccase initiates the reaction by
accepting electrons from the substrate, reducing the type-1 copper center.

2. Internal Electron Transfer: A trinuclear cluster is formed when electrons are trans-
ferred from type-1 to type-2 and type-3 copper centers, forming a trinuclear cluster.

3. Oxygen Reduction to Water: The catalytic cycle is completed when the trinuclear
copper cluster reduces molecular oxygen to produce water.

The overall reaction for laccase catalysis can be summarized as

4RH + O2 → 4R• + 2H2O (1)

Here, RH represents the substrate molecules, and laccase oxidizes these substrates
(4RH), generating free radicals (4R•) and reducing molecular oxygen (O2) to water (2H2O).
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Figure 6. An illustration representing the catalytic mechanism of action of laccases, the substrate-
induced decrease in T1 copper, after which the electrons are transferred to the TNC and subsequent
reduction of O2 occurs (adapted from [149,150]). As an electron acceptor, mononuclear copper
T1 oxidizes the substrate in the initial phase, converting Cu2+ to the Cu+ oxidation state. After
the removal of an electron from the substrate, an unstable cationic radical is produced, which is
oxidized by a second enzymatic reaction or undergoes non-enzymatic reactions, such as hydration or
polymerization. The electrons removed from the substrate at the T1 site are transferred to the T2/T3
center for the conversion of O2 to H2O. Four molecules of the reducing substrate are needed for the
complete reduction of molecular oxygen to water. Thus, the stoichiometry of the enzymatic reaction
of the catalytic mechanism of laccases is represented by the equation 4RH + O2 → 4R + 2H2O, where
RH signifies the substrate.
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This underscores laccases’ pivotal role in generating free radicals for diverse reactions,
including polymerization. Certain low-molecular-weight substances that act as redox
mediators, for example, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), abbreviated
as ABTS; violuric acid, 1-hydroxybenzotriazole (HBT); 2,2,6,6,-tetramethyl-1-piperidinyloxy
free radical (TEMPO), etc., can increase the oxidative potential of laccases. It has been
demonstrated that combining laccases with the above-stated compounds to create ‘laccase-
mediator systems’ greatly expands the substrate range of the enzymes and increases their
effectiveness in oxidizing resistant molecules or complex polymers [150].

3.3. Structure–Function Relationship among Laccases

Laccases are widely used in industries and exhibit diversity in their function, as seen
by their ability to catalyze the oxidation of diverse compounds. Among their diverse
functions, lignification and delignification stand out as particularly significant because they
are involved in a number of industrial processes such as the production of pulp and paper,
production of biofuels, biobleaching, bioenergy production, conversion of biomass, and
removal of pollutants from the environment. The polymerization and depolymerization
of lignin, wound healing, pigmentation, fruiting body creation, fungal pathogenesis, scle-
rotization, morphogenesis, sporulation, melanin generation, and endospore coat protein
synthesis are additional applications that laccases are involved in [144,151,152].

Plant lignification involves the polymerization of monolignols through dehydrogena-
tion, which is aided by enzymes including laccases found in the cell wall. Experiments
show that laccases from different plant species effectively oxidize monolignols, helping
in the synthesis of a dehydrogenative polymer [153–155]. Laccase expression, mainly in
the secondary xylem, has been reported in trees like Populus trichocarpa and Pinus taeda,
suggesting involvement in plant lignin biosynthesis. Plant transformation studies using
laccase gene constructs further support this involvement [156–158]. In fungi, laccases
mediate lignin biodegradation, breaking down the lignin polymer through oxidative pro-
cesses, releasing phenolic compounds [159]. Some reports of bacteria involved in lignin
degradation have also been made [140,142].

Plant and fungal laccases have a wide range of physicochemical, functional, and
phylogenetic diversity, despite having a comparable molecular architecture [144,160,161].
Fungal laccases are engaged in the breakdown or depolymerization of lignin, whereas
plant laccases are involved in lignin biosynthesis. The redox potential of laccase is crucial,
with fungal laccases (higher redox potential) being capable of influencing both phenolic
and non-phenolic subunits, contributing to the degradation of lignin. Plant laccases, with
a lower redox potential, are capable of lignin polymerization by facilitating the phenoxy
radical coupling [162].

pH dependence of fungal and plant laccases is proposed as a factor influencing their
dual role in lignin degradation or synthesis [163,164]. Fungal laccases typically have low
pH optima and hence they are suited to acidic growing conditions, while plant laccases
are intracellular and hence have pH optima closer to the physiological range. The dual
role of laccases may be linked to these variations in pH optima. According to Hakulinen
and co-workers, roles of Melanocarpus albomyces and T. versicolor laccases in lignification
and delignification, respectively, may be due to structural variations at the C-terminal
ends [165].

The dual activity of laccases in lignification and delignification is proposed to be based
on their three-dimensional structure, which modifies the microenvironment at the active
site of an enzyme. Structural distinctions in the C-terminal region have been reported,
contributing to the role of laccases in lignification and delignification. Computational
studies using bioinformatic tools have provided insights into the molecular underpinnings
of lignin biosynthesis and breakdown, providing important insights for future plans seeking
to alter the structure of laccase in fungi and plants to enhance the biodegradability and
biosynthesis of lignin, respectively [166].
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4. Major Strategies to Enhance Thermostability

Thermostable enzymes serve as valuable models for comprehending the physicochem-
ical factors governing protein thermostability. Identifying the structural characteristics
implicated in thermal stability facilitates the engineering and production of more resilient
enzymes for industrial applications [28,29]. Research utilizing the prediction of amino acid
sequences, encompassing amino acid distribution and dipeptide composition, helps discern
factors contributing to thermostability, distinguishing thermophilic and mesophilic proteins.
Despite sequence identity and structural similarity, thermophilic proteins exhibit higher
frequencies of charged, hydrophobic, and aromatic amino acids compared to mesophilic
counterparts [167]. The presence of fewer cysteines in thermophilic proteins is associated
with their oxidation at higher temperatures. A sequence analysis proves to be valuable in
predicting protein thermostability when structural information is lacking. Understanding
the molecular underpinnings of protein stability can be gained by contrasting the dynamic
properties of mesophilic proteins with those of their thermophilic homologs that have
different thermostability but higher and similarity in structure and identity in sequences.

α-Amylase has been an essential model system for examining enzymes’ ability to
withstand thermal tolerance [84]. α-Amylase serves as a crucial industrial biocatalyst in the
process of starch liquefaction and also stands as a significant model enzyme for exploring
thermal adaptation in proteins. Presently, there is a surge in demand for enzymes, particu-
larly those adaptable to industrial applications, prompting researchers to delve into diverse
sources like metagenomes [168]. Despite this, bacterial sources continue to dominate the
industrial landscape due to their diversity and requisite properties, notably stability and
functionality at high temperatures commonly encountered in industrial processes [169].
Enhancing the thermostability of an enzyme primarily involves three strategies. The first
entails sourcing extremophiles in hopes of enzyme behavior mirroring that of its host.
The second strategy involves shielding the enzyme structure through immobilization on
suitable matrices like cloisites or via the addition of certain cations, crowding agents, and
deep eutectic solvents [170–172]. However, both strategies have inherent limitations, such
as the rarity of finding natural sources with desired industrial-grade properties and the
inability of many enzymes to be stabilized using additives. Thus, the consideration of a
third strategy involving protein structure design or protein engineering to meet thermal
stability demands arises [173]. This involves modifying key features of protein structure
critical for thermal adaptation, including enhancing rigidity, reducing loop length, max-
imizing surface hydration and core packing, and designing stabilizing interactions like
hydrophobic interactions and salt bridges. The various strategies usually employed for
enhancing thermostability of enzymes are also represented in Figure 7.

As discussed before, directed evolution stands as a potent protein engineering strategy,
employing iterative cycles of random mutagenesis and selection under specific selective
pressures [99]. This approach aims to fine-tune the inherent characteristics of native
enzymes, adapting them to the rigorous conditions of industrial operations or instilling
them with new properties. Thus, by employing a combination of enzyme-directed evolution
and rational design, successfully engineered fungal laccases, produced in yeast, have been
investigated to function effectively under alkaline pH and high temperatures. These
optimized conditions align with the requirements commonly found in the kraft process
and the manufacture of fiberboard [18,141].

Numerous studies showed the enhancement in enzyme thermostability through pro-
tein engineering [26]. Protein engineering on hotspot residues is recognized as a highly
effective approach for enhancing both enzyme stability and activity. Computer model-
ing was employed to delve deeper into the structural underpinnings of the variance in
thermostability between the wild-type enzyme and its variants. Thus, it was suggested
that augmenting the number of salt bridges and hydrophobic interactions surrounding
K209 serves as the primary mechanism operating the enhanced compactness of the en-
zyme’s protein structure [174]. Yuan and co-workers [175] studied multipoint mutations,
improving thermostability of Bacillus amyloliquefaciens α-amylase. Rational protein design,
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a top-down approach, aids in identifying necessary modifications for achieving thermal
stability but is hindered by the extensive information required for reliable predictions
for each protein. An alternative approach to circumvent these limitations involves the
random alteration of protein structure, such as random mutagenesis, recombination, and
targeted mutagenesis combined with computational biology, termed Computer-Aided
Directed Evolution of Enzymes (CADEE). For instance, Suzuki and co-workers [59] utilized
site-directed mutagenesis of the BAA gene, deleting R176 and G177 while substituting A
for K269, to engineer a thermostable mutation.
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rigidity, reduction in loop length, increasing surface hydration and core packing, and inclusion of
hydrophobic interactions and salt bridges; directed evolution and rational protein design using
random mutagenesis and selection under specific selective pressures; computational biology, also
termed as Computer-Aided Directed Evolution of Enzymes (CADEE); multipoint mutations including
random mutagenesis, recombination, site-directed and targeted mutagenesis, and mutagenesis via
combinatorial coevolving-site maturation; and identifying and integrating strategies like increasing
active site flexibility, enhancing substrate affinity, N- and C-terminal engineering, and alleviating
steric hindrance.

Wang and co-workers [176] endeavored to increase thermostability of α-amylase
through mutagenesis via combinatorial coevolving-site saturation, a pivotal strategy in
directed protein evolution. Similarly, a directed evolution approach that combines random
and site-directed mutagenesis was adopted to enhance the laccase activity of Caldalka-
libacillus thermarum strain TA2.A1 for its application in lignin degradation [140]. Li and
co-workers [56] utilized a structure-based rational design approach to enhance the ther-
mostability of AmyMH, α-amylase from Bacillus stearothermophilus that forms maltohexaose,
without the addition of Ca2+. Thermostability of α-amylase is enhanced upon mutating
S187D/N188T, A269K/S187D, and A269K/S187D/N188T via site-directed mutagenesis
in B. licheniformis [177]. Through a systematic approach to enzyme engineering, which
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combined enzyme-directed evolution and rational design, Rodríguez-Escribano and co-
workers [178] successfully altered the ideal pH of the laccase to oxidize lignin phenol from
an acidic to basic state, with an objective to produce laccases that can function in harsh envi-
ronments with high pH and temperature, a feature of industrial procedures used to convert
wood to fiberboard and kraft pulp. Integrating strategies like introducing electrostatic
interactions, increasing flexibility of the active site, enhancing substrate affinity, N- and
C-terminal engineering, alleviating steric hindrance, and augmenting intramolecular and
intermolecular hydrophobic interactions are well established for improving both activity
and thermostability [179].

5. Current Challenges, Research Aims, and Recent Advances in the Field of
Thermostable α-Amylases and Laccases

Among the various commercially available enzymes, α-amylases appear to be the
most adaptable enzymes in the industrial enzyme field due to the abundance of starch, such
as converting starch to sugar syrups, and producing cyclodextrins for the pharmaceutical
industry. The development of new α-amylases with more thermophilic, thermotolerant,
and pH-tolerant properties is the focus of research due to their expanding application
spectrum. These enzymes can speed up catalytic reactions, improve starch gelatinization,
reduce media viscosity, and lower the risks of bacterial contamination. Bacillus licheniformis
produces the most thermostable α-amylase that is currently utilized in commercial ap-
plication processes. It continues to be active for several hours at 90 ◦C. An extracellular
enzyme that is active between 40 ◦C and 130 ◦C with an optimum at 100 ◦C and pH 5.5
was isolated from Pyrococcus woesei [180]. Nevertheless, for commercial starch process-
ing, maintaining high α-amylase activity at a pH of approximately 4.0 is still preferred.
However, there did not seem to be much of an advancement, and significant technological
advancements. However, as heat resistance is a constant area of interest, the structural
and dynamic characteristics of α-amylase may provide some inspiration to comprehend or
enhance the thermostability of other enzymes [62]. Despite α-amylase’s great significance
in biotechnology, the greatest challenge of ensuring its stability for economic viability has
to be taken into account. To address this challenge, recent attention has been directed
towards enhancing both the functionality and stability of α-amylase. Various emerging
technologies, including sonication, high pressure, pulsed electric field, and irradiation, have
all been used to enhance its secondary structure, thermal stability, and overall efficiency,
thereby resulting in economic benefits. These latest technologies, stated in a recent review
article, offer potential avenues for enhancing the stability and efficiency of α-amylase,
thereby contributing to its utility in various industrial processes [181]. By optimizing these
techniques, researchers aim to overcome the limitations associated with α-amylase stability
and unlock its full potential for applications in biotechnology and related fields. Similarly,
the current utilization of laccases in industry appears to be restricted in comparison to their
best utilization. Lowering manufacturing expenses should be the top priority for research
efforts and enhancing the tools for precise control of reactions on particular polyphenols
and other substrates targeted by such enzymes. Primary difficulties related to the industrial
deployment of laccases involve production expenses and the broad range of substrates
they can act upon. While the extensive substrate diversity of laccases offers advantages for
biodegradation purposes, it also presents hurdles in their commercial utilization within
biocatalysis due to the production of byproducts resulting from chemistry of free radicals.
Recent developments have introduced new areas of application such as plastic degradation
and diagnostic tool development, among others. Therefore, it is reasonable to anticipate
a rise in the number of patented innovations in the foreseeable future. Consequently, lac-
cases are poised to penetrate a broader range of industrial sectors, potentially supplanting
conventional methods with more environmentally sustainable production routes [182].

Certainly, addressing the significant expenses associated with laccase manufacturing
and purification stands as a paramount challenge that needs resolution to facilitate the
enzyme’s widespread utilization [183]. Various strategies have been investigated to mit-
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igate enzyme production costs, such as on-site manufacturing, utilizing economical raw
materials for enzyme synthesis, exploring novel enzymes with improved activity rates and
versatile characteristics, employing cost-effective purification methods, and immobilizing
enzymes [182]. For laccases to be completely realized as an industrial tool, their activity
needs to be precisely measured on complicated substrates and complex matrices. It is
therefore crucial to accurately measure laccase activity on these substrates. Industrial
applications frequently deal with substrates like lignin [18,38,140,141], effluents [113,114],
and textile dyes [39] that are far more complex than those that are normally evaluated using
spectrophotometry (by checking for the development of a colored oxidized product). More-
over, the complexity of matrices and mixtures necessitates the development of alternative
analytical methods. A recent study [184] outlined several methods, including fluorimetry,
Fourier transform infrared spectroscopy (FTIR), calorimetry, electron paramagnetic res-
onance, and electrochemistry, which could address this challenge. However, substantial
optimization efforts are essential in future years prior to these techniques being considered
for regular evaluations.

6. Concluding Remarks and Future Directions in the Field of Thermostable Enzymes

To apply thermostable enzymes in industrial settings, it is imperative to develop
the enzyme on a large scale inexpensively. But the conventional approach of purifying
and producing enzymes is time-consuming and inefficient. Therefore, employing cloning,
purification, and over-expression techniques for such enzymes using a suitable expression
system can effectively address this issue [7,31,40,41,59,113,157]. It is evident that further
research is necessary in upcoming studies on thermostable enzymes to fully harness its
industrial potential. There is significant potential for enhancing the thermal stability of
enzymes. Studies delve into assessing the thermostability of mutant enzymes by examining
disparities in model systems contrasting the mutant and wild types. Such an analysis offers
theoretical benchmarks for refining and developing thermostable enzymes. Additionally,
introducing tailor-made approaches through systemic enzyme engineering, which com-
bines rational design with enzyme-directed evolution, is an adapted endeavor nowadays,
aiming to furnish extremophilic biocatalysts capable of industrial applications [140,173].
The generic techniques of protein purification and recovery that include filtration followed
by membrane ultrafiltration, precipitation followed by dialysis, and freezing and thawing
followed by centrifugation and chromatographic techniques demand several steps, which
are expensive and demand considerable time and energy [181,182]. Thus, there is ample
opportunity for enhancement in this connection. Nonetheless, encountering challenges
persists in discovering a new enzyme with verified activity, largely due to the fact that
many proteins are forecasted solely on sequence similarity, leaving their functions hypo-
thetical. It is imperative to experimentally characterize predicted proteins to ascertain
sequence-to-function correlations.

Given the biotechnological significance of α-amylase, its substantial stability represents
a paramount challenge for ensuring its economic feasibility. Hence, there has been a surge
in interest in enhancing both its functionality and stability. In pursuit of this objective, this
review has outlined the utilization of a blend of emerging technologies alongside traditional
approaches on α-amylases from diverse sources.

Regarding environmental and health concerns in chemical hair dyeing, laccases have
attracted considerable interest due to their capability of phenolic monomers’ cross-coupling
polymerization and their high oxidation potential. For instance, a thermostable laccase
derived from the bacteria Brevibacillus agri (LacT) has demonstrated significant potential for
widespread utilization within the hair coloring industry as a substitute for conventional
chemical hair dyes [124].

With the emerging developments with thermostable laccase and its use in lignin, first,
future research should focus more on the interaction between thermostable laccases and
lignin substrates. At present, there is the utilization of thermostable laccases exhibiting
exceptional characteristics in various environments; their applications have mainly been
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confined to the textile industry and paper industry and the oxidation of small substrates.
To date, just a handful of uses of thermostable laccases have occurred in reactions in-
volving macromolecular lignin, with thorough investigations into their mechanisms still
lacking, thus demanding more extensive research on this. Moreover, for the specialized
discovery of laccases, there is a necessity for the further exploration and enhancement in
methods involving extraction or enrichment of metagenomic DNA from thermal settings.
Consequently, the current scenario emphasizes the need to explore additional sources of
thermostable enzymes or enhance the thermotolerance of existing enzymes through genetic
modifications or site-directed mutagenesis, with the goal of achieving specific and desired
properties in these enzymes.
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