Microbial Biomass in Mesophilic and Thermophilic High-Rate Biodigestion of Sugarcane Vinasse: Similar in Quantity, Different in Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fixed-Film Reactors and Fermented Substrates
2.2. Quantitative Biomass Characterization
2.3. Microbial Community Characterization
2.3.1. Biomass Sampling
2.3.2. DNA Extraction, 16s rRNA Gene Amplicon Sequencing, and Bioinformatics
3. Results and Discussion
3.1. Microbial Biomass Production and Retention
3.2. Specific Organic Loading Rates
3.3. Microbial Community Characterization in RMT
3.4. Microbial Community Characterization in RMM
3.5. Overall Result Interpretation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuess, L.T.; Braga, A.F.M.; Eng, F.; Gregoracci, G.B.; Saia, F.T.; Zaiat, M.; Lens, P.N.L. Solving the bottlenecks of sugarcane vinasse biodigestion: Impacts of temperature and substrate exchange on sulfate removal during dark fermentation. Chem. Eng. J. 2023, 455, 140965. [Google Scholar] [CrossRef]
- Craveiro, A.M.; Soares, H.M.; Schmidell, W. Technical aspects and cost estimations for anaerobic systems treating vinasse and brewery/soft drink wastewaters. Water Sci. Technol. 1986, 18, 123–134. [Google Scholar] [CrossRef]
- Aquino, S.; Fuess, L.T.; Pires, E.C. Media arrangement impacts cell growth in anaerobic fixed-bed reactors treating sugarcane vinasse: Structured vs. randomic biomass immobilization. Bioresour. Technol. 2017, 235, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Del Nery, V.; Alves, I.; Damianovic, M.H.R.Z.; Pires, E.C. Hydraulic and organic rates applied to pilot scale UASB reactor for sugar cane vinasse degradation and biogas generation. Biomass Bioenergy 2018, 119, 411–417. [Google Scholar] [CrossRef]
- Souza, M.E.; Fuzaro, G.; Polegato, A.R. Thermophilic anaerobic digestion of vinasse in pilot plant UASB reactor. Water Sci. Technol. 1992, 25, 213–222. [Google Scholar] [CrossRef]
- Fuess, L.T.; Kiyuna, L.S.M.; Ferraz Júnior, A.D.N.; Persinoti, G.F.; Squina, F.M.; Garcia, M.L.; Zaiat, M. Thermophilic two-phase anaerobic digestion using innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl. Energy 2017, 189, 480–491. [Google Scholar] [CrossRef]
- van Lier, J.B.; Hulsbeek, J.; Stams, A.J.M.; Lettinga, G. Temperature susceptibility of thermophilic methanogenic sludge: Implications for reactor start-up and operation. Bioresour. Technol. 1993, 43, 227–235. [Google Scholar] [CrossRef]
- Ferraz Júnior, A.D.N.; Etchebehere, C.; Zaiat, M. High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Bioresour. Technol. 2015, 186, 81–88. [Google Scholar] [CrossRef]
- Fuess, L.T.; Zaiat, M.; Nascimento, C.A.O. Novel insights on the versatility of biohydrogen production from sugarcane vinasse via thermophilic dark fermentation: Impacts of pH-driven operating strategies on acidogenesis metabolite profiles. Bioresour. Technol. 2019, 286, 121379. [Google Scholar] [CrossRef]
- Niz, M.Y.K.; Etchelet, I.; Fuentes, L.; Etchebehere, C.; Zaiat, M. Extreme thermophilic condition: An alternative for long-term biohydrogen production from sugarcane vinasse. Int. J. Hydrogen Energy 2019, 44, 22876–22887. [Google Scholar] [CrossRef]
- Amani, T.; Nosrati, M.; Mousavi, S.M.; Elyasi, S. Study of microbiological and operational parameters in thermophilic syntrophic degradation of volatile fatty acids in an upflow anaerobic sludge blanket reactor. J. Environ. Chem. Eng. 2015, 3, 507–514. [Google Scholar] [CrossRef]
- Noor, R. Mechanism to control the cell lysis and the cell survival strategy in stationary phase under heat stress. SpringerPlus 2015, 4, 599. [Google Scholar] [CrossRef] [PubMed]
- Infantes, D.; González del Campo, A.; Villaseñor, J.; Fernández, F.J. Influence of pH, temperature and volatile fatty acids on hydrogen production by acidogenic fermentation. Int. J. Hydrogen Energy 2011, 36, 15595–15601. [Google Scholar] [CrossRef]
- Shaw, G.T.W.; Liu, A.C.; Weng, C.Y.; Chou, C.Y.; Wang, D. Inferring microbial interactions in thermophilic and mesophilic anaerobic digestion of hog waste. PLoS ONE 2017, 12, e0181395. [Google Scholar] [CrossRef] [PubMed]
- Maleki, F.; Khosravi, A.; Nasser, A.; Taghinejad, H.; Azizian, M. Bacterial Heat Shock Protein Activity. J. Clin. Diagn. Res. 2016, 10, BE01–BE03. [Google Scholar] [CrossRef] [PubMed]
- Roncarati, D.; Scarlato, V. Regulation of heat-shock genes in bacteria: From signal sensing to gene expression output. FEMS Microbiol. Rev. 2017, 41, 549–574. [Google Scholar] [CrossRef] [PubMed]
- Venkiteshwaran, K.; Bocher, B.; Maki, J.; Zitomer, D. Relating Anaerobic Digestion Microbial Community and Process Function: Supplementary Issue: Water Microbiology. Microbiol. Insights 2015, 8s2, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Fuess, L.T.; Braga, A.F.M.; Zaiat, M.; Lens, P.N.L. Solving the seasonality issue in sugarcane biorefineries: High-rate year-round methane production from fermented sulfate-free vinasse and molasses. Chem. Eng. J. 2023, 478, 147432. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA: Washington, DC, USA, 2012. [Google Scholar]
- Anzola-Rojas, M.P.; Fonseca, S.G.; Silva, C.C.; Oliveira, V.M.; Zaiat, M. The use of the carbon/nitrogen ratio and specific organic loading rate as tools for improving biohydrogen production in fixed-bed reactors. Biotechnol. Rep. 2015, 5, 46–54. [Google Scholar] [CrossRef]
- Fuess, L.T.; Zaiat, M.; Nascimento, C.A.O. Thermophilic biodigestion of fermented sugarcane molasses in high-rate structured-bed reactors: Alkalinization strategies define the operating limits. Energy Convers. Manag. 2021, 239, 114203. [Google Scholar] [CrossRef]
- Sobeck, D.C.; Higgins, M.J. Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res. 2002, 36, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Q.; Tay, J.H.; Fang, H.H.P. The roles of calcium in sludge granulation during uasb reactor start-up. Water Res. 2001, 35, 1052–1060. [Google Scholar] [CrossRef]
- Batstone, D.J.; Landelli, J.; Saunders, A.; Webb, R.I.; Blackall, L.L.; Keller, J. The influence of calcium on granular sludge in a full-scale UASB treating paper mill wastewater. Water Sci. Technol. 2002, 45, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Blanco, V.M.C.; Fuess, L.T.; Zaiat, M. Calcium dosing for the simultaneous control of biomass retention and the enhancement of fermentative biohydrogen production in an innovative fixed-film bioreactor. Int. J. Hydrogen Energy 2017, 42, 12181–12196. [Google Scholar] [CrossRef]
- Fuess, L.T.; Garcia, M.L.; Zaiat, M. Seasonal characterization of sugarcane vinasse: Assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Sci. Total Environ. 2018, 634, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Piffer, M.A.; Zaiat, M.; Nascimento, C.A.O.; Fuess, L.T. Dynamics of sulfate reduction in the thermophilic dark fermentation of sugarcane vinasse: A biohydrogen-independent approach targeting enhanced bioenergy production. J. Environ. Chem. Eng. 2021, 9, 105956. [Google Scholar] [CrossRef]
- Chernicharo, C.A.L. Anaerobic Reactors, 1st ed.; IWA Publishing: London, UK, 2007. [Google Scholar]
- Barros, V.G.; Duda, R.M.; Oliveira, R.A. Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge. Braz. J. Microbiol. 2016, 47, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Fuess, L.T.; Eng, F.; Bovio-Winkler, P.; Etchebehere, C.; Zaiat, M.; Nascimento, C.A.O. Methanogenic consortia from thermophilic molasses-fed structured-bed reactors: Microbial characterization and responses to varying food-to-microorganism ratios. Braz. J. Chem. Eng. 2022. [Google Scholar] [CrossRef]
- Fuess, L.T.; Piffer, M.A.; Zaiat, M.; Nascimento, C.A.O. Phase separation enhances bioenergy recovery in sugarcane vinasse biodigestion: Absolute or relative truth? Bioresour. Technol. Rep. 2022, 18, 101026. [Google Scholar] [CrossRef]
- Borges, A.V.; Fuess, L.T.; Alves, I.; Takeda, P.Y.; Damianovic, M.H.R.Z. Co-digesting sugarcane vinasse and distilled glycerol to enhance bioenergy generation in biofuel-producing plants. Energy Convers. Manag. 2021, 250, 114897. [Google Scholar] [CrossRef]
- Aquino, S.F.; Chernicharo, C.A.L.; Foresti, E.; Santos, M.L.F.; Monteggia, L.O. Methodologies for determining the specific methanogenic activity (SMA) in anaerobic sludges. Eng. Sanit. Ambient. 2007, 12, 192–201. [Google Scholar] [CrossRef]
- Wasserfallen, A.; Nölling, J.; Pfister, P.; Reeve, J.; Macario, E.C. Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int. J. Syst. Evol. Microbiol. 2000, 50, 43–53. [Google Scholar] [PubMed]
- Buan, N.; Kulkarni, G.; Metcalf, W. Genetic methods for Methanosarcina species. Methods Enzymol. 2011, 494, 23–42. [Google Scholar]
- Barros, V.G.; Duda, R.M.; Vantini, J.S.; Omori, W.P.; Ferro, M.I.T.; Oliveira, R.A. Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria. Bioresour. Technol. 2017, 244, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Zamorano-López, N.; Greses, S.; Aguado, D.; Seco, A.; Borrás, L. Thermophilic anaerobic conversion of raw microalgae: Microbial community diversity in high solids retention systems. Algal Res. 2019, 41, 101533. [Google Scholar] [CrossRef]
- Camargo, F.P.; Sakamoto, I.K.; Delforno, T.P.; Midoux, C.; Duarte, I.C.S.; Silva, E.L.; Bize, A.; Varesche, M.B.A. Microbial and functional characterization of granulated sludge from full-scale UASB thermophilic reactor applied to sugarcane vinasse treatment. Environ. Technol. 2022, 44, 3141–3160. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qiao, J.T.; Yuan, X.Z.; Guo, R.B.; Qiu, Y.L. Hydrogenispora ethanolica gen. nov., sp. nov., an anaerobic carbohydrate-fermenting bacterium from anaerobic sludge. Int. J. Syst. Evol. Microbiol. 2014, 64, 1756–1762. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Toyonaga, M.; Ohashi, A.; Tourlousse, D.M.; Matsuura, N.; Meng, X.Y.; Tamaki, H.; Hanada, S.; Cruz, R.; Yamaguchi, T.; et al. Lentimicrobium saccharophilum gen. nov., sp. nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 2635–2642. [Google Scholar] [CrossRef]
- Al-Saud, S.; Florea, K.M.; Webb, E.A.; Thrash, J.C. Metagenome-Assembled Genome Sequence of Kapabacteriales Bacterium Strain Clear-D13, Assembled from a Harmful Algal Bloom Enrichment Culture. Microbiol. Resour. Announc. 2020, 9, e01118-20. [Google Scholar] [CrossRef]
- Nobu, M.K.; Narihiro, T.; Rinke, C.; Kamagata, Y.; Tringe, S.G.; Woyke, T.; Liu, W.T. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J. 2015, 9, 1710–1722. [Google Scholar] [CrossRef]
- Mosbæk, F.; Kjeldal, H.; Mulat, D.G.; Albertsen, M.; Ward, A.J.; Feilberg, A.; Nielsen, J.L. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics. ISME J. 2016, 10, 2405–2418. [Google Scholar] [CrossRef]
- Wang, H.Z.; Lv, X.M.; Yi, Y.; Zheng, D.; Gou, M.; Nie, Y.; Hu, B.; Nobu, M.K.; Narihiro, T.; Tang, Y.Q. Using DNA-based stable isotope probing to reveal novel propionate- and acetate-oxidizing bacteria in propionate-fed mesophilic anaerobic chemostats. Sci. Rep. 2019, 9, 17396. [Google Scholar] [CrossRef] [PubMed]
- Dyksma, S.; Jansen, L.; Gallert, C. Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. Microbiome 2020, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Meng, X.; Ding, H.; Cao, Q.; Chen, Y.; Liu, X.; Li, D. The synergistic effect of rumen cellulolytic bacteria and activated carbon on thermophilic digestion of cornstalk. Bioresour. Technol. 2021, 338, 125566. [Google Scholar] [CrossRef] [PubMed]
- Vilela, R.S.; Fuess, L.T.; Saia, F.T.; Silveira, C.R.M.; Oliveira, C.A.; Andrade, P.A.; Langenhoff, A.; van der Zaan, B.; Cop, F.; Gregoracci, G.B.; et al. Biofuel production from sugarcane molasses in thermophilic anaerobic structured-bed reactors. Renew. Sustain. Energy Rev. 2021, 144, 110974. [Google Scholar] [CrossRef]
- Marounek, M.; Fliegrova, K.; Bartos, S. Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Appl. Environ. Microbiol. 1989, 55, 1570–1573. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microflora. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Fadhlaoui, K.; Ben Hania, W.; Armougom, F.; Bartoli, M.; Fardeau, M.L.; Erauso, G.; Brasseur, G.; Aubert, C.; Hamdi, M.; Brochier-Armanet, C.; et al. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic archaea sulfate-reducers as electron acceptor. Environ. Microbiol. 2018, 20, 281–292. [Google Scholar] [CrossRef]
- Imachi, H.; Sekiguchi, Y.; Kamagata, Y.; Hanada, S.; Ohashi, A.; Harada, H. Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 2002, 52, 1729–1735. [Google Scholar]
- Ben Hania, W.; Postec, A.; Aüllo, T.; Ranchou-Peyruse, A.; Erauso, G.; Brochier-Armanet, C.; Hamdi, M.; Ollivier, B.; Saint-Laurent, S.; Magot, M.; et al. Mesotoga infera sp. nov., a mesophilic member of the order Thermotogales, isolated from an underground gas storage aquifer. Int. J. Syst. Evol. Microbiol. 2013, 63, 3003–3008. [Google Scholar] [CrossRef]
- Chen, C.L.; Wu, J.H.; Liu, W.T. Identification of important microbial populations in the mesophilic and thermophilic phenol-degrading methanogenic consortia. Water Res. 2008, 42, 1963–1976. [Google Scholar] [CrossRef] [PubMed]
- Delforno, T.P.; Lacerda Júnior, G.V.; Noronha, M.F.; Sakamoto, I.K.; Varesche, M.B.A.; Oliveira, V.M. Microbial diversity of a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment: Integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing. MicrobiologyOpen 2017, 6, e00443. [Google Scholar] [CrossRef] [PubMed]
- Ju, F.; Zhang, T. Novel Microbial Populations in Ambient and Mesophilic Biogas-Producing and Phenol-Degrading Consortia Unraveled by High-Throughput Sequencing. Microb. Ecol. 2014, 68, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.A.; Hug, L.A. Cloacimonadota metabolisms include adaptations in engineered environments that are reflected in the evolutionary history of the phylum. Environ. Microbiol. Rep. 2022, 14, 520–529. [Google Scholar] [CrossRef]
- Westerholm, M.; Calusinska, M.; Dolfing, J. Syntrophic propionate-oxidizing bacteria in methanogenic systems. FEMS Microbiol. Rev. 2022, 46, fuab057. [Google Scholar] [CrossRef] [PubMed]
- Mei, R.; Nobu, M.K.; Narihiro, T.; Liu, W.T. Metagenomic and Metatranscriptomic Analyses Revealed Uncultured Bacteroidales Populations as the Dominant Proteolytic Amino Acid Degraders in Anaerobic Digesters. Front. Microbiol. 2020, 11, 593006. [Google Scholar] [CrossRef] [PubMed]
- Iltchenco, J.; Peruzzo, V.; Magrini, F.E.; Marconatto, L.; Torres, A.P.; Beal, L.L.; Paesi, S. Microbiota profile in Mesophilic biodigestion of sugarcane vinasse in batch reactors. Water Sci. Technol. 2021, 84, 2028–2039. [Google Scholar] [CrossRef] [PubMed]
- Menezes, C.A.; Almeida, P.S.; Camargo, F.P.; Delforno, T.P.; Oliveira, V.M.; Sakamoto, I.K.; Varesche, M.B.A.; Silva, E.L. Two problems in one shot: Vinasse and glycerol co-digestion in a thermophilic high-rate reactor to improve process stability even at high sulfate concentrations. Sci. Total. Environ. 2023, 862, 160823. [Google Scholar] [CrossRef]
- Qiu, Y.L.; Hanada, S.; Ohashi, A.; Harada, H.; Kamagata, Y.; Sekiguchi, Y. Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the First Cultured Anaerobe Capable of Degrading Phenol to Acetate in Obligate Syntrophic Associations with a Hydrogenotrophic Methanogen. Appl. Environ. Microbiol. 2008, 74, 2051–2058. [Google Scholar] [CrossRef]
- Ju, F.; Wang, Y.; Zhang, T. Bioreactor microbial ecosystems with differentiated methanogenic phenol biodegradation and competitive metabolic pathways unraveled with genome-resolved metagenomics. Biotechnol. Biofuels 2018, 11, 135. [Google Scholar] [CrossRef]
- Schöcke, L.; Schink, B. Energetics and biochemistry of fermentative benzoate degradation by Syntrophus gentianae. Arch. Microbiol. 1999, 171, 331–337. [Google Scholar] [CrossRef]
- Elshahed, M.S.; McInerney, M.J. Benzoate Fermentation by the Anaerobic Bacterium Syntrophus aciditrophicus in the Absence of Hydrogen-Using Microorganisms. Appl. Environ. Microbiol. 2001, 67, 5520–5525. [Google Scholar] [CrossRef] [PubMed]
- Schöcke, L.; Schink, B. Energetics of methanogenic benzoate degradation by Syntrophus gentianae in syntrophic coculture. Microbiology 1997, 143, 2345–2351. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.E.; Bhupathiraju, V.K.; Tanner, R.S.; Woese, C.R.; McInerney, M.J. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch. Microbiol. 1999, 171, 107–114. [Google Scholar] [CrossRef]
- Lee, J.; Koo, T.; Yulisa, A.; Hwang, S. Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition. J. Environ. Manag. 2019, 241, 418–426. [Google Scholar] [CrossRef]
- Ziganshina, E.E.; Belostotskiy, D.E.; Bulynina, S.S.; Ziganshin, A.M. Influence of Granular Activated Carbon on Anaerobic Co-Digestion of Sugar Beet Pulp and Distillers Grains with Solubles. Processes 2020, 8, 1226. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Si, B.; Watson, J.; Zhang, Y. Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer. Renew. Sustain. Energy Rev. 2021, 145, 111069. [Google Scholar] [CrossRef]
- Geissinger, O.; Herlemann, D.P.R.; Mörschel, E.; Maier, U.G.; Brune, A. The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Appl. Environ. Microbiol. 2009, 75, 2831–2840. [Google Scholar] [CrossRef]
- Zheng, H.; Dietrich, C.; Radek, R.; Brune, A. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia)—An ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environ. Microbiol. 2016, 18, 191–204. [Google Scholar] [CrossRef]
- Hillesland, K.L.; Stahl, D.A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl. Acad. Sci. USA 2010, 107, 2124–2129. [Google Scholar] [CrossRef]
- Detman, A.; Mielecki, D.; Pleśniak, L.; Bucha, M.; Janiga, M.; Matyasik, I.; Chojnacka, A.; Jędrysek, M.O.; Blaszczyk, M.K.; Sikora, A. Methane-yielding microbial communities processing lactate-rich substrates: A piece of the anaerobic digestion puzzle. Biotechnol. Biofuels 2018, 11, 116. [Google Scholar] [CrossRef]
- Cotta, M.; Forster, R. The Family Lachnospiraceae, Including the Genera Butyrivibrio, Lachnospira and Roseburia. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 1002–1021. [Google Scholar]
- Gagen, E.J.; Wang, J.; Padmanabha, J.; Liu, J.; Carvalho, I.P.C.; Liu, J.; Webb, R.I.; Al Jassim, R.; Morrison, M.; Denman, S.E.; et al. Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach. BMC Microbiol. 2014, 14, 314. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.H.; Chang, Y.T.; Chang, Y.J. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems—A review. Bioresour. Technol. 2011, 102, 8437–8444. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.G.; Yun, J.; Cho, K.S. The close relation between Lactococcus and Methanosaeta is a keystone for stable methane production from molasses wastewater in a UASB reactor. Appl. Microbiol. Biotechnol. 2015, 99, 8271–8283. [Google Scholar] [CrossRef]
- Nesbø, C.L.; Bradnan, D.M.; Adebusuyi, A.; Dlutek, M.; Petrus, A.K.; Foght, J.; Doolittle, W.F.; Noll, K.M. Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales. Extremophiles 2012, 16, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Honda, T.; Fujita, T.; Tonouchi, A. Aminivibrio pyruvatiphilus gen. nov., sp. nov., an anaerobic, amino-acid-degrading bacterium from soil of a Japanese rice field. Int. J. Syst. Evol. Microbiol. 2013, 63, 3679–3686. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Nakajima, M.; Nakai, R.; Hirakata, Y.; Kagemasa, S.; Kubota, K.; Noguchi, T.Q.P.; Yamamoto, K.; Satoh, H.; Nobu, M.K.; et al. Microscopic and metatranscriptomic analyses revealed unique cross-domain symbiosis between Candidatus Patescibacteria/candidate phyla radiation (CPR) and methanogenic archaea in anaerobic ecosystems. bioRxiv 2023. [Google Scholar] [CrossRef]
- Barcelos, S.T.V.; Ferreira, I.F.L.; Costa, R.B.; Magalhães Filho, F.J.C.; Ribeiro, A.A.; Cereda, M.P. Startup of UASB reactor with limestone fixed bed operating in the thermophilic range using vinasse as substrate. Renew. Energy 2022, 196, 610–616. [Google Scholar] [CrossRef]
- Anzola-Rojas, M.P.; Fuess, L.T.; Zaiat, M. Specific Organic Loading Rate Control for Improving Fermentative Hydrogen Production. Fermentation 2024, 10, 213. [Google Scholar] [CrossRef]
- Borges, A.V.; Fuess, L.T.; Takeda, P.Y.; Rogeri, R.C.; Saia, F.T.; Gregoracci, G.B.; Damianovic, M.H.R.Z. Efficient Sulfidogenesis in Mesophilic Fermentation of Sugarcane Vinasse: Can Granular Sludge Outperform Natural Fermentation as Source of Inoculum? Available at SSRN, 2024. Available online: https://ssrn.com/abstract=4772239 (accessed on 20 April 2024).
- Kapp, H. Sludge with a High Solids Content. Stuttgart Reports for Urban Water Management. Oldenbourg Verlag: Munich, Germany, 1984; Volume 86, p. 300. [Google Scholar]
- Buchanan, I.D.; Nicell, J.A. Model development for horseradish peroxidase catalyzed removal of aqueous phenol. Biotechnol. Bioeng. 1997, 54, 251–261. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric methods for determination of sugar and related substance. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Taylor, K.A.C.C. A simple colorimetric assay for muramic acid and lactic acid. Appl. Biochem. Biotechnol. 1996, 56, 49–58. [Google Scholar] [CrossRef]
- Adorno, M.A.T.; Hirasawa, J.S.; Varesche, M.B.A. Development and validation of two methods to quantify volatile acids (C2-C6) by GC/FID: Headspace (automatic and manual) and liquid-liquid extraction (LLE). Am. J. Anal. Chem. 2014, 5, 406–414. [Google Scholar] [CrossRef]
- Lebrero, R.; Toledo-Cervantes, A.; Muñoz, R.; Del Nery, V.; Foresti, E. Biogas upgrading from vinasse digesters: A comparison between an anoxic biotrickling filter and an algal-bacterial photobioreactor. J. Chem. Technol. Biotechnol. 2016, 91, 2488–2495. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Pages, H.; Aboyoun, P.; Gentleman, R.; DebRoy, S. Biostrings: Efficient Manipulation of Biological String; R Package Version 2.64.1. Available online: https://s3.jcloud.sjtu.edu.cn/899a892efef34b1b944a19981040f55b-oss01/bioconductor/3.15/bioc/manuals/Biostrings/man/Biostrings.pdf (accessed on 13 October 2022).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.P.; Peterson, D.A.; Biggs, P.J. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 2010, 11, 485. [Google Scholar] [CrossRef]
- Wright, E.S. Using DECIPHER V2.0 to Analyze Big Biological Sequence Data in R. R J. 2016, 8, 352–359. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Piffer, M.A.; Oliveira, C.A.; Bovio-Winkler, P.; Eng, F.; Etchebehere, C.; Zaiat, M.; Nascimento, C.A.O.; Fuess, L.T. Sulfate- and pH-driven metabolic flexibility in sugarcane vinasse dark fermentation stimulates biohydrogen evolution, sulfidogenesis or homoacetogenesis. Int. J. Hydrogen Energy 2022, 47, 31202–31222. [Google Scholar] [CrossRef]
Substrate | Fermented Vinasse | Fermented Molasses | Fermented Vinasse | Fermented Vinasse | ||||
---|---|---|---|---|---|---|---|---|
Period (d) | 1–36 | 37–68 | 69–107 | 108–125 | 126–153 | 154–171 | 172–182 | |
Phase | S1-I | S1-II | OS | S2-I | S2-II | S2-III | BBAT 4 | |
OLR 1 (kg COD m−3 d−1) | 1.0–7.5 | 10.0 | 10.0 | 10.0 | 12.5–17.5 | 20.0 | 10.0 | |
ERCOD 2 | RMT | 68.2 | 77.4 | 89.5 | 83.1 | 77.5 | 74.5 | 75.4 |
(%) | RMM | 78.4 | 80.9 | 90.6 | 85.1 | 81.6 | 80.3 | 80.4 |
ERCOD,FDZ 3 | RMT | - | 80.7 | 90.1 | 82.2 | - | 75.8 | - |
(%) | RMM | - | 83.7 | 93.2 | 83.9 | - | 77.9 | - |
ERPheOH | RMT | 34.5 | 38.5 | 29.5 | 48.6 | 43.4 | 38.1 | - |
(%) | RMM | 50.7 | 43.0 | 40.2 | 58.3 | 52.8 | 48.2 | - |
VOA | RMT | - | 291 | 115 | 50 | - | 579 | - |
(mg acetic acid L−1) | RMM | - | 175 | 154 | 42 | - | 229 | - |
MY | RMT | 304 | 330 | 340 | 341 | 334 | 329 | 329 |
(NmL CH4 g−1COD) | RMM | 328 | 337 | 342 | 343 | 339 | 334 | 339 |
Operating Period (d) | 1– 33 | 34– 39 | 50– 68 | 69– 81 | 82– 96 | 97– 104 | 105– 107 | 108– 120 | 121– 134 | 135– 143 | 144– 153 | 154– 162 | 163– 166 | 167– 171 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Substrate | Fermented vinasse | Fermented molasses | Fermented vinasse | |||||||||||
Soluble carbohydrates 1 | 4.1 | 3.5 | 2.8 | 17.5 | 4.2 | 3.7 | 5.0 | 2.6 | 2.6 | 3.6 | 3.1 | 2.6 | 2.5 | 2.2 |
Lactate 1 | 0.3 | 0.4 | 0.3 | 47.2 | 42.7 | 50.7 | 48.1 | 0.3 | 0.4 | 0.4 | 0.3 | 0.2 | 0.2 | 0.2 |
Total phenols 1 | 12.5 | 10.1 | 13.1 | 2.5 | 3.1 | 2.5 | 2.8 | 9.1 | 13.6 | 12.5 | 11.2 | 7.5 | 10.8 | 12.7 |
Ethanol 1 | 13.5 | 11.4 | 10.6 | 7.5 | 11.7 | 8.8 | 9.5 | 12.2 | 6.9 | 12.5 | 8.2 | 9.2 | 11.1 | zero |
Acetate 1 | 8.0 | 9.2 | 8.4 | 2.2 | 3.6 | 3.4 | 2.4 | 7.9 | 4.9 | 6.9 | 10.3 | 10.8 | 8.9 | 14.7 |
Propionate 1 | 2.4 | 2.4 | 3.5 | 0.1 | 0.7 | 0.1 | 0.2 | 4.1 | 1.7 | 1.5 | 2.5 | 4.1 | 3.1 | 9.6 |
Butyrate 1 | 13.0 | 14.5 | 18.9 | 1.2 | 10.4 | 4.7 | 5.5 | 20.3 | 17.9 | 9.5 | 16.1 | 10.9 | 13.8 | 6.0 |
COD/Sulfate 2 | 69 | 57 | 53 | 56 | 107 | 77 | 66 | 201 | 104 | 68 | 26 | 85 | 190 | 94 |
Sample Nomenclature | Phase (OLR 1) | Sampling Details | |
---|---|---|---|
Source/Reactor Compartment | Day 2 | ||
T1, M1 | Pre-inoculation (-) | Thermophilic flocculent methanogenic sludge (T), Mesophilic granular methanogenic sludge (M) | - |
T2, M2 | S1-II (10.0) | FDZ | 65 |
T3, M3 | OS (10.0) | FDZ | 87 |
T4, M4 | S2-I (10.0) | FDZ | 122 |
T5, M5 | S2-III (20.0) | FDZ | 171 |
T6, M6 | BBAT (10.0) | STB | 182 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuess, L.T.; de Araujo, M.N.; Saia, F.T.; Gregoracci, G.B.; Zaiat, M.; Lens, P.N.L. Microbial Biomass in Mesophilic and Thermophilic High-Rate Biodigestion of Sugarcane Vinasse: Similar in Quantity, Different in Composition. Processes 2024, 12, 1356. https://doi.org/10.3390/pr12071356
Fuess LT, de Araujo MN, Saia FT, Gregoracci GB, Zaiat M, Lens PNL. Microbial Biomass in Mesophilic and Thermophilic High-Rate Biodigestion of Sugarcane Vinasse: Similar in Quantity, Different in Composition. Processes. 2024; 12(7):1356. https://doi.org/10.3390/pr12071356
Chicago/Turabian StyleFuess, Lucas Tadeu, Matheus Neves de Araujo, Flávia Talarico Saia, Gustavo Bueno Gregoracci, Marcelo Zaiat, and Piet N. L. Lens. 2024. "Microbial Biomass in Mesophilic and Thermophilic High-Rate Biodigestion of Sugarcane Vinasse: Similar in Quantity, Different in Composition" Processes 12, no. 7: 1356. https://doi.org/10.3390/pr12071356
APA StyleFuess, L. T., de Araujo, M. N., Saia, F. T., Gregoracci, G. B., Zaiat, M., & Lens, P. N. L. (2024). Microbial Biomass in Mesophilic and Thermophilic High-Rate Biodigestion of Sugarcane Vinasse: Similar in Quantity, Different in Composition. Processes, 12(7), 1356. https://doi.org/10.3390/pr12071356