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Abstract: The classical linear discriminant analysis (LDA) algorithm has three primary drawbacks,
i.e., small sample size problem, sensitivity to noise and outliers, and inability to deal with multi-
modal-class data. This paper reviews LDA technology and its variants, covering the taxonomy
and characteristics of these technologies and comparing their innovations and developments in
addressing these three shortcomings. Additionally, we describe the application areas and emphasize
the kernel extensions of these technologies to solve nonlinear problems. Most importantly, this paper
presents perspectives on future research directions and potential research areas in this field.
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1. Introduction

Linear discriminant analysis (LDA) is a classical linear learning method, being first
proposed in 1936 by R.A. Fisher, also known as Fisher discriminant analysis (FDA) [1] for
binary classification. In a strict sense, LDA grounds the assumption that the covariance
matrix of all classes of sample data is the same and full-rank, which slightly differs from
FDA [2]. LDA is a supervised data analysis method using an orthogonal transformation
that makes the process and analysis of data more efficient and convenient.

The definition for the term “perpendicular” by Euclid, a synonym for “orthogonal”, is
depicted in [3]. Mathematically and specifically, a linear transformation is a mapping from
one vector space to another that preserves the operations of vector additions and scalar
multiplications. Especially in linear algebra, an orthogonal transformation T : V → V is a
linear transformation conducted in an inner product space V, which preserves the inner
product of two vectors u, v ∈ V: < u, v >=< Tu, Tv >; accordingly, it preserves the norms
of vectors and angles between vectors. Orthogonality is a significant property, meaning a
certain kind of non-dependence of things, that makes components separated for clearer
and easier observations, analysis and manipulation. From the viewpoint of mathematics,
in a vector space, any signal is a vector that can be represented by a set of orthogonal
bases, being decomposed into uncorrelated components along different axes as much as
possible. This meets the need for processing and analyzing data more effectively and
conveniently. Orthogonal transform rotates signals with orthogonal components, from one
set of orthogonal bases to another one but more approximately or accurately, or more
proper for a favorable aim, preserving the equivalent representations of identical inner
products between vectors before and after the transform [4]. This addresses quite a lot of
necessary needs for varied data processing and analysis across a wide range of various
areas and fields.

Notably, it is necessary to talk about the difference between statistical analysis and data
analysis in the introduction of this paper, both being always mentioned along with each
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other, which was the first question that bothered us at the beginning of our investigation.
Are the terms statistical analysis and data analysis, which often appear together, equivalent?
Are they interchangeable? Can the term statistical analysis be an alternative for data analysis
in this paper? The answer is no. Data analysis is to collect, clean, and learn the original
data set aiming to gain an insight into hidden and potential information under the data.
Statistical analysis draws inferences about the larger population using part quantitative
samples. Statistical analysis can infer what is beyond the data analysis. Given a brief
description of the differences between the two terms from some perspectives, it is indicated
that this paper limits the research scope under the data analysis. Using different methods
to compare the same data with the same aim has become a big benefit for data analysis,
said by Tukey [5], and what is taken to include by data analysis is analyzing procedures,
results interpreting techniques, data collection methods for easier, more precise or more
accurate analysis, and mathematical statistics tools applied to analyzing data.

In statistical discriminant analysis, the betweenclass scatter matrix Sb as shown in
Equation (1), the within-class scatter matrix Sw as shown in Equation (2), and the total
(or mixture) scatter matrix St as shown in Equation (3) are utilized for the formulations
of the class separability criterions. For a L-classes problem of N samples x ∈ Rd in the
d-dimensional original space, the scatter matrices are defined as follows [1].

Sb =
1
N

L

∑
j=1

Nj(mj − m)(mj − m)T , (1)

Sw =
1
N

L

∑
j=1

Nj ∑
x∈Lj

(x − mj)(x − mj)
T , (2)

St = Sb + Sw =
1
N ∑

x
(x − m)(x − m)T , (3)

where Nj denotes the size of samples in class Lj, j = 1, · · · , L, N =
L
∑

j=1
Nj, mj and m

denote the class mean of Lj and the total mean, respectively. St is the total scatter matrix
of all samples regardless of their class assignments [6]. The target of LDA is to obtain the
transform vector v that satisfies Equation (4).

v = arg max
v

vTSbv
vTSwv

. (4)

The objective transform vector is the most discriminative projection direction of the
maximum distance between classes and the minimum variance within each class, as shown
in Figure 1.

In Equation (1), the rank of vector mj − m is 1, so that the rank of Sb is at most L
after summing up all vectors of L classes. Due to the nonlinear independence between
all mj of L classes and m, that is the mj of (L − 1) and m can linearly represent the L-th
mj, it is inferred that max(rank(Sb)) = L − 1. So as to that of max(rank(S−1

w Sb)) because
of rank(AB) ≤ min{rank(A), rank(B)}. From Equation (4), consequently, there are at
most L − 1 non-zero eigenvalues and valid eigenvectors, respectively. In consequence,
the reduced space by LDA is of at most L − 1 dimensions.

Nonetheless, LDA has three main drawbacks: inapplicability for multi-modal datasets;
the singularity of the within-class scatter matrix; and insufficient robustness against outliers
and noises [7,8]. We present the technical causes, the existing cases and the resulting bad
influence of three drawbacks of conventional LDA in Table 1. In the last few decades,
the purpose of mitigating the three drawbacks has been motivating the rush towards many
extensions to LDA around a wide variety of disciplines and areas.
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Figure 1. A two-class case before and after using LDA.
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Table 1. The types, causes, situation of existence, and negative impacts of the three drawbacks
of LDA.

Types of Drawbacks Cause Existence Negative Impacts

Inapplicability
of
multi-modality

The i.i.d.
assumption
fails.

Classes are multi-modal
containing some
sub-classes or clusters.

LDA may make
the information in
classes be distorted
and inseparable.

Small Sample Size
(SSS)

Sw is
(almost)
singular.

Training samples
are of high dimension
but small size.

The singularity of
Sw leads to severe
instability and
over-fitting.

Unrobustness
L2 norm
in LDA
is unrobust.

Outliers exist
in training samples.

Projection vectors
may drift from
the target directions.

In this paper, we intend to review the last two to three decades of articles working
on suppressing the affection of three drawbacks of LDA, summarize the taxonomy of
techniques and their applications, and compare the characteristics and innovation of those
methods. For clarity, we build Table 2 for the name abbreviations of the reviewed methods
regarding their references.

Our objective is to provide the readers with comprehensive knowledge about the
existence, the primary philosophy, the solutions, and the corresponding applications of
the three drawbacks of conventional discriminant analysis. This knowledge can guide
the readers on how these methods play their roles in the machine learning area based
on various benefits and usage, to identify the real knowledge differences from past to
present, which motivates us to make this article serve as the foundation of developing
theory and predicting the heading directions in discriminative data analysis area. How best
to guide readers from the underlying mathematical theories to the technical comparisons,
to the application for the realistic situations, and finally to the future development is the
originality of this paper. Motivation has been the guiding principle throughout the writing
of this review article.
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Table 2. The name abbreviations of the reviewed methods from their references.

Method Names and References Abbreviations

Linear discriminant analysis [1] LDA

Fisher discriminant analysis [1] FDA

Mixture discriminant analysis [9] MDA

Subclass discriminant analysis [10] SDA
Mixture subclass discriminant analysis [11] MSDA
Separability oriented subclass discriminant analysis [12] SSDA
Resilient SDA [13] RSDA
One MSDA extension [14] EM-MSDA
Fractional step MSDA [14] FSMSDA
Local Fisher discriminant analysis [15,16] LFDA
Locality-preserving projection [17] LPP
Locality Sensitive discriminant analysis [18] LSDA
Manifold partition discriminant analysis [19] MP-DA
Adaptive and fuzzy locality discriminant analysis [20] AFLDA
Approximate pairwise accuracy criterion [21,22] aPAC
Penalized discriminant analysis [23] PDA
Heteroscedastic linear dimension reduction [24] HLDR
Local mean based nearest neighbor discriminant analysis [25] LM-NNDA
Nonparametric discriminant analysis [26] NDA
Neighborhood linear discriminant analysis [27] nLDA
Eigenspectrum regularization reverse neighborhood discriminative learning [28] ERRNDL
An alternative of null-space-based LDA methods [29] Fast NLDA
Direct LDA [30] DLDA
Orthogonal LDA [31] OLDA
Rotational invariant L1-norm based LDA [32] LDA-R1
L1-norm based LDA [33] LDA-L1
Two-dimensional LDA with L1-norm [34] L1-2DLDA
L1-norm based LDA [35] L1-LDA
Kernel extension of L1-norm based LDA [35] L1-KDA
Kernel discriminant analysis [36] KDA
A robust LDA measured by L2,1-norm [37] L2,1-LDA
Lp-norm based LDA [38] LDA-Lp
A bilateral two-dimensional LDA using the Lp-norm [39] BLp2DLDA
LDA measured by Ls-and Lp-norm [40] FLDA-Lsp

The rest of this paper is organized as follows. Section 2 summarizes and compares the
methods and techniques of LDA variants addressing three drawbacks especially. Section 3
summarizes the main applications of LDA variants from solving each drawback. Section 4
summarizes the review methods that have been extended to the kernel version and dis-
cusses the ones that can be extended to the kernel version. Finally, Section 5 is the conclusion
of this paper.

2. LDA Extensions: Variations in Principle
2.1. LDA Variants for Multi-Modal Classes

LDA relies on the assumption that all data samples of the same class are independently
and identically distributed (i.i.d.). It can be described as a maximum likelihood estimation
for Gaussian distributions for each class with common covariance and distinct means for
different classes. In case the assumption fails, the original LDA with class-level scatter ma-
trices cannot deal with the cases that the class is multi-modal containing some independent
sub-classes or clusters [6,41]. Moreover, in practice, due to complex nonlinear distributions,
outliers and any possible real factors, segmenting classes into different sub-classes is in
favor of making them more separable, which preserves the information involved in the
multi-modal structure.
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2.1.1. Using a Mixture of Gaussians

Approximating the fundamental distribution in every class as the mixture of Gaussians
is a good way of describing a big size of data distributions, no matter if they correspond
with compact sets [42,43].

To perform classification effectively, the proposal mixture discriminant analysis (MDA) [9]
fits Gaussian mixtures to each class especially when there are sub-classes. MDA has the
feature that the classes are structured as mixtures of Gaussian distributions, instead of
only Gaussian distributions as in traditional LDA. To be specific, using Gaussian mixtures
for modelling the class densities of the predictors P(X|G). Suppose N training data with
label set L: (xi, gi) ∈ Rd ×L, i = 1, 2, · · · , N, and gi means the label of xi. Dividing each
class Lj into Rj, j = 1, 2, · · · , L artificial sub-classes presented as ljr, r = 1, 2, · · · , Rj. The
model supposes that every subclass follows a multivariate normal distribution as well as
the mean vector ujr of itself and a shared common covariance matrix Σ. Let ∏j be the prior
probability of class Lj, and make πjr be the mixing probability of the r-th subclass inside
the class Lj. The class Lj has its mixture density, as shown in Equation (5),

mj(x) = P(X = x|G = j)

= |2πΣ|−1/2
Rj

∑
r=1

πjr exp{−D(x, ujr)/2},
(5)

and the conditional log-likelihood of the data is shown in Equation (6).

lmix(ujr, Σ, πjr) =
N

∑
i=1

mgi (xi). (6)

To maximize lmix(θ), executing expectation-maximization (EM) algorithm [44] itera-
tively via Bayes theorem, obtaining the posterior class probabilities P(G = j|X = x) and
maximizing it for optimal classification.

From the above perspective, MDA applies the EM algorithm firstly for estimating
the real underlying distribution inside every class ahead of utilizing LDA. It has to be
mentioned that the EM algorithm can match a mixture of Gaussians efficiently only when
the sample number is very large. Besides the standard MDA, Bashir et al. [45] consider
the case that in Gaussian mixture models, the estimators for those unknown parameters
inside the EM algorithm are affected due to outliers, which results in the non-robustness.
They substitute those unrobust estimators of the M-step in the EM algorithm for the robust
S-estimators, defined as having higher breakdown points, of the unknown parameters,
where the compared results show that the average probability of misclassification reduces
slightly than the standard mixture discriminant analysis. This proposal is called high
breakdown mixture discriminant analysis.

There is a different method using a mixture of Gaussian, addressing the goal of
optimizing classification, rather than recovering the real underlying but unknown data
distribution, that is, subclass discriminant analysis (SDA) [10]. It defines criteria to ensure
the best amount of Gaussians in each class, which is the number of sub-classes, and uses
nearest neighbor-based clustering to divide classes into sub-classes. The target is solving
the generalized eigenvalue decomposition problem to find the optimal discriminant vectors
for the classification, as shown in Equation (7).

SbV = ΣVΛ, (7)

where Σ represents the covariance matrix of the data, V denotes the eigenvector matrix,
Λ is the relevant diagonal eigenvalue matrix. Sb is the between-subclass scatter matrix
represented as Equation (8).
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Sb =
L−1

∑
j=1

Rj

∑
r=1

L

∑
k=j+1

Rk

∑
l=1

pjr pkl(ujr − ukl)(ujr − ukl)
T , (8)

where L is classes number, Rj is the size of sub-classes divisions in class Lj, pjr is the prior
of the r-th subclass of class Lj, and ujr is the mean of the r-th subclass in class Lj.

Notably, Gkalelis et al. mention two shortcomings of SDA. One is SDA does not
guarantee the minimum Bayes error, and another one is the covariance matrix does not
work in the minimization of the discriminant analysis stability [11]. To this end, in [11],
the authors propose a modified SDA using a partitioning procedure that alleviates the
aforementioned two shortcomings, referred to as mixture subclass discriminant analysis
(MSDA). SDA and MSDA divide each class into sub-classes and reformulate the within-
subclass and between-subclass matrices.

Wan et al. make a study on obtaining the sub-classes more efficiently to realize
higher separation of classes, named separability oriented subclass discriminant analysis
(SSDA) [12]. In particular, to lessen the overlap between models of sub-classes, the authors
utilize clustering to separate each class into sub-classes based on the criterion of separability-
oriented and then redefine scatter matrices for discriminant analysis. The experimental
results show that, compared to LDA, SDA, and MSDA, SSDA performs better and has
higher class separation in most cases. SSDA differs from LDA due to the existence of a
subclass. SSDA differs from SDA/MSDA due to different criteria for separating a class into
sub-classes and redefining the subclass-based scatter matrices. Specifically, SSDA aims to
divide each class into distinct sub-classes and further separate the distinct classes.

It is pointed out by Wu et al. that in Gaussian mixture models, the EM algorithm
normally needs a big size of samples to estimate the mixture parameters accurately, so it
may be unstable for small dataset problems. Wu et al. propose the resilient SDA (RSDA) [13]
with a modified EM algorithm by first projecting the data into the space of much lower
dimensionality of highest class separation and clustering the mapped data to the novel
space. In comparison with the conventional EM algorithm, RSDA improves the robustness
of clustering the mixtures of Gaussians regardless of the sample size and the modified
subclass-based covariance matrices are quite smaller to be easier for inversion, and also,
lower the computational cost because the most costly step of assigning samples to each
subclass is conducted on a much lower dimensional space. Additionally, RSDA uses a
stepwise cross-validation procedure to determine the optimal number of subclasses, rather
than an exhaustive search, significantly reducing computational cost.

SDA works well with higher dimensionality sub-spaces as the dimensionality of
the learned feature space is limited by the between-subclass matrix that is limited under
the entire amount of sub-classes. One of the major disadvantages of low speed in the
case of large numbers and large dimensionality of a dataset of SDA is presented by Chu-
machenko et al. [46]. To this end, the authors propose the speed-up SDA method that
overcomes both the low speed and the limited dimension of the subspace. Specifically,
this method is based on graph embedding and spectral regression approaches, where the
exploitation of the between-class Laplacian matrix makes the eigendecomposition process
quite faster. The authors formulate a multi-view SDA criterion, allowing the method to be
used for the multi-view data.

The conventional MDA and SDA separate subclass within each isolated class before
addressing the generalized eigenvalue issue, which ignores the relations between each
class and may not keep the locality in the original data space leading to the unguaranteed
classification performance. A novel iterative subclass separation method of the EM-like
framework is presented to solve such questions [47]. The authors seek the eigenvectors
and operate subclass division by k-means clustering class by class in the projected space
iteratively under an EM-alike framework. Compared to conventional MDA and SDA,
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the experimental results demonstrate this method has a better performance and costs a bit
more time.

The authors in [14] extend MSDA in three ways. The first one is called the EM-MSDA.
It estimates the optimal amount of mixed components for every Gaussian mixture density
iteratively, where during every iteration a novel Gaussian model is determined. The
second one is the fractional step MSDA (FSMSDA) solving the subclass division problem.
Specifically, the dimension of the learned subspace is completely lower than the rank of the
subspace-based scatter matrix. It is solved by a proper weighting strategy with an iterative
algorithm. The third one is the kernel extension for nonlinear problems.

2.1.2. Using Manifold (Laplacian Graph)

In this part, we will summarize the extensions of LDA methods of using manifold to
exploit the local data structure, to a degree, which can be regarded as the joint study of
LDA and manifold learning. As is well known, graphs are usually taken as the proxy of a
manifold. More specifically, these methods all fall into graph Laplacian-based framework,
applying the Laplacian matrix on specific graphs to depict the local data structure, and thus
projecting the nearby data of the same labels to the reduced space as closely as possible,
whereas those nearby data of distinct labels are projected as far as possible.

There is an essential limitation of FDA that it only works in the case that the dimen-
sionality of embedding space is smaller than class numbers due to the rank deficiency of
the between-class scatter matrix [6]. Here is another essential problem for multi-modal
dimensionality reduction to protect the local structure of the data from being changed. The
proposed local Fisher discriminant analysis (LFDA) [15,16] makes a combination of the
FDA and locality-preserving projection (LPP) [17] without losing the local structure. It is
one of the most typical LDA extensions and could be regarded as a supervised modification
of LPP. This paper’s proposal overcomes the limitation of rank deficiency in Sb by reducing
dimensionality into an arbitrary dimensional space.

LPP is a linear dimensionality reduction technique projecting the data along the direc-
tions of maximal variances and optimally preserving the neighborhood structure of the data.
LPP uses one graph to model the geometrical structure in the data. The high dimensional
samples are located on a low dimensional manifold, where LPP is found by searching the
best linear approximations for the eigenfunctions of the Laplace–Beltrami operator.

Given N samples, {xi|xi ∈ Rd, i = 1, · · · , N}. Find a transformation matrix T mapping
these N points to {yi|yi ∈ Rl , l ≪ d, i = 1, · · · , N}, where yi = TTxi, T = (t0, t1, · · · , tl−1)
denotes the transformed sample from xi by T. The objective of LPP is to seek the transfor-
mation matrix T that meets Equation (9).

min
1
2 ∑

ij
(yi − yj)

2 Aij. (9)

The first step of the LPP algorithm is constructing the adjacency graph with n nodes
by putting an edge connecting the nodes i and j if xi and xj are close, defined under certain
criteria. It chooses the affinity matrix Aij for the edge joining vertices i and j by certain

variations. One common variant is by heat kernel: Aij = e−
||xi−xj ||

t , t ∈ R. Based on the
objective Equation (9), when xi and xj are far apart, the corresponding Aij will be small.
When xi and xj are close, Aij will be large, so yi and yj will consequently also be close to
meet the minimizing requirement of Equation (9).

After a simple introduction of LPP, it goes back to LFDA. Suppose xi ∈ Rd,
i = 1, 2, · · · , N is the original training data of d-dimension, N is the amount of train-
ing data and Nl is the sample amount of class Ll . The local within-class scatter matrix S̃(w)
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and the local between-class scatter matrix S̃(b) of LFDA are defined in a pairwise expression
as shown in Equations (10)–(13).

S̃(w) =
1
2

N

∑
i,j=1

W̃(w)
i,j (xi − xj)(xi − xj)

T , (10)

S̃(b) =
1
2

N

∑
i,j=1

W̃(b)
i,j (xi − xj)(xi − xj)

T , (11)

where

W̃(w)
i,j =

{
Ai,j/Nl i f yi = yj = l,
0 i f yi ̸= yj,

(12)

W̃(b)
i,j =

{
Ai,j(1/N − 1/Nl) i f yi = yj = l,
1/N i f yi ̸= yj.

(13)

The affinity Ai,j weights for the data pairs of the same class, from which the far apart
samples of the same class make few effects on S̃(w) and S̃(b). Moreover, the samples in
different classes are irrespective of affinity since they are expected to be separated from
each other. The objective function of LFDA is to obtain the transformation matrix TLFDA
shown as Equation (14).

TLFDA = arg max
T∈Rd×r

tr
(

TT S̃(b)T
TT S̃(w)T

)
, (14)

It makes the neighbored data pairs in the same class close; far apart ones are not
imposed, while the data pairs in distinct classes are apart.

The authors in [18] propose the locality sensitive discriminant analysis (LSDA) algo-
rithm. It preserves the locality and discriminant properties of the data. Specifically, they
model the local geometry of the underlying manifold by constructing a nearest-neighbor
graph. Assume N data points {xi ∈ Rd|i = 1, · · · , N} sampled from the underlying sub-
manifold M. To model the local geometrical structure of M, the authors construct the
nearest neighbor graph G by finding the k nearest neighbors set N(xi) = {x1

i , · · · , xk
i } of

xi and putting edges between xi and its neighbors. The nearest neighbor graph G with its
weight matrix W depicts the local geometric structure of M. Next, splitting the graph G
into within-class graph Gw and between-class graph Gb. The N(xi) can be split into Nb(xi)
and Nw(xi) shown as Equations (15) and (16), containing the neighbors with the same and
distinct labels with xi.

Nw(xi) = {xj
i |x

j
i has same label to xi, 1 ≤ j ≤ k}. (15)

Nb(xi) = {xj
i |x

j
i has distinct label to xi, 1 ≤ j ≤ k}. (16)

Accordingly, the weight matrix W is split into Ww and Wb, as shown in Equations (17)
and (18), respectively, corresponding to Gw and Gb.

Ww,ij =

{
1, i f xi ∈ Nw(xj) or xj ∈ Nw(xi)

0, otherwise.
(17)

Wb,ij =

{
1, i f xi ∈ Nb(xj) or xj ∈ Nb(xi)

0, otherwise.
(18)

It identifies a linear transformation matrix to project the data into a reduced space, en-
suring that closely related samples with the same label remain near each other, while closely
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related samples with different labels are separated by a greater distance. The objective is to
optimize the following functions by the eigendecomposition, shown as Equation (19).

max ∑
ij

(yi − yj)
2Wb,ij

(yi − yj)2Ww,ij
, (19)

where yi = vTxi, i = 1, · · · , N is the projected value mapped from xi into reduced space
by the projection vector v. The LSDA has been extended into reproducing kernel Hilbert
space (RKHS) by kernel method in this paper.

Besides the pairwise difference being considered, the proposal in [19] establishes a
manifold representation that also characterizes piecewise regional consistency of potential
manifold, called manifold partition discriminant analysis (MPDA). It splits the manifold
into some regional ones in a piecewise manner and represents the partitioned manifold
using the first-Taylor expansion based on both pairwise differences as well as piecewise
regional consistency for the manifold. Thus, MPDA can obtain the projection matching the
local change in the underlying manifold.

There is a more robust proposal that eliminates the interference of noise and redun-
dancy by Wang et al., named adaptive and fuzzy locality discriminant analysis (AFLDA) [20].
The potential submanifold structures are learned through the subclass partition. An adap-
tively updated fuzzy membership matrix is designed to learn the multi-modal data, promis-
ing an optimized subspace to alleviate the impact of noise and redundant information.

2.1.3. Setting Weights for LDA

Incorporating weights into the estimation of matrices is another strategy to flexibly
reduce or penalize the effects of unstable distributed data. It allows a slight escape from
the Gaussian distribution assumption, which is an advantage over LDA, whose data follow
the normal distribution.

In addition to LFDA and NDA depicted previously, two alternatives also using a
weight version of the original LDA will be introduced here. The first one is the approximate
pairwise accuracy criterion (aPAC) [21,22]. It modifies by redefining the matrix Sb shown
in Equation (20),

Sb =
L−1

∑
i=1

L

∑
j=i+1

ω(∆ij)(mi − mj)(mi − mj)
T , (20)

where L is the number of classes, mi is the mean of class Li, and ∆ij is the Mahalanobis
distance between classes Li and Lj. ω(∆ij) is a weighting function depending on ∆ij, which
contributes to every class pair being equivalent to the accuracy of the classification.

Another method is penalized discriminant analysis (PDA) [23] by redefining the matrix
Sw. It introduces a penalizing matrix Ω onto Sw, rewritten as Equation (21).

Sw = Σw + Ω, (21)

where Σw is the unpenalized within-class scatter matrix. By weighting the features accord-
ing to their proportion, the noise eigenvectors can be effectively penalized.

An extension of LDA using a heteroscedastic two-class technique that follows the Cher-
noff criterion is proposed, called heteroscedastic linear dimension reduction (HLDR) [24].
Specifically, the authors use the Chernoff distance to evaluate the class similarity with
means and covariances. Consequently, Sb is modified as shown in Equation (22).
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Sb =
L−1

∑
i=1

L

∑
j=i+1

[
Σ−1/2

ij (mi − mj)(mi − mj)
TΣ−1/2

ij

+4
(

log Σij −
1
2

log Σi −
1
2

log Σj

)]
,

(22)

where Σi is the covariance matrix of data in class Li, Σij is the average between Σi and Σj,
and equal priors are assumed. This method extends the two-class case into a multiclass
version of the Chernoff criterion.

2.1.4. Using k-Nearest Neighbors

The proposal in [25] defines the scatter matrices on k-nearest neighbors of each sample,
called local mean-based nearest neighbor discriminant analysis (LM-NNDA). Given N
training samples of L classes {xij|i = 1, · · · , L; j = 1, · · · , Ni}, where Ni is the number of
samples in class i. For each sample xij, search its k-nearest neighbors in every class. Let ms

ij
be the local mean vector of k-nearest neighbors of xij in class s.

The local within-class scatter matrix of LM-NNDA is defined as Equation (23).

SLMNNDA
w =

1
N ∑

i,j
(xij − mi

ij)(xij − mi
ij)

T . (23)

The local between-class scatter matrix of LM-NNDA is defined as Equation (24).

SLMNNDA
b =

1
N(L − 1) ∑

i,j
∑
s ̸=i

(xij − ms
ij)(xij − ms

ij)
T . (24)

A non-parametric form of discriminant analysis is first presented in [48] to overcome
two problems. One is in parametric discriminant analysis, only at most L − 1 features
(L: # of classes) are extracted due to the rank-deficient between-neighborhood scatter
matrix while the non-parametric matrices are full-rank. Another one is that non-Gaussian
datasets are allowed in non-parametric matrices. It redefines Sb using kNN techniques,
focusing on two-classes cases. The proposal in [26] gives an extension of Sb shown in
Equations (25) and (26) to multiclass classification under a face recognition scenario, re-
ferred to as multiclass non-parametric discriminant analysis (NDA).

SNDA
b =

L

∑
i=1

L

∑
j=1
j ̸=i

Ni

∑
l=1

w(i, j, l)(xi
l − mj(xi

l))(xi
l − mj(xi

l))
T , (25)

where w(i, j, l) is the value of the weighting function depicted as

w(i, j, l) =
min{dα(xi

l , NNk(xi
l , i)), dα(xi

l , NNk(xi
l , j))}

dα(xi
l , NNk(xi

l , i)) + dα(xi
l , NNk(xi

l , j))
. (26)

The xi
l is the l-th sample in class Li, NNk(xi

l , j) is the k-th nearest neighbor from class Lj

to the sample xi
l , mj(xi

l) is the local KNN mean of NNk(xi
l , j), α ∈ (0,+in f ) is the parameter

controlling the weight, and d(·, ·) is the Euclidean distance of two vectors. The weighting
function explicitly emphasizes the data points around the boundary.

2.1.5. Neighborhood Linear Discriminant Analysis

Differing from the strategies above whose scatter matrices are defined on k-NN
sets, neighborhood linear discriminant analysis (nLDA) [27] proposes a discriminator
oriented to multi-modal classes where the scatter matrices are based on other types of
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the neighborhood. It is motivated by the neighborhood can be taken as the smallest
subclass and there is no need for any prior knowledge of the inner structure inside a class,
avoiding the difficulty of determining the number of sub-classes inside a class. The scatter
matrices are based on reverse k-nearest neighbor sets [49], shown as Equation (27). Given
a training set X = {xi ∈ Rd|i ∈ {1, · · · , N}} and its label set L = {gi|gi ∈ {1, · · · , L}}.
Xj, |Xj| = Nj, ∑L

j=1 Nj = N consists all samples in class Lj. Given a dataset D and a sample
xp ∈ D, the reverse k-nearest neighbor set of xp is defined as Equation (27).

RNNk(xp, D) = {xq|xq ∈ D \ {xp}, xp ∈ NNk(xq, D)}, (27)

where NNk(xq, D) is the k-nearest neighbor set of xq ∈ D. The within-neighborhood scatter
matrix is depicted as Equation (28).

SnLDA
w =

N

∑
i=1

|RNNk(xi ,Xgi )|≥t

∑
xj∈RNNk(xi ,Xgi )

(xj − m̃i)
T(xj − m̃i), (28)

where m̃i is the mean of the data in RNNk(xi, Xgi ). Here is a threshold for nLDA that
|RNNk(xi, Xgi )| ≥ t. There are O(kN) times of computing the outer product. The between-
neighborhood scatter matrix is presented as Equation (29).

SnLDA
b =

N

∑
i=1

|RNNk(xi ,Xgi )|≥t

N

∑
j=1

|RNNk(xj ,Xgj )|≥t
gi ̸=gj

(m̃i − m̃j)
T(m̃i − m̃j). (29)

From a point view of calculating times of outer product between vectors, the com-
plexity of SnLDA

b is O(N2), which is too large with a large dataset. Here is an approximate
alternative SnLDAapp

b shown in Equation (30).

SnLDAapp

b =
N

∑
i=1

|RNNk(xi ,Xgi )|≥t

N

∑
xj∈NNk(xi ,X−Xgi )

|RNNk(xj ,Xgj )|≥t
gi ̸=gj

(m̃i − m̃j)
T(m̃i − m̃j). (30)

This reduces the complexity of the between-neighbor scatter matrix to O(kN). The
target function is to find the projected directions v satisfying Equation (31).

v = arg max
∣∣∣∣vTSnLDAapp

b v
vSnLDA

w v

∣∣∣∣. (31)

The cost of nLDA contains two parts. One part is finding reverse nearest neighbors
by computing O(N2) times of distance between samples. Another part is computing
scatter matrices and solving an eigenvalue problem. The latter is the same as that in
LDA. The former is O(kN). So the cost of calculating Equation (31) is O(N2) times of
distance and O(kN) times of vector product. The empirical results demonstrate that nLDA
outperforms greatly than LDA and some other discriminators. Notably, a proposal to solve
the unstable and poor general issue resulting from the SSS problem of nLDA is presented
by Xie et al. [28], where the singularity of within-neighborhood scatter matrix is evaded by
the eigenspectrum regularisation techniques so that the method is called eigenspectrum
regularisation reverse neighborhood discriminative learning (ERRNDL).

The conceptual comparisons of methods of LDA variants for multi-modal classes are
shown in Table 3. Compared to the four discriminant analysis methods nLDA, LM-NNDA,
LFDA and NDA which are all oriented to multi-modal class, we conclude several main
connections and distinctions here.
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Table 3. Conceptual comparison of LDA variants for multi-modal classes.

Type Goal Technique References Advantages

Mixture
of
Gaussians

Estimate
underlying
distribution
of every class
as mixture
of Gaussians

Optimize
mixture density
by EM alg.

MDA [9]
[45] More robust EM than MDA

Optimize # of
sub-classes

SDA [10]
MSDA [11]
[47]

SSDA [12]

speed-up SDA [46]

Overcome shortcomings of SDA
Preserve original locality
Better performance and
better class separability than
LDA, SDA and MSDA

Both of above
RSDA [13]

extended MSDA [14]

Improved robustness and
lower computation cost

Applied
problems Classification and recognition algorithms for data with outliers

Manifold
Depict
local structure
using manifold

Combine
LDA and LPP LFDA [15,16] Overcome rank deficiency in Sb

and protect local structure

Use NN graph LSDA [18]

Characterize
piecewise regional
consistency

MP-DA [19]

Subclass partition AFLDA [20]

Applied
problems Dimension reduction method for multimodal-labeled data and face recognition

Setting
weights

Import weights to
penalize unstable data

Redefine Sb
aPAC [21,22]
HLDR [24]

Redefine Sw aPAC [23]

Applied
problems Classification algorithms for real data

KNN
k-Nearest Neighbor
set based
scatter matrices

Redefine Sb NDA [26]

Redefine Sb
and Sw

LM-NNDA [25]

Applied
problems Classification and feature extraction methods for face databases

RNNk

Reverse k-nearest
neighbors (RNNk)
set based
scatter matrices

Redefine Sb
and Sw

nLDA [27] RNNk can be regarded as
the smallest subclass

Three eigen-
spectrum regulari-
sation models

ERRNDL [28] Overcome SSS in nLDA

Applied
problems Recognition and discriminative algorithm for multimodal-class data

The nLDA uses the reverse k-nearest neighbor set to describe the multi-modality in
classes, while LM-NNDA uses the k-nearest neighbors. LFDA depicts the local structure of
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multi-modal class by combining with LPP, and NDA used k-nearest neighbors to rebuild
scatter matrices, where they share the commonality of inheriting Fisher’s criterion and
differ from each other on the definitions of Sw and Sb.

As shown in Equation (28), the SnLDA
w is defined on the set of RNNk(xi, Xgi ) that

focuses on the scatter between samples xi with the mean of its RNNk set. Similarly,
in Equation (23), the SLMNNLDA

w depicts the scatter between each sample and the k-nearest
neighbors’ mean inside the associated class, while in Equation (10), the within-scatter
matrix SLFDA

w depicts not the NNk set but the scatter between the samples xi to its neighbors
by manifold.

In Equation (29), the SnLDA
b is defined on the neighborhood of each sample that is

found within its RNNk set. However, as shown in Equation (25), the between-scatter
matrix SNDA

b is defined on the k-nearest neighbors for each sample that are found around
all remaining classes. This is similar to SLM−NNDA

b in Equation (24) depicting the scatter
between each sample and the mean of its k-nearest neighbors searched from other classes.

2.2. LDA Variants Solving the Small Sample Size (SSS) Problem

There is another main drawback of LDA. If the training samples are of high dimen-
sionality but the the size of training samples is limited, Sw may have rank deficiency, that is,
it almost becomes a singular matrix resulting in severe instability and over-fitting [50]. This
is commonly considered as the small sample size (SSS) problem [6], and it always happens
in pattern recognition which makes it a widely researched problem in related areas.

From Equation (3), as well as max(rank(Sb)) = L−1 as mentioned previously, it can be eas-
ily proved that max(rank(St)) = N − 1 and max(rank(Sw) = rank(St)− rank(Sb)) = N − L.
Namely, the rank of Sb, Sw and St have the upper bounds of L − 1, N − L and N − 1, respec-
tively, and all of them are quite smaller than d under the scenario of high-dimensional but
limited-sized samples. That is to say, Sb, Sw and St are all of singularity, resulting in the
unsolvable for the objective Equation (4). We summarize and analyze different methods
proposed to solve the SSS problem.

2.2.1. Fisherface Method (PCA + LDA)

The Fisherface method [51] is used in a wide variety of disciplines and areas that
applies PCA initially such that the original d-dimensional features are reduced to a medium
dimensionality d1 under the guarantee of d1 ≤ rank(Sw) = N − L aiming to make the con-
sequent within-class scatter matrix full-rank. Then applying the standard LDA technique
for further reducing the dimensionality to d2 that has to be guaranteed d2 ≤ L − 1 because
of the max(rank(Sb)) = L − 1. Consequently, the SSS problem is overcome. In [52], we
introduced in Section 2.2.2 a regularization procedure for the SSS problem; the author also
applies PCA first to obtain full-rank Sw.

However, there exists a drawback that the PCA application of the first dimensionality
reduction process leads to the loss of some useful discriminant information.

2.2.2. Regularization Method

For face recognition problems, it is common that the samples’ dimensionality is very
large resulting in Sw being singular. In [52], the authors slightly modify matrix Sw to
Sw + κ I, where κ is a quite small positive number making Sw + κ I absolutely positive
definite. This is a regularization procedure by adding a small diagonal positive matrix to
Sw. The same technique is used in references [53,54] to solve the SSS problem. However,
the drawbacks are also obvious. Firstly, the computational complexity is quite high to
deal with Sw of such a high dimension. Secondly, adding κ is just used for performing the
inverse operation feasibly without any physical meaning. It is not able to evaluate κ and its
poor choice may degrade the generalization performance of the method.

Besides regularizing matrix Sw directly, Jiang et al. [55] present an approach of eigen-
feature regularization for face recognition. Using eigenvectors of Sw to span to image space
and decomposing it into three sub-spaces, that is a null subspace, an unstable subspace
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because of noise and limited sample size, and a reliable subspace spanned mostly by the
facial variation, where eigen features are regularized in different ways within the three
sub-spaces. This proposed approach remits the issue of limited sample size and noise
leading to uncertain small and zero eigenvalues and is verified to be more stable, less
over-fitted, or better generalized.

Another eigenfeature regularization method is proposed in [55] that regularises Sw by
extrapolating its eigenvalues of the range space into the null space where the extrapolation
is made by using exponential functions.

2.2.3. Null Space Method

The null space (or kernel) of a matrix A ∈ Rm×d [56]: ker(A) = {x ∈ Rd|Ax = 0}. The
range space of A: range(A) = {y|y = Ax, x ∈ Rd}.

The Fisher’s criterion function [57] is shown in Equation (32).

F(v) =
vTSbv
vTSwv

, (32)

where v denotes the projected vector. The authors in [58] introduce a revised Fisher’s
criterion F̂(v) shown in Equation (33),

F̂(v) =
vTSbv

vTSbv + vTSwv
, (33)

and have proved Equation (34), that is, F(v) and F̂(v) obtain the same optimal v.

arg max F̂(v) = arg max F(v). (34)

Based on Equations (33) and (34), the authors in [59] introduce a different LDA
technique to compute the best mapping directions using F̂(v). If Sw is non-singular, then
the St = Sw + Sb is also non-singular. For the circumstances oriented towards the SSS
problem, the process utilizes the null space of Sw. Suppose the original feature space Rd,
and the rank of Sw is denoted as rw and rw < d, that is Sw is singular. Thus, there exists the
null space of Sw: null(Sw) ⊂ Rd such that null(Sw) = span{αi|Swαi = 0, i = 1, · · · , d− rw}.
Let all samples in Rd be projected into null(Sw) via the transformation matrix TT , where
T = (α1, · · · , αN−r). The within-class scatter matrix S̃w of the mapped data in null(Sw)
is proved a complete zero matrix. That is to say, S̃t = S̃w + S̃b = S̃b. So maximizing the
between-class scatter matrix S̃b in null(Sw) is the same as maximizing the total scatter in
null(Sw). In such cases, the author applies the PCA method to calculate the eigenvectors
related to the largest eigenvalues of S̃b that are the vectors of optimal discrimination
fulfilling the requirements of LDA. However, projecting all data to the useful null subspace
of Sw displays its strong clustering ability to achieve nice generalization performance,
which seems that it achieves optimal discriminant ability but leads to over-fitting. The
step of the diagonalization of Sb needs to be eliminated for the aim of avoiding possible
over-fitting, which is mentioned by Liu et al. in [60].

There is quite a high computational complexity in the process of identifying the null
space of Sw because of its high dimension. To escape the high calculating complexity, in [59],
the pixel grouping technique is applied beforehand for artificial feature extraction and
dimension reduction of the original data, and after that, the null space LDA is realized in
reduced feature space null(Sw) rather than the original space.

Due to the computation complexity problem of the original null space LDA method
we introduced hereinabove, the authors in [61] propose a more efficient null space approach
to solve that. If there are vTSwv = 0 and vTSbv ̸= 0, then the eigen vector v is valuable
for discriminating, whereas if vTSwv = 0 and vTSbv = 0, v is useless. Consequently, they
remove the null space of St without losing valuable discrimination. Suppose U is the matrix
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with columns being all the eigenvectors of St that correspond to the nonzero eigenvalues,
and it is able to obtain the S′

w shown in Equation (35).

S′
w = UTSwU, S′

b = UTSbU. (35)

Next a reduced but equally useful subspace of the null space of Sw is calculated,
and projecting the data onto it, and then deriving the most discriminative vectors. Let Q be
the null space of S′

w, thus QTS′
wQ = 0, then there are Equations (36) and (37).

S′′
w = QTS′

wQ = QTUTSwUQ = (UQ)TSw(UQ), (36)

S′′
b = QTS′

bQ = QTUTSbUQ = (UQ)TSb(UQ), (37)

where UQ is a subspace of all the null space of Sw which is reduced but of quite use to
derive the most discriminative vectors. It is notable that if there is a null space of S′′

b , it
is necessary to remove it. Due to max(rank(St)) = N − 1, the dimensionality of S′

w is
bounded at N − 1; and due to max(rank(Sw)) = N − L and rank(S′

w) = rank(Sw), the
dimensionality of the null space of S′

w is L − 1. While S′′
b is always full-rank so the amount

of the optimal discriminant vectors is L − 1. This method improves the computational
problem of the null space by removing redundant information without decreasing the
discriminant efficiency.

Liu et al. [60] present the most appropriate condition for the null-space-based LDA
method: N = d − 1, that is St, is full-rank, where N is the amount of all data and d is the
dimensionality of original space. The procedure of null-space-based LDA under this most
suitable situation removes the null space of St first and extracts the null space of reduced
Sw. It is most straightforward with just one time of eigen-analysis. It not only saves a lot of
computational costs but also keeps the performance simultaneously. Moreover, the authors
incorporate the kernel technique into the null space method by using the Cosine kernel
function. They discovered that in kernel space, St is full-rank, so the process of the null
space method is extremely faster and more stable during calculation.

A faster null space method than [59] is proposed in [62] by only carrying out QR
factorizations to implement LDA without carrying out eigendecomposition and SVD,
of which computational complexity is approximately 4dN2 + 2dNL.

An alternative method of null-space-based LDA methods named Fast NLDA [29]
modifies a fast process for the null space technique based on random matrix multiplication
with scatter matrices. It is based on the assumption that the vectors are linearly independent.
The oriented transformation matrix is gotten by T = S+

t SbY, where S+
t is the pseudo

inverse of St, and Y is a random matrix of rank L − 1. This approach requires dN2 + 2dNL
computations. The pseudoinverse LDA method of pseudo inverse Sw is studied in [63] for
image classification.

2.2.4. Direct LDA

Based on the drawbacks of the techniques we introduced above: discarded dimensions
which carry key discriminative information in Section 2.2.1, falling short of using informa-
tion out of null space of Sw and computational problems related to large scatter matrices in
Section 2.2.3. We introduce a direct LDA algorithm that permits data of high dimensionality
and optimizes Fisher’s criterion without any feature extraction or dimension reduction
steps in advance, referred to as direct LDA (DLDA) by Yu et al. [30].

DLDA discards the null space of Sb firstly, where there is no discriminative infor-
mation, but abandoning the null space of Sw where there is of the best discrimination.
This is achieved in reverse order of traditional procedure by performing a simultaneous
diagonalization procedure on Sb first by the found matrix W, as shown in Equation (38),

WTSbW = I, (38)
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and then on Sw, which keeps its null space to find the most discriminative vectors, as shown
in Equation (39), and Dw means the diagonalizable Sw.

WTSwW = Dw. (39)

It is worth mentioning that DLDA seems to reserve the null space of Sw, from which
the optimal discriminant vectors of LDA can be deduced [51,59]. But it cannot substantially
avoid it because removing the null space of Sb could lead to the portion loss of null space
of Sw. Sb has a smaller rank than Sw in most instances, so the subspace guaranteeing the
full rank of Sb is also guaranteeing that of Sw. DLDA does not take full advantage of the
null space of Sw, by abandoning the null space of Sb via reducing dimension and indirectly
leading to the loss of the null space of Sw. Additionally, in this paper, calculating skills are
introduced to deal with large scatter matrices along with an accurate solution to Fisher’s
criterion being given.

2.2.5. Orthogonal LDA

Ye et al. propose an orthogonal LDA (OLDA) method against SSS problem [31]
defining a new criterion that does not require the non-singularity of the scatter matrices. It
has presented to be the same as those null-space-based LDA methods [59,61] limited in a soft
condition of the data are linearly independent [64]. The null-space-based method [61] and
OLDA all lead to the orthogonal transformations, while the former performs the orthogonal
transformation in the null space of Sw and the latter executes that via diagonalizing Sb, Sw
and St simultaneously. The calculation cost of OLDA is smaller than that of the null space
method [59] and it is measured as 14dN2 + 4dNL + 2dL2 flops.

2.2.6. Against Over-Fitting

Another serious issue of the SSS problem is the over-fitting problem. It is mainly
because the between- and within-class scatter matrices calculated from the limited number
of data drift extremely from the underlying ones. Pang et al. introduce a regularization
term via clustering to solve this problem [65], specifically regularizing the within-class and
between-class scatter matrices with within-cluster and between-cluster scatter matrices,
respectively, and simultaneously.

We compare the methods of solving the SSS problem of LDA variants conceptually
in Table 4 on metrics of method types, method goals, specific techniques, advantages
and disadvantages.

Table 4. Conceptual comparison of LDA variants for SSS problem.

Type Goal Technique References Advantages Disadvantages

Fisherface
method

Reduce
dimension
of Sw

Use PCA initially
to reduce dimension
of Sw

[51]
lose
useful
information

Applied
problems Face recognition algorithms

Regulari-
zation

Regularize
Sw

Sw + κ I
[52]
[53]
[54]

high
computational
complexity;
uncontrollable
parameter

Regularize
eigenfeatures
of Sw

[55]

more stability
less over-fitting
or
better generalization
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Table 4. Cont.

Type Goal Technique References Advantages Disadvantages

Applied
problems Face recognition algorithms

Null
space

Utilize
null space
of Sw
that fulfills
LDA criterion

Utilize
full null space
of Sw

[59]
high
computational
complexity

Remove useless
null space part
of Sw and
use the reduced part

[61]
more efficiency
than [59]

Same as above but
under the most
suitable situation
N = d − 1

[60]

QR factorizations only [62] faster than [59]

Random matrix
multiplies
scatter matrices

[29] faster than [62]

Applied
problems Face recognition algorithms

Direct
LDA

Indirect dimension
reduction of Sw

Remove null space
of Sb firstly [30]

Applied
problems Face recognition algorithms

Orthogonal
LDA

Orthogonal
transformation in
three scatter matrices
simultaneously

New criterion
no need
non-singularity

[31]
lower complexity
than [59]

Applied
problems Classification algorithm for real-world data

Against
over-fitting

Solve over-fitting
caused by
SSS

Cluster-based
scatter matrices [65]

Applied
problems Face recognition algorithms

2.3. LDA Variants with Robustness

The conventional LDA method is based on L2-norm [1] that is sensitive to outliers [66].
The outliers may lead to the projection vectors drifting from the objective directions. It is
advisable to think about the robust modelling of the classical L2-norm LDA to suppress the
affection of outliers.

2.3.1. L1 Norm

It is known to all that the L1-norm is of better robustness than L2-norm because the
L1-norm does not heighten the impact of outliers related to many errors as the L2-norm
does [66–68]. Li et al. [32] present a rotational invariant L1-norm (i.e., R1-norm) based LDA,
denoted as LDA-R1. It uses the gradient ascending iterative algorithm upon eigenvalues
decomposition that leads to much time costs to perform convergence in input space of
high dimensionality.

Wang et al. [33] introduce a technique, named LDA-L1. It maximizes the proportion of
the between-class dispersion to that of the within-class. They are defined by the L1-norm
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rather than the L2-norm. Recall that the number of classes L, the Ni is the number of
samples in class Li, the class mean mi, the total mean m, the projected vector v, and xi

j is
the j-th sample of class Li. The Fisher-like criterion of L1-norm is presented as shown in
Equation (40).

F(v) =

L
∑

i=1
Ni|vT(mi − m)|

L
∑

i=1

Ni
∑

j=1
|vT(xi

j − mi)|
. (40)

The criterion (40) is termed as LDA-L1 by authors used to maximize the proportion of
between-class dispersion to that of the within-class. However, it is intractable to optimize
the objective function (40) and obtain the global solution of the LDA-L1. The authors give a
gradient ascending (GA) iterative algorithm in order to seek a local solution v of L1-norm
LDA that maximizes the objective function. It is worth mentioning that the LDA-L1 does
not suffer from the problem of SSS or rank limit because the criterion is not based on the
conventional matrices Sb and Sw anymore. Similar work of LDA-L1 was published by
Zhong et al. in the same year [69] which obtains a single locally optimal solution realized
iteratively and obtains multiple locally optimum solutions via a greedy search method,
as well as solving the singularity of Sw.

On the contrary, Liu et al. [70] propose a non-greedy iterative algorithm to address the
objective function Equation (41) and obtain a closed-form solution for all projections.

F(V, λ) = arg max
VTV=I

( L

∑
i=1

Ni|VT(mi − m)|
)

− λ

( L

∑
i=1

Ni

∑
j=1

|VT(xi
j − mi)|

)
,

(41)

where V is the projection matrix, λ is related to V that are optimized iteratively, L and Ni
are the numbers of total classes and the class Li, respectively, m and mi are the means of
total samples and samples in Li, respectively, and xi

j is the j-th sample of class Li.
When it comes to matrix-input issues, a matrix must be converted into a vector

before applying the LDA methods, which are vector-based. This conversion can lead to
high-dimensional data and the loss of some fundamental local information. Besides the
matrix-based methods such as the matrix-based PCA [71–73], the matrix-based SVM [74,75],
and the matrix-based LPP [76–79], the first proposal of L2-norm-based 2-dimensional
LDA (2DLDA) appears in [80] and afterwards many extensions are raised [81–86]. However,
the 2DLDA may suffer from the robustness due to the effects of outliers and noise although
it remits the SSS problem based on a weak assumption and preserves its original structural
information. Li et al. [34] extend conventional 2-dimensional LDA with L2-norm into
2-dimensional LDA with L1-norm, termed as L1-2DLDA, where the optimization problem
is solved by the greedy iterative algorithm with its convergence being guaranteed. The
authors in [87] further solve L1-2DLDA through a nongreedy algorithm.

The iterative algorithms in the above L1-norm based literature unfortunately mostly
require selecting a suitable stepsize by iteratively modifying discriminant vectors. Due
to the nonconvexity in the updating process, an unsuitable selection of the stepsize will
impact the deduction of an optimum greatly. To handle the LDA-L1 optimization problem,
Zheng et al. [35] present an iterative algorithm that uses a new surrogate convex function
for the optimization objective inside every iteration which only solves a convex problem
and guarantees a closed-form result, referred to as L1-LDA.

Furthermore, same as the equivalence relation sharing between the kernel discrimi-
nant analysis (KDA) [36] and the kernel principal component analysis (KPCA) plus LDA,
which is found by Yang et al. [88], the authors generalize the proposed L1-LDA method into
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reproducing kernel Hilbert space (RKHS) to handle the nonlinear robust feature extraction
through the kernel techniques, which hence termed as the L1-norm kernel discriminant
analysis (L1-KDA = KPCA + L1-LDA) method. Even though there is no need for choice of
stepsize through this new efficient iterative algorithm, it has been indicated that its utiliza-
tion results in L1-LDA being easy to get in trouble with a lot of serious problems [89]: the
existence of singularity problem, insufficient robustness against outliers because of the up-
dated weighting mechanism, and unguaranteed Bayes solution optimality of discriminative
criterion of L1-LDA.

To this end, Ye et al. [89] present an efficient iterative method to deal with a general L1-
norm min–max issue and perform conceptual insight into its convergency, which overcomes
the above problems that exist in both LDA-L1 and L1-LDA.

2.3.2. L2,1 Norm

The utilization of L1-norm in the above works is of limited robustness and mostly
based on the greedy search strategy to seek the projections each by each where the process is
time-consuming and may be trapped in local optimality. The L2,1-norm-based loss function
is firstly proposed by Nie et al. [90] to overcome the outliers and used as a regularization
to fulfill feature selection. Inspired by this work, Nie et al. propose a novel robust LDA
measured by L2,1-norm, named as L2,1-LDA [37].

The L2,1-norm of a matrix A ∈ Rd×m with its elements aij, i = 1, · · · , d, j = 1, · · · , m is
shown in Equation (42).

||A||2,1 =
d

∑
i=1

√√√√ m

∑
j=1

a2
ij. (42)

The L2,1-norm can measure the distances of spatial dims in L2-norm, specifically, which
is designed to enforce sparsity over the row-by-row data points to improve the robustness
resisting outliers in L1-norm. In comparison with the L2,1-norm, the L1-norm only focuses
on inhibiting anomaly overall values without keeping an eye on the distinction between
row and column, leading to insufficient robustness against outliers. To this end, the authors
design the L2,1-norm criterion to min–max within-class scatter and total data scatter at
the same time to enhance the robustness and discriminability of the formulation as in
Equation (43). 

min
L
∑

j=1

Nj

∑
i=1

||VT(xj
i − mj)||2,

max 1
N

N
∑

k=1
||VTxk||2 = 1

N ||XTV||2,1,
(43)

where V is the projection matrix, and X is the data matrix. This L2,1-norm criterion
suppresses the anomaly of outliers from the learned sparsity structure by capturing the
distinction between spatial dimensions and sample vectors and promoting the sparsity
at the data points level. This improved the robustness. The authors propose a min–max
iterative re-weighted optimization algorithm to deal with (43) which is a big challenge to
be solved perfectly.

2.3.3. Lp Norm

Contrasting to the L2-norm, the robust analysis of Lp-norm is investigated widely in
data mining, for example, the robust locality preserving projections [91], Lp-norm based
principal component analysis [92–94]. An Lp-norm based LDA is proposed in [38], termed
as LDA-Lp by the authors. In this scheme, arbitrary values of p can be used to acquire a
robust and rotation-invariant extension of LDA, for which the optimal solution is found
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using the steepest gradient method. The objective of the maximization problem is presented
as Equation (44).

Fp(v) =

L
∑

i=1
Ni|vT(mi − m)|p

L
∑

i=1

Ni
∑

j=1
|vT(xi

j − mi)|p
, (44)

which can be worked out by computing the gradient of Fp(v) regarding v. However, there
is a problem that the gradient of Fp(v) is not well defined on some singular points due to
the absolute value operator in this formula. The author introduces a sign function to escape
the technical difficulty shown in Equation (45).

sgn(a) =


1, i f a > 0,
0, i f a = 0,
−1, i f a < 0.

(45)

Hence, the above objective formula can be rewritten as presented in Equation (46).

Fp(v) =

L
∑

i=1
Ni[sgn(vT(mi − m))vT(mi − m)]p

L
∑

i=1

Ni
∑

j=1
[sgn(vT(xi

j − mi))vT(xi
j − mi)]p

. (46)

The optimal v that maximizes (46) can be obtained by taking a gradient of Fp(v)

regarding v: ∇v =
dFp(v)

dv , as depicted in a steepest gradient iterative algorithm with
singular check and convergence check steps in detail.

To handle the matrix-input problem, contrasting to the L1-2DLDA we introduced
above that is still sensitive to outliers and noise, the Lp-norm is of much more robustness
for 0 < p ≤ 1. Li et al. [39] introduce a bilateral two-dimensional LDA using the Lp-norm,
named BLp2DLDA. The criterion of BLp2DLDA shares an equivalence relation with an
upper bound of the theoretical principal of the optimal Bayes which theoretically guarantees
the reasonability of its optimization via the Bayes error bound. The objective is solved by a
modified ascent iterative technique.

2.3.4. Lsp Norm

Inspired by successful PCA-Lp algorithms [93–97], Ye et al. [40] propose a robust LDA,
referred to as FLDA-Lsp. It maximizes Ls norm distance and minimizes Lp norm distance
simultaneously via Ls-and Lp-norm measuring the between- and within-class distances,
respectively, which differs from LDA-Lp [38] by a more effective iterative algorithm to
obtain the target solution. The objective function of FLDA-Lsp is presented in Equation (47).

F(v) = max
vTv=1

L
∑

i=1
Ni|vT(mi − m)|s

L
∑

i=1

Ni
∑

j=1
|vT(xi

j − mi)|p
. (47)

It is obvious that when 0 < s < 2 and 0 < p < 2, the objective is conferred with
robustness. Moreover, the LDA-L1 and LDA-L2 become the special cases by setting specific
values of s and p.

Compared with the gradient ascending iterative algorithm [33,69], the iterative al-
gorithm used in LDA-Lsp does not require to apply the non-convex surrogate function,
and it overcomes the challenge of choosing stepsize. Compared to the alternative algorithm
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addressing the drawbacks in the gradient ascending iterative algorithm [33,69], the iterative
algorithm used in LDA-Lsp avoids transforming the original objective during each iteration.

The norm types of LDA extensions, with comparisons of corresponding optimization
methods, advantages as well as disadvantages are shown in Table 5.

Table 5. Conceptual comparison of LDA variants for robustness.

Type of Norm References Optimization Method Advantages Disadvantages

L1 norm

[32]
LDA-R1

GA iterative algorithm
High
computational
complexity

[33]
LDA-L1

Local solution by
GA iterative algorithm No SSS or rank limit

[69]
LDA-L1

Single local solution
by iteration algorithm;
Multiple local solutions
by greedy searching

No SSS problem

[70]

A non-greedy
iterative algorithm;
A closed-form solution
for all projections

[34]
L1-2DLDA
matrix input

Greedy iterative algorithm;
Convergence being
guaranteed

[87]
L1-2DLDA A nongreedy algorithm

Bad selection
of stepsize may
impact the optimality

[35]
L1-LDA

Iterative algorithm;
A closed-form solution
during every iteration

No stepsize

Easy singularity;
Insufficient robustness;
Unguaranteed
Bayes optimality

[89] An effective
iterative framework

Overcome problems in
LDA-L1 and L1-LDA

Applied
problems Robust classification and recognition algorithms for suppressing outliers

L2,1 norm [37]
Minmax
iterative re-weighted
optimization algorithm

More robust than
L1-norm Hard to solve objective

Applied
problems Robust classification and visualization algorithms for synthetic data and image datasets

Lp norm

[38]
LDA-Lp

Steepest gradient
iterative algorithm

Arbitrary p can obtain
robust and other
LDA versions

Technique difficulty
in optimization

[39]
BLp2DLDA
matrix input

Modified ascent
iterative technique

More robust
than L1-2DLDA [34]
for 0 < p ≤ 1

Applied
problems Robust discriminant analysis methods for contaminated databases

Lsp norm [40]
FLDA-Lsp

A more effective
iterative algorithm

Robustness at 0 < s, p < 2;
LDA-L1, LDA-L2
are special cases;
Needless of
non-convex surrogate
function and stepsize
compared to [33,69];
No transforming original
objective iteratively

Applied
problems Robust discriminant analysis methods for image data in suppressing the noise
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3. Applications of LDA Variants

In this section, we focus on the usage of discriminant analysis in addressing the
drawbacks of small sample size problems, being sensitive to noise and outliers, and being
unable to deal with multi-modal-class data. We summarize the application fields across
face recognition, fault detection and diagnosis, system condition monitoring, process
monitoring et al., which belong to the main areas of computer vision, pattern recognition,
and automation control systems. The objective of this section is to guide the readers on the
benefits of suppressing three drawbacks in discriminant analysis and how to optimally
utilize suitable techniques in certain cases.

3.1. Applications of LDA Variants for Multi-Modal Data
3.1.1. Mixture of Gaussians

The mixture of Gaussian-based discriminant analysis, depicting the mixtures of the
multi-modal density models in each class, has been acting as an excellent technique to
offer a better estimation and description of multi-modal data distributions. This tech-
nique motivates extensive applications aiming to address the multi-modal problem in
many scenarios. MDA is applied to face detection [98], human–robot interaction [99], re-
mote sensing [100], process monitoring [101], drug distribution in humans [102], digit
recognition [103], and speaker verification [104]. In addition, MDA is used as a per-
field classification method [105] and a curve classification method [106]. The subclass-
based mixture of Gaussian, such as SDA, is applied for face recognition [107,108], disease
diagnosis [109], behavior recognition [110], and bug prediction [111].

3.1.2. Manifolds

LFDA is applied in pedestrian re-identification [112], diagnose prediction [113], fa-
cial expression recognition [114,115], fault diagnosis [116,117], spoken language identi-
fication [118], industrial process fault classification [119], process monitoring [120], the
physical load prediction [121], and the spoken emotion recognition [122]. Additionally,
there are various of LFDA extensions being of much usage. For examples, sparse LFDA for
facial expression recognition [123] and status monitoring [124], maximum LFDA for face
recognition [125], complete LFDA for face recognition [126], uncorrelated LFDA for ear
recognition [127], geometric preserving LFDA for person re-identification [128], wavelet
LFDA based bearing defect classification [129], orthogonal LFDA for fault diagnosis [130]
and facial expression recognition [131], projection-optimal LFDA for feature extraction [132]
and palmprint recognition [133], self-adaptive LFDA based semi-supervised image recog-
nition [134], the unsupervised image-adapted LFDA [135], the fault diagnosis based on
local centroid mean LFDA [136], fault diagnosis for blast furnace ironmaking process us-
ing randomized LFDA [137], and online soft measurement method based on improved
LFDA [138].

Additionally, the studies focusing on semi-supervised LFDA are welcome in many
scenarios, such as enhanced semi-supervised LFDA for face recognition [139], for sparse
dimensionality reduction of the hyperspectral image [140], and gene expression data
classification [141].

LSDA is applied as another discriminant approach based on manifold learning in kinds
of fields, for example, stable LSDA-based image recognition [142], improved LSDA-based
feature extraction [143], orthogonal LSDA-based face recognition [144,145], identification of
breast cancer [146], hyperspectral imagery classification [147], fault diagnosis [148], image
recognition [149], face recognition [150,151], and video semantic detection [152].

3.1.3. k-Nearest Neighbors

NDA has been applied into various areas, for example, face recognition [26], face
detection [153], feature extraction [154,155], image recognition [156,157], imagery classifica-
tion [158], image retrieval [157,159], incremental subspace learning and recognition [160],
and 3-D model classification [161].
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3.1.4. Setting Weights

Penalized discriminant analysis has been used in conifer species recognition [162],
tumor classification [163,164], classification of bladder cancer patients [165], image-based
morphometry [166], detection of wild-grown and cultivated Ganoderma lucidum [167],
noise removal [168], brain images [169], microarrays [170], and predicting choice [171].

3.2. Applications of LDA Variants for Solving SSS

The SSS problem happens in the case of the larger feature dimension but the lim-
ited data size which arouses great concern within the face recognition community to
solve the poor generalization, instability or the over-fitting problems when performing
face recognition on a larger face dataset but with very few available training face
images [30,51–53,55,59–61]. The applications of LDA variants against the SSS problems
promote a feature presentation of more discrimination and stability in low-dimensional
space for the face images to perform extracting features, classifying, and reducing dimen-
sion issues in pattern recognition. Tian et al. discussed the image classification issue in the
case where the total amount is smaller than the dimensionality of training samples to be
classified and provided a good classification performance with a low error rate [63].

Additionally, the null space discriminant analysis for the SSS problem has been applied
for novelty detection [172,173], and person re-identification [174,175].

The Fisherface method for the SSS problem is used for a face recognition problem
which slowly reacts to big changes in the cases of lighting direction and facial expression [51].
This technique is also applied for image retrieval [176].

Pang et al. applied the proposed enhanced LDA into pattern recognition systems of
face and ear recognition to solve the over-fitting problem [65].

3.3. Applications of LDA Variants with Robustness

LDA variants based on different norms have been applied widely by reducing the
influence of outliers, for example, L1-norm LDA for robust feature extraction [35,177],
human activity recognition [178,179], L2,1-norm LDA for face recognition [180] and image
recognition [181].

3.4. Discussions on the Applications of LDA Variants

Based on the above summaries of the application fields of LDA variants for addressing
three drawbacks, we can conduct some analysis as follows.

Firstly, the applications of the methods for multi-modal data are mainly distributed in
fault detection and diagnosis, process and status monitoring, recognition and identification
of information, and the classification, which is coming from the fact that the multi-modality
exists in the samples of complicated distributions, such as outliers or noise. The techniques
of different theoretical philosophies oriented to multi-modality may help to guide the
applications to the different detection or recognition scenarios with complex samples.

Secondly, the application fields of LDA variants for solving the SSS mostly gather in
face recognition, because facial information is of high features that quite easily limit to the
rank-deficiency of the within scatter matrix. This can direct us to deal with other realistic
problems with large features by discriminant analysis methods.

Thirdly, the application fields of LDA variants with robustness are similar to those of
multi-modal data impairing the influence of outliers. There is an optimization problem in
solving the eigendecomposition of LDA variants with other norms, which motivates us to
optimize and apply discriminant analysis with L1, L2,1, Lp and Lsp norm.

4. Kernelization

The kernel method involves performing a projection from the original low-dimensional
space into a higher-dimensional feature space, specifically the reproducing kernel Hilbert
space (RKHS) [182]. This transformation changes the data from being linearly inseparable
to linearly separable.
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We provide a simplified introduction to RKHS here. We start with the vector space,
defined as a set of vectors equipped with addition and scalar multiplication. The inner
product space is a vector space equipped with an inner product operation. The Hilbert
space is a complete inner product space, where all Cauchy sequences converge within this
space. An RKHS is a Hilbert space of functions where the inner product of the mapping
functions is equivalent to the kernel function when data is mapped into this space.

The process of feature mapping, depicted in Figure 2, clearly shows how a nonlinear
problem is transformed into a linear problem. This projection is achieved by the feature
map utilizing the kernel function.
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Here, we summarise the methods above which have been extended to the kernel
version for solving nonlinear problems. First of all, we have a proposal of a kernelized data
analysis method using an orthogonal transformation that combines the three objectives
of kernel PCA and kernel LDA [183]. Our proposal possesses both feature extraction and
discriminative properties to solve nonlinear problems in reproducing kernel Hilbert space.
SDA is extended into kernel version in [184], and the kernel extension of SDA is used for
yielding the optimal recognition rates [185]. The speed-up and multi-view SDA and its ker-
nelized form are proposed in [46]. The kernel MSDA (KMSDA) is proposed in [14]. LFDA
has been extended to non-linear dimensionality reduction cases with kernel trick, called
KLFDA [15,16], making so many applications: sparse kernel LFDA for fault diagnosis [186],
multiple kernel LFDA based face recognition [187] and fault diagnosis [188], financial
distress predictions [189], wavelet kernel LFDA for bearing defect classification [190],
manifold adaptive kernel LFDA for face recognition [191], individual geographic origin
prediction [192], hyperspectral image classification [193], and semi-supervised kernel LFDA
for bearing defect classification [194].

The NDA is extended into kernel version in [185] and is used for data classification by
Diaf et al. [195] and 3-D model classification [161]. The kernel technique is incorporated
into the null-space-based LDA effectively solving the SSS problem [60] and is used for
novelty detection [173]. The L1-norm LDA has been kernelized in [35], and the Lp LDA has
been kernelized in [196].
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5. Conclusions and Study Perspectives in LDA

We searched the Scopus and Elsevier databases, as well as the Web of Science Core
Collection (WoSCC), using the relevant keywords “multi-modal”, “Small Sample Size”,
“robust” and “discriminant analysis”. This search yielded more than 300 papers. We applied
a priority selection criterion based on stronger relevance, a higher number of citations,
more recent publication years, and a higher ranking of journals according to the Journal
Citation Reports (JCR) and conference papers according to the China Computer Federation
(CCF) recommendations, resulting in a review of 197 articles in total.

In general, 175 articles within our references are sourced on WoSCC across ten fields,
as illustrated in Figure 3. The two most covered fields are computer science artificial
intelligence, and engineering electrical electronics. We summarized and compared the
extensions on techniques, innovations and main applications of discriminant analysis-based
algorithms, focusing on addressing the three main drawbacks of conventional LDA: its
inability to handle multi-modal data, small sample sizes (SSS), and lack of robustness.
Finally, we summarized the kernel-extended algorithms designed for nonlinear problems.
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As part of future research, three drawbacks of LDA can be considered common issues
in classification, clustering, and regression problems using discriminative analysis. The
application areas of the reviewed variants may provide optimization-oriented guidance
on how to apply these methods better to appropriate real-world problems for optimal
performance. This constitutes the first future direction for applications.

Additionally, by examining how these LDA variants address the three drawbacks, we
can gain insights into the underlying relationships between data distributions, structures,
and algorithms. This generates another open question regarding the potential designs of
the fusions of more robust, stable, and general algorithms with discriminative properties,
which should be explored further.

There are two types of fusion methods. The first involves combining the objectives of
different algorithms. Reference [197] proposes a novel framework of seven data analysis
methods that combines the objectives of PCA and LDA. Based on this framework, we
extend the first method of the framework into RKHS with a kernel method [183]. The
second type of fusion is the staged usage of different algorithms. The methods [51,88]
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reviewed above that utilize PCA or KPCA ahead of LDA are two-phase fusions. The
potential designs for fusions of different objective functions and staged methods, aimed at
enhancing robustness, stability, and generality, represent a significant future research topic.

Furthermore, the kernel extension is an important research topic for data analysis
methods to address nonlinear problems. Building on techniques that resolve the drawbacks
of LDA, our future research will focus on three subjects.

1. Improving robustness for nonlinear problems;
2. Handling multi-modal-class data with complicated nonlinear distributions or outliers;
3. Addressing small sample size problems in reproducing kernel Hilbert space.

It is a promising research direction that investigates extending discriminative analysis
methods that have already overcome these drawbacks into their kernel versions.
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