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Abstract: Fault data injection attacks may lead to a decrease in system performance and even a
malfunction in system operation for an automatic feedback control system, which has motive to
develop an effective method for rapidly detecting such attacks so that appropriate measures can
be taken correspondingly. In this study, a secure descriptor estimation technique is proposed for
continuous-time Lipschitz nonlinear cyber physical systems affected by actuator attacks, sensor
attacks, and unknown process uncertainties. Specifically, by forming a new state vector composed
of original system states and sensor faults, an equivalent descriptor dynamic system is built. A
proportional and derivate sliding-mode observer is presented so that the system states, sensor attack,
and actuator attack can be reconstructed successfully. The observer gains are obtained by using
linear matrix inequality to secure robustly stable estimation error dynamics. Moreover, a robust
descriptor fast adaptive observer estimator is presented as a complement. Finally, the efficacy
levels of the proposed design approaches are validated using a vertical take-off and landing aircraft
system. Comparison studies are also carried out to assess the tracking performances of the proposed
algorithms.

Keywords: data injection attack; attack monitoring; attack reconstruction; augmented descriptor
system approach; sliding-mode observer; adaptive observer

1. Introduction

With the continuous development of industrial systems, cyber–physical systems
(CPSs) have received more and more attention by integrating control, communication and
information technology. The term CPS was firstly pioneered by Helen Gill, who explained
basic theory in a workshop organized by the USNSF in 2006 [1]. In general, a cyber–physical
system is defined as the integration of computation, communication, and control to achieve
the desired performance of a physical process [2]. CPSs bridge cyber space and physical
space, which can realize a remote control of multiple tasks. In comparison to traditional
control systems, CPSs offer advantages such as high flexibility, stable and reliable operation,
easy installation, and low maintenance costs [3]. However, due to the close interaction of
information between physical components and cyber space, such systems are vulnerable to
malicious attacks. For instance, in March 2000, the control system of a sewage treatment
plant in Queensland, Australia, suffered a remote intrusion, resulting in a large amount of
sewage being directly discharged, leading to a severe environmental disaster. A uranium
enrichment plant was attacked by the malicious Stuxnet worm, causing the destruction of
many centrifuges in June 2010 [4]. Therefore, security has become a big concern, and there
is high demand for security in CPSs.

CPSs are now widely applied in various industries such as power systems, intelligent
transportation, aerospace, chemical production and so forth, which play crucial roles in
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ensuring the normal operation of society. It is noted that there is an increasing variety of
attack types targeting CPSs, primarily categorized into two types: DOS (Denial-of-Service)
attacks and deception attacks (also called false data injection (FDI) attacks). DOS attacks
involve attempts by attackers to temporarily or permanently disrupt services of devices
connected to the internet, rendering legitimate users unable to access network resources.
Deceptive data injection attacks are typically achieved by tampering with system data or
packets, such as directly sending false packets to target nodes or injecting false data into
original packets. In this paper, like most methods about CPS, we believe that the quality of
service (QoS) of the developed communication network is adequate, that is, we assume
that the signal transmission speed is very fast, and the impact of delay in the transmission
process can be ignored to ensure that CPS operates under ideal conditions [5–7]. Hence,
the architecture of a cyber–physical system attacked via a false data injection attack can be
depicted by Figure 1. It is worth noting that a replay attack can be considered a specific
type of deceptive data injection attack, where only past data can be replayed [8]. Recent
literature focusing on the security of CPSs can mainly be categorized into two areas: attack
detection and secure state estimation. In terms of methods, they are primarily classified into
model-based [9–13] and deep learning-based approaches [14–17]. Secure state estimation
is an intriguing and powerful technology that not only enables attack detection but also
facilitates attack identification. Observer-based state estimation methods play a crucial role
in attack detection and identification. Common secure state estimation methods include the
Kalman filter method [18,19], sliding-mode estimation method [20,21], adaptive estimation
methods [22,23], and proportional integral observer methods [24,25].

Figure 1. The schematic diagram of the CPS architecture subjected to attacks.

However, the current literature mostly concentrates on linear systems, and it either
focuses on sensor attacks [26] or actuator attacks [27] or does not consider the influence
of noise [28,29]. Furthermore, it is worth noting that many systems in engineering can
be modeled as descriptor systems, where the nonlinear components of the system can be
characterized in Lipschitz form, at least locally [30]. Descriptor system theory has been
successfully applied in estimation and control for regular dynamics systems, and some
pioneering works can be found in [31–33]. Compared with diagnosis and identification
of physical faults, the attack reconstruction has limited results that need to be further
investigated. Attack reconstruction is an advanced diagnosis strategy that can detect,
isolate, and identify attacks at the same time.

In this study, Lipschitz nonlinear systems subjected to both actuator and sensor data
injection attacks are investigated, and the contributions and innovations of this paper are
highlighted as follows:

(i). By forming an extended state vector composed of system states and sensor attacks,
a descriptor dynamic system is established that is equivalent to original regular
dynamic systems.
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(ii). Using proportional and derivative gain, the descriptor dynamic system is transformed
into an augmented regular dynamic system, with sensor attacks as internal states but
leaving actuator attacks as external unknown inputs.

(iii). For the equivalent regular dynamic system obtained in (ii), a sliding-mode observer is
designed to form an augmented descriptor observer, which can achieve the simulta-
neous reconstruction of system states, sensor attacks, and actuator attacks.

(iv). The robust performance of the dynamics in the estimation error equation can be
ensured by using the linear matrix inequality technique.

(v). An augmented descriptor adaptive observer technique is presented as well for achiev-
ing a robust simultaneous reconstruction of system states, sensor attacks, and actua-
tor attacks.

(vi). The proposed algorithms are off-line design and on-line implementation, indicating
an excellent real-time performance.

(vii). The two proposed novel attack estimation techniques are validated by an engineering-
oriented example, and the performances of the two reconstruction techniques are
analyzed and compared.

The remaining parts of this paper are organized as follows. Preliminaries and problem
formulation are given Section 2. In Section 3, a novel augmented sliding-mode observer is
presented for the secure estimation of actuator and sensor attacks. In Section 4, an adaptive
descriptor augmented estimation technique is addressed for the simultaneous reconstruc-
tion of actuator and sensor attacks. Simulation studies and comparisons are shown in
Section 5. The paper ends with conclusions in Section 6.

2. Preliminaries and Problem Formulation

Consider a continuous time dynamic system subjected to actuator attacks, sensor
attacks, and unknown interference in the form of{ .

x(t) = Ax(t) + Bu(t) + GΦ(x(t)) + Ba fa(t) + Bdd(t)
y(t) = Cx(t) + Ds fs(t)

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input vector, Φ(x(t)) is a
Lipschitz nonlinear function, y(t) ∈ Rp is the measured output vector, d(t) ∈ Rd is the
unknown but bounded external disturbance vector and ∥ d ∥≤ δ, and fa(t) ∈ Rq and
fs(t) ∈ Rr are the malicious actuator attack and sensor attack signals injected against
the CPS, respectively. A, B, G, C, Ba, Bd, and Ds are known matrices with appropriate
dimensions. Ds is assumed to be full rank of column.

Cyber–physical systems (CPSs) are often susceptible to attacks such as Denial-of-
Service (DoS), false data injection attacks, and replay attacks. Among these, false data
injection attacks have received significant attention due to their severe impact and the
challenges associated with their detection. In this type of attack, adversaries can either
directly transmit false data to the target location or modify data transmitted between
different parts of the network, intentionally misleading the system, affecting its stability,
and potentially causing severe damage to the system. In this paper, we focus on the
monitoring and reconstruction problems related to such attacks.

Assumption 1. For any x1(t), x2(t) ∈ Rn, there is a constant γ > 0 such that

∥ Φ(x1(t))− Φ(x2(t)) ∥≤ γ ∥ x1(t)− x2(t) ∥ (2)

Then, the nonlinear function Φ(x(t)) is Lipschitz.
Assume Φ(x(t)) = 0 when x(t) = 0. Therefore, from (2), one can have

Φ(x(t)) ≤ γ ∥ x(t) ∥ (3)
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Assumption 2. The actuator fault and its derivative are assumed to be bounded, that is, ∥ fa(t)∥ ≤
α and

∥∥∥ .
f a(t)

∥∥∥ ≤ β, where α and β are assumed to be positive scalars.

Remark 1. Under Assumption 1, the nonlinear term Φ(x(t)) is globally Lipschitz. It is noticed
that in engineering practice, many nonlinear systems are locally Lipschitz in a region. The proposed
methods can be easily extended to locally Lipschitz nonlinear systems (e.g., see [30]).

3. State and Attack Estimation Using Augmented Descriptor Sliding-Mode Techniques

In this section, to estimate the system state, actuator attacks, and sensor attacks
while simultaneously mitigating the impacts of unknown disturbances, a new robust
reconstruction technique is proposed by integrating augmented descriptor system approach
and sliding-mode observer method.

3.1. Augmented Descriptor System Approach

Motivated by [31–33], we can define xa(t) =
[

x(t)
fs(t)

]
. Therefore, we can identify an

augmented descriptor system in the following form:{
E

.
xa(t) = Aaxa(t) + Buau(t) + GaΦ(x(t)) + B f a fa(t) + Bdad(t) + KDs f s(t)

y(t) = Caxa(t) = Ca1xa(t) + Ds fs(t)
(4)

where

E =

[
I 0
0 0

]
, Aa =

[
A 0
0 −Ds

]
, Bua =

[
B
0

]
, Ga =

[
G
0

]
, B f a =

[
Ba
0

]
,

Bda =

[
Bd
0

]
, K =

[
0
I

]
, Ca =

[
C Ds

]
, Ca1 =

[
C 0

]
.

(5)

In terms of (5) and (6), the augmented descriptor system can be simplified to

E
.
xa(t) = (Aa − KCa1)xa(t) + Buau(t) + GaΦ(x(t)) + B f a fa(t) + Bdad(t) + Ky(t) (6)

Let S = E + KCa, then S =

[
I 0
0 0

]
+

[
0
I

][
C Ds

]
=

[
I 0
C Ds

]
,

Adding KCa
.
xa(t) to both sides of Equation (6), we obtain

S
.
xa(t) = (Aa − KCa1)xa(t) + Buau(t) + GaΦ(x(t))

+B f a fa(t) + Bdad(t) + Ky(t) + K
.
y(t)

(7)

From S =

[
I 0
C Ds

]
, we can obtain a left-inverse as follows:

S+ =

[
I 0

−
(

DT
s Ds

)−1DT
s C

(
DT

s Ds
)−1DT

s

]
(8)

so that S+S = I.
By left-multiplying both sides of Equation (7) by S+, we can obtain

.
xa(t) = S+(Aa − KCa1)xa(t) + S+Buau(t) + S+GaΦ(x(t))

+S+B f a fa(t) + S+Bdad(t) + S+Ky(t) + S+K
.
y(t)

(9)

Let
Ae = S+(Aa − KCa1), Be = S+Bua, Ge = S+Ga,

B f e = S+B f a, Bde = S+Bda, Ke = S+K.
(10)
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Then, Equation (9) can be rewritten as

.
xa(t) = Aexa(t) + Beu(t) + GeΦ(x(t)) + B f e fa(t) + Bded(t) + Key(t) + Ke

.
y(t) (11)

Let
ξ(t) = xa(t)− Key(t) (12)

Equation (11) becomes

.
ξ(t) = Aexa(t) + Beu(t) + GeΦ(x(t)) + B f e fa(t) + Bded(t) + Key(t) (13)

Substituting xa(t) = ξ(t) + Key(t) into (13), we have

.
ξ(t) = Aeξ(t) + Beu(t) + GeΦ(x(t)) + B f e fa(t) + Bded(t) + (Ke + AeKe)y(t) (14)

As a result, the augmented equivalent system above has been obtained by using
descriptor system theory and transformation.

3.2. Augmented Sliding-Mode Observer

For the augmented system (14), a sliding-mode observer in the following form can be
constructed:

.
ξ̂(t) = Ae ξ̂(t) + Beu(t) + GeΦ(x̂(t)) + B f eν + (Ke + AeKe)y(t) + L(y(t)− ŷ(t))
x̂a(t) = ξ̂(t) + Key(t)
ŷ(t) = Ca x̂a

(15)

where ξ̂(t) ∈ Rn+r is estimate of the state ξ(t), x̂a(t) ∈ Rn+r is the estimate of the aug-
mented state xa(t) ∈ Rn+r, and ν is the sliding-mode term to be designed. L ∈ R(n+r)×p is
the gain to be solved.

Derived from Equation (15), one has

.
x̂a(t) = Ae x̂a(t) + Beu(t) + GeΦ(x̂(t)) + B f eν + Key(t) + L(y(t)− ŷ(t)) + Ke

.
y(t) (16)

Let
ea(t) = xa(t)− x̂a(t) (17)

Φr(t) = Φ(x(t))− Φ(x̂(t)) (18)

ν =

{
ρ

Fey
∥Fey∥ i f ∥ Fey ∦= 0

0 i f ∥ Fey ∥= 0
(19)

where ρ ≥ ρ0 + α is the sliding-mode gain to be designed, α is the upper bound of ∥ fa(t)∥,
ρ0 is the positive scalar, F ∈ Rq×p is the gain matrix to be solved, and ey is the output
estimation error, which is y(t)− ŷ(t) = Caea(t).

Subtracting (16) from (11), we can obtain

.
ea(t) = (Ae − LCa)ea(t) + GeΦr(t) + B f e( fa(t)− ν) + Bded(t) (20)

3.3. Stability Analysis

Lemma 1 ([25]). For any positive scalar µ and real constant matrices x, y ∈ Rn, the following
inequality holds:

2xTy ≤ µxTx +
1
µ

yTy (21)
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Lemma 2 ([34]). Given a symmetric matrix, S =

[
S11 S12
ST

12 S22

]
. S < 0 if and only if S22 < 0

and S11 − S12S−1
22 ST

12 < 0.

The above lemma is known as the Schur complement lemma, which is useful for the
design of the observer gains in this paper.

Theorem 1. For system (4), there exists an augmented sliding-mode observer in the form of (15)
such that the estimation error dynamics in (20) is robustly stable and satisfies the robust performance
index ∥ ea ∥Tf

≤ r∥ d(t) ∥Tf
. If there exist a symmetric positive definite matrix P, positive

scalars µ and r, and a matrix Y for a given positive constant γ, the following inequality holds:

PB f e = CT
a FT (22)PAe − YCa + AT

e P − CT
a YT +

(
µγ2 + 1

)
I PBde PGe

Bde
T P −r2 I 0

GT
e P 0 −µI

 < 0 (23)

The observer gain can be calculated by L = P−1Y, where ∥ea∥T f = (
∫ T f

0 ea
T(t)ea(t)dt)

1
2 ,

∥d∥T f = (
∫ T f

0 dT(t)d(t)dt)
1
2 .

Proof.

(i). Asymptotic stability when d = 0.

Define a Lyapunov function candidate of the error dynamic system (20) as

V(ea) = ea
T Pea (24)

In terms of (20), one has

.
V(ea)= ea

T
[

P(Ae − LCa) + (Ae − LCa)
T P

]
ea + 2ea

T PGeΦr(t)
+2ea

T PB f e( fa(t)− ν) + 2ea
T PBded(t).

(25)

From Equations (19) and (22), and noticing that ∥ fa∥ ≤ α and ρ ≥ ρ0 + α, we can obtain

ea
T PB f e( fa(t)− ν) = ea

T PB f e fa(t)− ea
T PB f eρ

Fey
∥Fey∥

≤ ea
T PB f e fa(t)− ea

TCT
a FTρ

Fey
∥Fey∥

= ea
T PB f e fa(t)− ρ

(Fey)
T

Fey
∥Fey∥

≤∥ ea
T PB f e ∥∥ fa(t) ∥ −ρ ∥ Fey ∥

=∥ ea
T PB f e ∥∥ fa(t) ∥ −ρ ∥ FCaea ∥

=∥ ea
T PB f e ∥∥ fa(t) ∥ −ρ ∥ BT

f ePea ∥
= (α − ρ) ∥ ea

T PB f e ∥
≤ −ρ0 ∥ ea

T PB f e ∥≤ 0

(26)

Furthermore, from Assumption 1 and Lemma 1, it can be deduced that

2ea
T PGeΦr(t) ≤

1
µ
(GT

e Pea)
T(GT

e Pea) + µγ2ea
Tea (27)

Substituting the results of Equation (26) and Equation (27) into (25), one can have

.
V(ea)≤ ea

T
[

P(Ae − LCa) + (Ae − LCa)
T P +

1
µ

PGeGT
e P + µγ2 I

]
ea + 2ea

T PBded(t) (28)
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Noting that Y = PL and using Schur complement shown in Lemma 2 to (23), we have

Ω =

[
P(Ae − LCa) + (Ae − LCa)

T P + 1
µ PGeGT

e P +
(
µγ2 + 1

)
I PBde

Bde
T P −r2 I

]
< 0 (29)

which means

P(Ae − LCa) + (Ae − LCa)
T P +

1
µ

PGeGT
e P + µγ2 I < 0 (30)

From (28) and (30), we can obtain
.

V(ea) < 0 when d = 0. Therefore, the estimation
error dynamics in (20) is asymptotically stable when d = 0.

(ii). Robust stability when d ̸= 0.

Let

Γ =
∫ Tf

0
(ea

Tea − r2d(t)Td(t))dt (31)

By using (28) and (31), one has

Γ =
∫ Tf

0 (e a
Tea − r2d(t)Td(t) +

.
V(ea))dt −

∫ Tf
0

.
V(ea)dt

=
∫ Tf

0

{
ea

T
[

I + P(Ae − LCa) + (Ae − LCa)
T P + 1

µ PGeGT
e P + µγ2 I

]
ea

+2ea
T PBded(t)−r2d(t)Td(t)

}
dt −

∫ Tf
0

.
V(ea)dt

=
∫ Tf

0

[
ea

Td(t)T
]
Ω
(

ea
d(t)

)
dt−

∫ Tf
0

.
V(ea)dt

(32)

where Ω is defined in (29).
Under zero initial condition ea(0) = 0, one has∫ Tf

0

.
V(ea)dt =ea

T(Tf )Pea(Tf )− ea
T(0)Pea(0) = V

(
eξ(Tf )

)
≥ 0. (33)

Since Ω < 0 and
∫ T f

0

.
V(ea)dt ≥ 0, from (32), we have Γ ≤ 0, indicating ∥ ea ∥Tf

≤
r∥ d(t) ∥Tf

. As a result, the robust performance index is satisfied. □

3.4. Accessibility Analysis of Sliding Surface in Finite Time

To ensure the rapid response of the system to sliding-mode inputs, assist in the quick
recovery of the system to the desired state when subjected to disturbances or external
perturbations, and enhance the system’s robustness, it is necessary to determine the gain ρ
in the sliding term of Equation (19), ensuring that the state error system moves onto the
sliding surface s within a finite time.

Theorem 2. Consider a siding mode surface s = (ea(t) : ea(t) = 0). For a given positive scalar σ,
if the gain ρ0 satisfies

ρ0 ≥
(
λmin(PB f e)

)−1
((∥ P(Ae − LCa) ∥ +γ ∥ PGe ∥)θ + δ ∥ PBde ∥ +σ) (34)

the error dynamic system (20) can reach the sliding surface within a finite time.

Proof.
Define a Lyapunov function candidate as

V(s) = sT Ps (35)
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In terms of (19), and noting that ρ ≥ ρ0 + α and ∥ fa∥ ≤ α, one has

.
V(s) = 2sT P

.
s

= 2ea
T P

[
(Ae − LCa)ea(t) + GeΦr(t) + B f e( fa(t)− ν) + Bded(t)

]
≤ 2ea

T P
[
(Ae − LCa)ea(t) + GeΦr(t) + B f e fa(t)− ρB f e

Fey
∥Fey∥ + Bded(t)

]
= 2ea

T P
[
(Ae − LCa)ea(t) + GeΦr(t) + B f e fa(t)− ρB f e

FCaea(t)
∥FCaea(t)∥ + Bded(t)

]
≤ 2 ∥ ea

T ∥ {∥ P(Ae − LCa)ea(t) ∥ +γ ∥ PGe ∥∥ ea(t) ∥ +δ ∥ PBde ∥}
+2(α − ρ) ∥ ea

T PB f e ∥
≤ 2 ∥ ea

T ∥ {∥ P(Ae − LCa)ea(t) ∥ +γ ∥ PGe ∥∥ ea(t) ∥ +δ ∥ PBde ∥}
−2ρ0 ∥ ea

T PB f e ∥

(36)

If the optimization problem in Theorem 1 has a feasible solution, the dynamic state
error ea(t) is bounded, i.e., sup ∥ ea(t) ∥≤ θ, t ∈ [0, ∞), where θ is a smaller positive scalar.

Then, from (36), one can have
.

V(s) ≤ 2 ∥ ea
T ∥ {(∥ P(Ae − LCa) ∥ +γ ∥ PGe ∥)θ + δ ∥ PBde ∥}

−2ρ0λmin(PB f e) ∥ ea
T ∥

≤ 2 ∥ ea
T ∥

{
(∥ P(Ae − LCa) ∥ +γ ∥ PGe ∥)θ + δ ∥ PBde ∥ −ρ0λmin

(
PB f e

)} (37)

When ρ0 ≥
(
λmin

(
PB f e

))−1
((∥ P(Ae − LCa) ∥ +γ ∥ PGe ∥)θ + δ ∥ PBde ∥ +σ) holds,

we have
.

V(s) ≤ −2σ ∥ ea
T ∥≤ −2σ

√
λmin(P−1)

√
V(s) (38)

As a result, the error dynamic system can reach the sliding surface within a finite time.
This completes the proof. □

3.5. Robust State and Attack Estimation

When the error dynamic system moves to the sliding-mode surface, ea(t) =
.
ea(t) = 0;

then, the error equation of (21) can be abbreviated as

B f e
(
νeq − f a(t)

)
= GeΦr(t) + Bded(t) (39)

where νeq is the equivalent output signal of ν.
Note that ∥ B f e(ν − f a(t)) ∥≤ Y, where Y = (γ ∥ Ge ∥)θ + δ ∥ Bde ∥. When Y is

minimized as much as possible, we can obtain f̂a(t) = νeq, and then

f̂a(t) = νeq = ρ
Fey

∥ Fey ∥ +ϖ
(40)

where, ϖ > 0 is a small positive scalar that can reduce vibration during the sliding-mode
motion process.

With the observer in the form of Equation (15) and the augmented state xa(t) =[
x(t)T fs(t)

T
]
, we can easily obtain estimates of state and sensor attack signals, namely

{
x̂(t) =

[
In 0n×r

]
x̂a(t)

f̂s(t) =
[
0r×n Ir×r

]
x̂a(t)

(41)
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Remark 2. From Equation (40), the proposed attack signal reconstruction scheme is not limited
by the type of attack signal, meaning it is applicable to step-type, sinusoidal, and other types of
attack signals.

3.6. Design Procedure of Robust SMO for FDI Estimation

The design procedure of the addressed robust sliding-model observer can be summa-
rized as below:

(i). Construct the descriptor augmented system in the form of (4). Calculate the aug-
mented matrices E, Aa, Bua, Ga, B f a, Bda, Ca, and Ca1 in terms of (5).

(ii). Select the gain K =

[
0
I

]
, so that S = E + KCa is nonsingular. Calculate the matrices

Ae, Be, Ge, B f e, Bde, and Ke in terms of (10).
(iii). Compute the observer gain L = P−1Y, where P and Y can be obtained by solving

Equations (22) and (23).
(iv). Select the sliding-mode term ρ to ensure that the error dynamic system (20) can reach

the sliding surface within a finite time.
(v). Establish the estimator in the form of (15), where the parameters are available from

steps (i)–(iv). Carry out the real-time estimation to obtain the estimated vector x̂a(t).
As a result, the reconstructed signals for system state, sensor attack, and actuator
attack vectors can be readily formulated as follows:

x̂(t) =
[
In 0n×r

]
x̂a(t)

f̂s(t) =
[
0r×n Ir×r

]
x̂a(t)

f̂a(t) = νeq = ρ
Fey

∥Fey∥+ϖ

(42)

4. State and Attack Estimation Using Augmented Adaptive Observers
4.1. Design of an Adaptive Augmented Observer

Based on descriptor augmented system (4) and equivalent regular dynamic system
(14), we can design an augmented adaptive observer in the following form:

.
ξ̂(t) = Ae ξ̂(t) + Beu(t) + GeΦ(x̂(t)) + B f e f̂a(t) + (Ke + AeKe)y(t) + LF(y(t)− ŷ(t))
ŷ(t) = Ca x̂a(t)
x̂a(t) = ξ̂(t) + Key(t)

(43)

.
f̂ a(t) = ΓR

(
ey(t) +

.
ey(t)

)
(44)

where ξ̂(t) ∈ Rn+r is the estimate of the vector ξ(t) in (14), x̂a(t) ∈ Rn+r is the estimated
value of the augmented state xa(t) ∈ Rn+r, and f̂a(t) is the estimate of the actuator attack
signal. LF ∈ R(n+r)×p is the gain to be solved; Γ is the adaptive learning rate to be designed.
ey(t) is the output error, i.e., ey(t) = y(t)− ŷ(t) = Caea(t)

From (43), we have

.
x̂a(t) = Ae x̂a(t) + Beu(t) + GeΦa(x̂(t)) + B f e f̂a(t) + Key(t)

+LF(y(t)− ŷ(t)) + Ke
.
y(t)

(45)

Define
e f (t) = fa(t)− f̂a(t) (46)

By subtracting Equation (45) from Equation (11), we can obtain

.
ea(t) = (Ae − LFCa)ea(t) + GeΦr(t) + B f ee f (t) + Bded(t) (47)
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4.2. Robust Stability Analysis

Theorem 3. For the dynamic system (4), there is an augmented adaptive observer in the shape
of (43) and (44) such that the estimation error dynamics in (47) is robustly stable with the robust
performance index ∥ ea ∥Tf

≤ ϵ∥ d(t) ∥Tf
+ ϵ∥

.
f a(t) ∥Tf

; if there exist a symmetric positive
definite matrix Q; positive scalars ϵ, η1, η2, and η3; and suitable matrices YF and R such that for a
given positive constant γ, the following inequality holds

B f e
TQ = RCa (48)

Γm =



Γm11 −AT
e QB f e + CT

a YT
F B f e QBde 0 0 QGe 0

∗ η1 I − 2B f e
TQB f e −B f e

TQBde 0 0 0 B f e
TQGe

∗ ∗ −ϵ2 I 0 0 0 0
∗ ∗ ∗ −ϵ2 I Γ−1 0 0
∗ ∗ ∗ ∗ −η1 I 0 0
∗ ∗ ∗ ∗ ∗ −η2 I 0
∗ ∗ ∗ ∗ ∗ ∗ −η3 I


< 0 (49)

Γm11 = AT
e Q + QAe − CT

a YT
F − YFCa +

(
1 + η2γ2 + η3γ2

)
I (50)

The observer gain can be calculated by LF = Q−1YF.

Proof.

(i). Asymptotic stability when d = 0 and
.
f a = 0.

Define a Lyapunov function candidate of the error dynamic system (47) as

VF

(
ea, e f

)
= ea

TQea + eT
f Γ−1e f (51)

Using (47) and (51), one has

.
VF

(
ea, e f

)
= ea

T
[

Q(Ae − LFCa) + (Ae − LFCa)
TQ

]
ea + 2ea

TQGeΦr(t)
+2ea

TQB f ee f (t) + 2ea
TQBded(t)+2eT

f (t)Γ
−1 .

e f (t)
(52)

From Equation (44), we can deduce that

2eT
f (t)Γ

−1 .
e f (t) = 2eT

f (t)Γ
−1

(
.
f a(t)−

.
f̂ a(t)

)
= 2eT

f (t)Γ
−1

.
f a(t)− 2eT

f (t)R
(
ey(t) +

.
ey(t)

)
= 2eT

f (t)Γ
−1

.
f a(t)− 2eT

f (t)RCaea − 2eT
f (t)RCa

.
ea(t)

(53)

Substituting (47) and (53) into (52) and using (48), one can have

.
VF(ea, e f ) = ea

T
[

Q(Ae − LFCa) + (Ae − LFCa)
TQ

]
ea

+2ea
TQGeΦr(t) + 2ea

TQBded(t) + 2eT
f (t)Γ

−1
.
f a(t)

−2eT
f (t)B f e

TQ(Ae − LFCa)ea(t)− 2eT
f (t)B f e

TQGeΦr(t)

−2eT
f (t)B f e

TQB f ee f (t)− 2eT
f (t)B f e

TQBded(t)

(54)

Using Lemma 1, we can obtain

2eT
f (t)Γ

−1
.
f a(t) ≤ η1eT

f (t)e f (t) +
1
η1

.
f a(t)

T
Γ−TΓ−1

.
f a(t) (55)
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2ea
TQGeΦr(t) ≤

1
η2

ea
TQGeGT

e Qea + η2γ2ea
Tea (56)

−2eT
f (t)B f e

TQGeΦr(t) ≤
1
η3

eT
f (t)B f e

TQGeGT
e QB f ee f (t) + η3γ2ea

Tea (57)

Substituting (55)–(57) into (54), one can have

.
VF(ea, e f ) = ea

T
[

Q(Ae − LFCa) + (Ae − LFCa)
TQ + 1

η2
QGeGT

e Q + η2γ2 I + η3γ2 I
]
ea

+2ea
TQBded(t) + eT

f (t)
[
η1 I + 1

η3
eT

f (t)B f e
TQGeGT

e QB f ee f (t)− 2B f e
TQB f e

]
e f (t)

−2eT
f (t)B f e

TQ(Ae − LFCa)ea(t)− 2eT
f (t)B f e

TQBded(t)

+ 1
η1

.
f a(t)

T
Γ−TΓ−1

.
f a(t)

(58)

Letting YF = QLF, and applying the Schur complement to (50), we have

Π =


Π11 −(Ae − LFCa)

TQB f e QBde 0
∗ η1 I + 1

η3
B f e

TQGeGT
e QB f e − 2B f e

TQB f e −B f e
TQBde 0

∗ ∗ −ϵ2 I 0
∗ ∗ ∗ −ϵ2 I + 1

η1
Γ−TΓ−1

 < 0 (59)

Π11 = I + Q(Ae − LFCa) + (Ae − LFCa)
TQ +

1
η2

QGeGT
e Q + η2γ2 I + η3γ2 I (60)

It is clear that (59) indicates[
Π11m −(Ae − LFCa)

TQB f e
∗ η1 I + 1

η3
B f e

TQGeGT
e QB f e − 2B f e

TQB f e

]
< 0 (61)

where

Π11m = Q(Ae − LFCa) + (Ae − LFCa)
TQ +

1
η2

QGeGT
e Q + η2γ2 I + η3γ2 I (62)

Therefore, (61) means
.

VF

(
ea, e f

)
< 0 when d = 0 and

.
f a = 0. Therefore, the

estimation error dynamics (47) is asymptotically stable when d = 0 and
.
f a = 0.

(ii). Robust stability when d ̸= 0 and
.
f a ̸= 0.

Let

Θ =
∫ Tf

0
(e a

Tea − ϵ2d(t)Td(t)− ϵ2
.
f a(t)

T .
f a(t)

)
dt (63)

By using (58) and (63), one has

Θ =
∫ Tf

0 (e a
Tea − ϵ2d(t)Td(t)−

.
f a(t)

T .
f a(t) +

.
VF(ea))dt −

∫ Tf
0

.
VF(ea)dt

=
∫ Tf

0

{
ea

T
[

I + Q(Ae − LFCa) + (Ae − LFCa)
TQ + 1

η2
QGeGT

e Q + η2γ2 I + η3γ2 I
]

ea

+2ea
TQBded(t) + eT

f (t)
[
η1 I + 1

η3
eT

f (t)B f e
TQGeGT

e QB f ee f (t)− 2B f e
TQB f e

]
e f (t)

−2eT
f (t)B f e

TQ(Ae − LFCa)ea(t)− 2eT
f (t)B f e

TQBded(t) + 1
η1

.
f a(t)

T
Γ−TΓ−1

.
f a(t)

−ϵ2d(t)Td(t)−ϵ2
.
f a(t)

T .
f a(t)

}
dt −

∫ Tf
0

.
VF(ea)dt

=
∫ Tf

0
[
ζTΠζ

]
dt−

∫ Tf
0

.
VF(ea)dt

(64)
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where

ζ =


ea(t)
e f (t)
d(t)
.
f a(t)

 (65)

and Π is defined as shown on the left-hand side of (59). As Π < 0 and
∫ Tf

0

.
VF(ea)dt ≥ 0,

from (64), we have Θ ≤ 0, indicating ∥ ea ∥Tf
≤ ϵ∥ d(t) ∥Tf

+ ϵ∥
.
f a(t) ∥Tf

. As a result, the
robust performance index is satisfied. The proof is completed. □

4.3. Robust State and Attack Reconstruction

From Equation (44), we can easily obtain

f̂a(t) =
∫ t

t f

ΓR
(
ey(t) +

.
ey(t)

)
dt (66)

where t f denotes the instant when the attack occurs.
The state and sensor attack signals can be reconstructed as follows:{

x̂(t) =
[
In 0n×r

]
x̂a(t)

f̂s(t) =
[
0r×n Ir×r

]
x̂a(t)

(67)

4.4. Design Procedure for the Reconstruction of the Attack Signals

The design procedure of the proposed robust fast adaptive observer for attack signal
reconstruction can be highlighted as shown:

(i). Build the augmented system as shown in (4). Calculate the augmented matrices
E, Aa, Bua, Ga, B f a, Bda, Ca, and Ca1 in terms of (5).

(ii). Select the gain K =

[
0
I

]
, so that the matrix S = E + KCa is nonsingular. Calculate the

changed matrix Ae, Be, Ge, B f e, Bde, and Ke in terms of (10).
(iii). Select the adaptive learning rate Γ
(iv). Compute LF = Q−1YF, where Q and YF can be obtained by solving Equations (48)

and (49).
(v). Establish estimators (43) and (44) where the parameters are available from steps

(i)–(iv) and apply real-time simulation to identify the estimated vector x̂a(t). Hence,
the estimated signals for the system state, sensor attack, and actuator attack vectors
can be readily formulated as follows:

x̂(t) =
[
In 0n×r

]
x̂a(t)

f̂s(t) =
[
0r×n Ir×r

]
x̂a(t)

f̂a(t) =
∫ t

t f
ΓR

(
ey(t) +

.
ey(t)

)
dt

(68)

5. Simulation Study

In this section, considering the linearized longitudinal dynamic system of the VTOL
aircraft [35] to validate the effectiveness of the proposed method, we assume that the system
is subjected to nonlinear dynamics, unknown disturbances, actuator attacks, and sensor
attacks simultaneously. Therefore, the state-space dynamic expression can be described as
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shown in (1), where the states x(t) include horizontal velocity, vertical velocity, pitch rate,
and pitch angle. The system parameters are as follows:

A =


−9.9477 −0.7476 0.2632 5.0337
52.1659 2.7452 5.5532 −24.4221
26.0922 2.6361 −4.1975 −19.2774
0 0 1.0000 0


B =


0.4422 0.1761
3.5446 −7.5922
−5.5200 4.4900
0 0

,

G =


0
−0.1
0
0

, Ba =


0.1761
−7.5922
4.4900
0

, C =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 1 1

,

Bd =


0.01 0
0.02 0
0 −0.01
0 0.01

, Φ(x(t)) = sin(x4), Ds =


1 0
0 0
0 0
0 1

.

(69)

From the parameter matrices mentioned above, the augmented matrices E and Ae, Be,
Ge, B f e, Bde, Ke in the form of Equations (5) and (10) can be calculated.

In this simulation, the disturbance signals d(t) =
[
dT

1 (t) dT
2 (t)

]T are depicted in
Figure 2, which are high-frequency signals corrupted by band-limited white noises.

Figure 2. Input disturbance signals.

(i). Robust augmented sliding-mode observer

To evaluate the performance of the estimator, one can consider the following actuator
time-varying attack signal fa(t) and sensor attack signals fs1(t) and fs2(t):

fa(t) =


sin2(0.5t), 12.5 < t ≤ 30
cos(5t), 40 < t ≤ 50
cos(10t), 60 < t ≤ 80

0, else

(70)
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fs1(t) =


−0.25y1(t), 15 < t ≤ 55

square wave signal, 60 < t ≤ 77.5
0, else

(71)

fs2(t) =


1, 10 < t ≤ 30
−0.01t2 + 0.5(t − 30), 30 < t ≤ 50
−0.2(t − 50), 50 < t ≤ 75
0, else

(72)

By solving (22) and (23), the gains are calculated as

L =



−4.2916 25.7162 11.9250 5.0171
3.1577 48.3240 24.7412 −53.6838

−1.1818 17.5667 −7.3616 3.1981
−9.1213 14.1767 −20.9020 4.0719
4.9909 −24.4892 −14.8587 13.5067

−29.0488 88.2902 11.4565 3.0402

 (73)

F =
[
0.0000 −3.5095 1.3120 0.5494

]
. (74)

Therefore, utilizing the estimator in the form of Equation (15) with the gains pro-
vided above, we can obtain curves for the states, attacks, and their respective estimates.
Figures 3–6 display the system states and their estimates, and Figures 7–9 exhibit the at-
tacks and their estimates. One can see that the estimated curves track the system states and
attacks excellently.

Figure 3. State x1(t) and its estimate: augmented sliding-mode technique.
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Figure 4. State x2(t) and its estimate: augmented sliding-mode technique.

Figure 5. State x3(t) and its estimate: augmented sliding-mode technique.

Figure 6. State x4(t) and its estimate: augmented sliding-mode technique.
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Figure 7. Actuator attack signal and its estimate: augmented sliding-mode technique.

Figure 8. The first sensor attack signal and its estimate: augmented sliding-mode technique.

Figure 9. The second sensor attack signal and its estimate: augmented sliding-mode technique.
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(ii). Adaptive augmented observer

To assess the performance of the estimator, we use the same attack signals as used in
(i) above (e.g., see Equations (70)–(72)).

To solve LMIs (48) and (49), the following gains can be obtained:

LF =



−3.8377 16.2173 28.3712 −9.9091
10.2563 −3.3335 −5.4297 1.0501
4.7222 −2.2512 −5.8988 −0.0564

−0.3313 −13.8613 −22.5174 9.4375
3.3490 −12.6870 −22.4017 8.3864

−16.3518 16.8364 29.4332 −9.1642

, (75)

R =
[
−0.0000 −59.1527 101.5045 −10.5879

]
. (76)

Therefore, utilizing the estimator in the form of (43) and the gains obtained above, we
can obtain the curves for the states, attacks, and their respective estimates. Figures 10–13
show the states and their estimates, in which we can see that the estimated curves track
the system states well, but the dynamic variations at initial time are relatively large.
Figures 14–16 exhibit the attacks and their estimates where the sensor attack signals in
Figures 15 and 16 are well tracked. It is noted that in Figure 14, the estimation curve can
trace the actuator attack signal generally well, but there are significant dynamic response
processes with noteworthy variations in the estimated actuator signal.

Figure 10. State x1(t) and its estimate: augmented adaptive technique.

Figure 11. State x2(t) and its estimate: augmented adaptive technique.
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Figure 12. State x3(t) and its estimate: augmented adaptive technique.

Figure 13. State x4(t) and its estimate: augmented adaptive technique.

Figure 14. Actuator attack signal and its estimate: augmented adaptive technique.
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Figure 15. The first sensor attack signal and its estimate: augmented adaptive technique.

Figure 16. The second sensor attack signal and its estimate: augmented adaptive technique.

(iii). Comparison study

For comparison studies, the algorithm proposed in reference [36] is simulated here.

Let x =


x
.
f a.
f s
fa
fs

, system (1) can be augmented to the following form:

{ .
x(t) = Ax(t) + Bu(t) + GΦ(x(t)) + Bdd(t)

y(t) = Cx(t)
(77)

where

A =


A 04×1 04×2 Ba 04×2

01×4 0 01×2 0 01×2
02×4 02×1 02×2 02×1 02×2
01×4 1 01×2 0 01×2
02×4 02×1 I2 02×1 02×2

, B =


B

01×2
02×2
01×2
02×2

, Bd =


Bd

01×2
02×2
01×2
02×2

,

C =
[
C 04×1 04×2 04×1 Ds

]
, Φ(x(t)) =


Φs(x(t))

0
0
0
0

, Φs(x(t)) =


0

−0.1sin(x4)
0
0

.
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The nonlinear augmented unknown input observer is given in the form of{ .
z(t) = Rz(t) + TBu(t) + TΦ(x̂(t)) + Ky(t)

x̂(t) = z(t) + H y(t)
(78)

Using Theorem 3 from the literature [36], one can obtain the gains of the UIO-
augmented observer. The simulated curves of the attacks and their estimates are depicted
in Figures 17–19. One can see that the augmented UIO approach can track step signals,
slope signals, and parabola signals excellently. The UIO approach can also track the ef-
fectiveness of the loss signal and square wave signal generally well, but there are some
spikes caused by abrupt changes from other attack signals. The UIO method can track
the low-frequency sinusoidal signals well, but the tracking performance reduces as the
frequency of the signal increases.

Figure 17. Actuator attack signal and its estimate: augmented UIO.

Figure 18. The first sensor attack signal and its estimate: augmented UIO.
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Figure 19. The second sensor attack signal and its estimate: augmented UIO.

By comparing Figures 7–9 in (i), Figures 14–16 in (ii), and Figures 17–19 in (iii), one
can summarize the comments in Table 1.

Table 1. Comparison among three attack estimation methods.

Attack Signal Proposed Sliding-Mode
Technique

Proposed Adaptive
Technique

Existing Augmented UIO
Technique [36]

First sensor attack signal
(a combination of

measurement effectives loss
and square waveform signals)

Tracks well Tracks well Tracks well

Second sensor attack signal
(a combination of step, slope,

and parabola signals)
Tracks well Tracks well Tracks well with quick

response speed

Actuator signal
(a combination of

low-frequency and
high-frequency

periodic signals)

Tracks low-frequency and
high-frequency signals

excellently, and the tracking
performance is best among

the three methods

Tracks low-frequency signal
well and traces

high-frequency signal
acceptably but with significant
dynamic response time. There

are evident variations at
starting points when

following the signal and its
subsequent waveform change

Tracks low-frequency signal
well, but the estimation

performance reduces as the
frequency increases. There are

some spikes at the time
instants when other signals

change abruptly

6. Conclusions

In this paper, two simultaneous estimation techniques for state and false data injection
attacks on the Lipschitz nonlinear systems affected by actuator attacks, sensor attacks,
and unknown input disturbances have been proposed based on descriptor system the-
ory, sliding-mode estimation, and adaptive estimation techniques. The robust stability
conditions of the system have been analyzed based on the Lyapunov stability and linear
matrix inequality methods. The proposed algorithms have been validated using simulation
and comparison studies. The proposed algorithms have provided new insights into the
reconstruction of multiple attacks, improving the safety and reliability of industrial systems.
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